Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mult Scler Relat Disord ; 68: 104239, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36279598

RESUMO

BACKGROUND: 3-phenyllactic acid (PLA) is produced by both intestinal bacteria and the human host. PLA exists in its D- and L- chiral forms. It modulates human immune functions, thereby acting as a mediator of bacterial-host interactions. We aim to determine the amount and potential influence of PLA on clinical and immunological features of MS. METHODS: We measured D- and L-PLA levels in bacterial supernatants and in sera of 60 MS patients and 25 healthy controls. We investigated potential associations between PLA levels, clinical features of MS, serum cytokine levels and ratios of peripheral blood lymphocyte subsets. RESULTS: Multiple gut commensal bacteria possessed the capacity to generate D- and L-PLA. MS patients with benign phenotype showed markedly lower PLA levels than healthy controls or other MS patients. Fingolimod resistant patients had higher PLA levels at baseline. Furthermore, MS patients with higher PLA levels tended to display increased memory B and plasma cell ratios, elevated IL-4 levels and increased ratios of IL-4 and IL-10 producing T cell subsets. CONCLUSION: Collectively, our work indicates that reduced serum levels of PLA could be associated with a favorable clinical course in MS and possibly be used as a biomarker.


Assuntos
Subpopulações de Linfócitos B , Esclerose Múltipla , Humanos , Interleucina-4 , Cloridrato de Fingolimode
2.
Clin Transl Sci ; 15(4): 1036-1049, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35048535

RESUMO

Peppermint oil (PMO) is effective in the treatment of functional abdominal pain disorders, but its mechanism of action is unclear. Evidence suggests PMO has microbicidal activity. We investigated the effect of three different doses of PMO on gut microbiome composition. Thirty children (7-12 years of age) with functional abdominal pain provided a baseline stool sample prior to randomization to 180, 360, or 540 mg of enteric coated PMO (10 participants per dose). They took their respective dose of PMO (180 mg once, 180 mg twice, or 180 mg thrice daily) for 1 week, after which the stool collection was repeated. Baseline and post-PMO stools were analyzed for microbiome composition. There was no difference in alpha diversity of the gut microbiome between the baseline and post-PMO treatment. Principal coordinate analysis revealed no significant difference in overall bacterial composition between baseline and post-PMO samples, as well as between the PMO dose groups. However, the very low abundant Collinsella genus and three operational taxonomic units (one belonging to Collinsella) were significantly different in samples before and after PMO treatment. The Firmicutes/Bacteroidetes ratio was lower in children who received 540 mg of PMO compared to the 180 mg and 360 mg dose groups (p = 0.04). Network analysis revealed separation between pre- and post-PMO fecal samples with the genus Collinsella driving the post-PMO clusters. PMO administration appeared to impact only low abundance bacteria. The 540 mg PMO dose differentially impacted the Firmicutes/Bacteroidetes ratio. A higher dose and/or longer duration of treatment might yield different results.


Assuntos
Microbioma Gastrointestinal , Dor Abdominal/tratamento farmacológico , Bacteroidetes , Criança , Fezes/microbiologia , Humanos , Mentha piperita , Óleos de Plantas
3.
J Mol Diagn ; 24(2): 158-166, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775029

RESUMO

Hospital-acquired infections pose significant costly global challenges to patient care. Rapid and sensitive methods to identify potential outbreaks are integral to infection control measures. Whole-genome sequencing (WGS)-based bacterial strain typing provides higher discriminatory power over standard nucleotide banding pattern-based methods such as repetitive sequence-based PCR (rep-PCR). However, integration of WGS into clinical epidemiology is limited by the lack of consensus in methodology and data analysis/interpretation. In this study, WGS was performed on genomic DNA extracted from 22 multidrug-resistant Pseudomonas aeruginosa (MDR-PA) isolates using next-generation sequencing. Resulting high-quality reads were analyzed for phylogenetic relatedness using a whole-genome multilocus sequence typing (wgMLST)-based software program and single-nucleotide variant phylogenomics (SNVPhyl). WGS-based results were compared with conventional MLST and archived rep-PCR results. Rep-PCR identified three independent clonal clusters of MDR-PA. Only one clonal cluster identified by rep-PCR, an endemic strain within the pediatric cystic fibrosis population at Texas Children's Hospital, was concordantly identified using wgMLST and SNVPhyl. Results were highly consistent between the three sequence-based analyses (conventional MLST, wgMLST, and SNVPhyl), and these results remained consistent with the addition of 74 MDR-PA genomes. These WGS-based methods provided greater resolution for strain discrimination than rep-PCR or standard MLST classification, and the ease of use of wgMLST software renders it clinically viable for analysis, interpretation, and reporting of WGS-based strain typing.


Assuntos
Pseudomonas aeruginosa , Sequências Repetitivas de Ácido Nucleico , Técnicas de Tipagem Bacteriana/métodos , Criança , Humanos , Tipagem de Sequências Multilocus/métodos , Filogenia , Reação em Cadeia da Polimerase/métodos , Pseudomonas aeruginosa/genética , Sequenciamento Completo do Genoma/métodos
4.
Cell Mol Gastroenterol Hepatol ; 13(3): 717-737, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34781022

RESUMO

BACKGROUND & AIMS: We previously showed that histamine suppressed inflammation-associated colonic tumorigenesis through histamine type 2 receptor (H2R) signaling in mice. This study aimed to precisely elucidate the downstream effects of H2R activation in innate immune cells. METHODS: Analyses using online databases of single-cell RNA sequencing of intestinal epithelial cells in mice and RNA sequencing of mouse immune cells were performed to determine the relative abundances of 4 histamine receptors among different cell types. Mouse neutrophils, which expressed greater amounts of H2R, were collected from the peritoneum of wild-type and H2R-deficient mice, of which low-density and high-density neutrophils were extracted by centrifugation and were subjected to RNA sequencing. The effects of H2R activation on neutrophil differentiation and its functions in colitis and inflammation-associated colon tumors were investigated in a mouse model of dextran sulfate sodium-induced colitis. RESULTS: Data analysis of RNA sequencing and quantitative reverse-transcription polymerase chain reaction showed that Hrh2 is highly expressed in neutrophils, but barely detectable in intestinal epithelial cells. In mice, the absence of H2R activation promoted infiltration of neutrophils into both sites of inflammation and colonic tumors. H2R-deficient high-density neutrophils yielded proinflammatory features via nuclear factor-κB and mitogen-activated protein kinase signaling pathways, and suppressed T-cell proliferation. On the other hand, low-density neutrophils, which totally lack H2R activation, showed an immature phenotype compared with wild-type low-density neutrophils, with enhanced MYC pathway signaling and reduced expression of the maturation marker Toll-like receptor 4. CONCLUSIONS: Blocking H2R signaling enhanced proinflammatory responses of mature neutrophils and suppressed neutrophil maturation, leading to accelerated progression of inflammation-associated colonic tumorigenesis.


Assuntos
Mucosa Intestinal , Neutrófilos , Animais , Carcinogênese/patologia , Homeostase , Inflamação/patologia , Mucosa Intestinal/metabolismo , Camundongos , Neutrófilos/metabolismo
5.
JAAPA ; 34(10): 43-48, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34582385

RESUMO

ABSTRACT: SARS-CoV-2 has profoundly affected the way healthcare is delivered and has created significant strain on medical facilities globally. As a result, hospitals have had to continuously adapt in order to provide optimal patient care while minimizing the risk of SARS-CoV-2 transmission, particularly in the surgical setting. Texas Children's Hospital developed a set of protocols for surgical screening and clearance of patients in the context of the COVID-19 pandemic. These screening protocols were designed to mitigate the risk of exposing patients and healthcare providers to SARS-CoV-2 and have evolved significantly as a result of the emerging changes in medicine, technology, and governmental regulations. In this article, we share the reasoning behind the development, implementation, and successive modification of our institutional screening protocols.


Assuntos
COVID-19 , Pandemias , Cuidados Pré-Operatórios , Procedimentos Cirúrgicos Operatórios , Criança , Pessoal de Saúde , Hospitais Pediátricos , Humanos , SARS-CoV-2
6.
mBio ; 12(2)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33653893

RESUMO

Multiple studies have implicated microbes in the development of inflammation, but the mechanisms remain unknown. Bacteria in the genus Fusobacterium have been identified in the intestinal mucosa of patients with digestive diseases; thus, we hypothesized that Fusobacterium nucleatum promotes intestinal inflammation. The addition of >50 kDa F. nucleatum conditioned media, which contain outer membrane vesicles (OMVs), to colonic epithelial cells stimulated secretion of the proinflammatory cytokines interleukin-8 (IL-8) and tumor necrosis factor (TNF). In addition, purified F. nucleatum OMVs, but not compounds <50 kDa, stimulated IL-8 and TNF production; which was decreased by pharmacological inhibition of Toll-like receptor 4 (TLR4). These effects were linked to downstream effectors p-ERK, p-CREB, and NF-κB. F. nucleatum >50-kDa compounds also stimulated TNF secretion, p-ERK, p-CREB, and NF-κB activation in human colonoid monolayers. In mice harboring a human microbiota, pretreatment with antibiotics and a single oral gavage of F. nucleatum resulted in inflammation. Compared to mice receiving vehicle control, mice treated with F. nucleatum showed disruption of the colonic architecture, with increased immune cell infiltration and depleted mucus layers. Analysis of mucosal gene expression revealed increased levels of proinflammatory cytokines (KC, TNF, IL-6, IFN-γ, and MCP-1) at day 3 and day 5 in F. nucleatum-treated mice compared to controls. These proinflammatory effects were absent in mice who received F. nucleatum without pretreatment with antibiotics, suggesting that an intact microbiome is protective against F. nucleatum-mediated immune responses. These data provide evidence that F. nucleatum promotes proinflammatory signaling cascades in the context of a depleted intestinal microbiome.IMPORTANCE Several studies have identified an increased abundance of Fusobacterium in the intestinal tracts of patients with colon cancer, liver cirrhosis, primary sclerosing cholangitis, gastroesophageal reflux disease, HIV infection, and alcoholism. However, the direct mechanism(s) of action of Fusobacterium on pathophysiological within the gastrointestinal tract is unclear. These studies have identified that F. nucleatum subsp. polymorphum releases outer membrane vesicles which activate TLR4 and NF-κB to stimulate proinflammatory signals in vitro Using mice harboring a human microbiome, we demonstrate that F. nucleatum can promote inflammation, an effect which required antibiotic-mediated alterations in the gut microbiome. Collectively, these results suggest a mechanism by which F. nucleatum may contribute to intestinal inflammation.


Assuntos
Membrana Externa Bacteriana/imunologia , Vesículas Extracelulares/imunologia , Fusobacterium nucleatum/imunologia , Fusobacterium nucleatum/metabolismo , Inflamação/microbiologia , Animais , Células Cultivadas , Colo/citologia , Meios de Cultura/farmacologia , Citocinas/análise , Citocinas/imunologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Feminino , Fusobacterium nucleatum/patogenicidade , Microbioma Gastrointestinal , Células HT29 , Humanos , Inflamação/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/imunologia , Transdução de Sinais , Receptor 4 Toll-Like/imunologia
7.
Science ; 370(6519)2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33214249

RESUMO

Rotavirus causes severe diarrheal disease in children by broadly dysregulating intestinal homeostasis. However, the underlying mechanism(s) of rotavirus-induced dysregulation remains unclear. We found that rotavirus-infected cells produce paracrine signals that manifested as intercellular calcium waves (ICWs), observed in cell lines and human intestinal enteroids. Rotavirus ICWs were caused by the release of extracellular adenosine 5'-diphosphate (ADP) that activated P2Y1 purinergic receptors on neighboring cells. ICWs were blocked by P2Y1 antagonists or CRISPR-Cas9 knockout of the P2Y1 receptor. Blocking the ADP signal reduced rotavirus replication, inhibited rotavirus-induced serotonin release and fluid secretion, and reduced diarrhea severity in neonatal mice. Thus, rotavirus exploited paracrine purinergic signaling to generate ICWs that amplified the dysregulation of host cells and altered gastrointestinal physiology to cause diarrhea.


Assuntos
Difosfato de Adenosina/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Infecções por Rotavirus/metabolismo , Rotavirus/fisiologia , Animais , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/genética , Feminino , Células HEK293 , Humanos , Jejuno/metabolismo , Jejuno/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Comunicação Parácrina , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/genética , Receptores Purinérgicos P2Y1/metabolismo
8.
Gut Microbes ; 12(1): 1788898, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32804011

RESUMO

Antibiotic resistance is one of the world's greatest public health challenges and adjunct probiotic therapies are strategies that could lessen this burden. Clostridioides difficile infection (CDI) is a prime example where adjunct probiotic therapies could decrease disease incidence through prevention. Human-derived Lactobacillus reuteri is a probiotic that produces the antimicrobial compound reuterin known to prevent C. difficile colonization of antibiotic-treated fecal microbial communities. However, the mechanism of inhibition is unclear. We show that reuterin inhibits C. difficile outgrowth from spores and vegetative cell growth, however, no effect on C. difficile germination or sporulation was observed. Consistent with published studies, we found that exposure to reuterin stimulated reactive oxygen species (ROS) in C. difficile, resulting in a concentration-dependent reduction in cell viability that was rescued by the antioxidant glutathione. Sublethal concentrations of reuterin enhanced the susceptibility of vegetative C. difficile to vancomycin and metronidazole treatment and reduced toxin synthesis by C. difficile. We also demonstrate that reuterin is protective against C. difficile toxin-mediated cellular damage in the human intestinal enteroid model. Overall, our results indicate that ROS are essential mediators of reuterin activity and show that reuterin production by L. reuteri is compatible as a therapeutic in a clinically relevant model.


Assuntos
Clostridioides difficile/efeitos dos fármacos , Gliceraldeído/análogos & derivados , Propano/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antibacterianos/farmacologia , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidade , Sinergismo Farmacológico , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Gliceraldeído/metabolismo , Gliceraldeído/farmacologia , Humanos , Limosilactobacillus reuteri/metabolismo , Organoides/efeitos dos fármacos , Organoides/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Probióticos/metabolismo , Propano/metabolismo , Esporos Bacterianos/efeitos dos fármacos , Esporos Bacterianos/crescimento & desenvolvimento
9.
J Physiol ; 598(15): 3085-3105, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32428244

RESUMO

KEY POINTS: Enteroids are a physiologically relevant model to examine the human intestine and its functions. Previously, the measurable cytokine response of human intestinal enteroids has been limited following exposure to host or microbial pro-inflammatory stimuli. Modifications to enteroid culture conditions facilitated robust human cytokine responses to pro-inflammatory stimuli. This new human enteroid culture methodology refines the ability to study microbiome:human intestinal epithelium interactions in the laboratory. ABSTRACT: The intestinal epithelium is the primary interface between the host, the gut microbiome and its external environment. Since the intestinal epithelium contributes to innate immunity as a first line of defence, understanding how the epithelium responds to microbial and host stimuli is an important consideration in promoting homeostasis. Human intestinal enteroids (HIEs) are primary epithelial cell cultures that can provide insights into the biology of the intestinal epithelium and innate immune responses. One potential limitation of using HIEs for innate immune studies is the relative lack of responsiveness to factors that stimulate epithelial cytokine production. We report technical refinements, including removal of extracellular antioxidants, to facilitate enhanced cytokine responses in HIEs. Using this new method, we demonstrate that HIEs have distinct cytokine profiles in response to pro-inflammatory stimuli derived from host and microbial sources. Overall, we found that host-derived cytokines tumour necrosis factor and interleukin-1α stimulated reactive oxygen species and a large repertoire of cytokines. In contrast, microbial lipopolysaccharide, lipoteichoic acid and flagellin stimulated a limited number of cytokines and histamine did not stimulate the release of any cytokines. Importantly, HIE-secreted cytokines were functionally active, as denoted by the ability of human blood-derived neutrophil to migrate towards HIE supernatant containing interleukin-8. These findings establish that the immune responsiveness of HIEs depends on medium composition and stimuli. By refining the experimental culture medium and creating an environment conducive to epithelial cytokine responses by human enteroids, HIEs can facilitate exploration of many experimental questions pertaining to the role of the intestinal epithelium in innate immunity.


Assuntos
Mucosa Intestinal , Jejuno , Células Epiteliais , Humanos , Imunidade Inata , Intestinos
10.
Am J Physiol Gastrointest Liver Physiol ; 318(5): G870-G888, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32223302

RESUMO

Clostridioides difficile is an important nosocomial pathogen that produces toxins to cause life-threatening diarrhea and colitis. Toxins bind to epithelial receptors and promote the collapse of the actin cytoskeleton. C. difficile toxin activity is commonly studied in cancer-derived and immortalized cell lines. However, the biological relevance of these models is limited. Moreover, no model is available for examining C. difficile-induced enteritis, an understudied health problem. We hypothesized that human intestinal enteroids (HIEs) express toxin receptors and provide a new model to dissect C. difficile cytotoxicity in the small intestine. We generated biopsy-derived jejunal HIE and Vero cells, which stably express LifeAct-Ruby, a fluorescent label of F-actin, to monitor actin cytoskeleton rearrangement by live-cell microscopy. Imaging analysis revealed that toxins from pathogenic C. difficile strains elicited cell rounding in a strain-dependent manner, and HIEs were tenfold more sensitive to toxin A (TcdA) than toxin B (TcdB). By quantitative PCR, we paradoxically found that HIEs expressed greater quantities of toxin receptor mRNA and yet exhibited decreased sensitivity to toxins when compared with traditionally used cell lines. We reasoned that these differences may be explained by components, such as mucins, that are present in HIEs cultures, that are absent in immortalized cell lines. Addition of human-derived mucin 2 (MUC2) to Vero cells delayed cell rounding, indicating that mucus serves as a barrier to toxin-receptor binding. This work highlights that investigation of C. difficile infection in that HIEs can provide important insights into the intricate interactions between toxins and the human intestinal epithelium.NEW & NOTEWORTHY In this article, we developed a novel model of Clostridioides difficile-induced enteritis using jejunal-derived human intestinal enteroids (HIEs) transduced with fluorescently tagged F-actin. Using live-imaging, we identified that jejunal HIEs express high levels of TcdA and CDT receptors, are more sensitive to TcdA than TcdB, and secrete mucus, which delays toxin-epithelial interactions. This work also optimizes optically clear C. difficile-conditioned media suitable for live-cell imaging.


Assuntos
Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Enterite/microbiologia , Jejuno/microbiologia , ADP Ribose Transferases/metabolismo , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/microbiologia , Citoesqueleto de Actina/ultraestrutura , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Forma Celular , Chlorocebus aethiops , Clostridioides difficile/metabolismo , Infecções por Clostridium/metabolismo , Infecções por Clostridium/patologia , Enterite/metabolismo , Enterite/patologia , Enterotoxinas/metabolismo , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Jejuno/metabolismo , Jejuno/ultraestrutura , Mucina-2/metabolismo , Organoides , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Fatores de Tempo , Células Vero , Virulência
11.
Dig Dis Sci ; 65(3): 695-705, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32067143

RESUMO

The human gastrointestinal (GI) tract contains communities of microbes (bacteria, fungi, viruses) that vary by anatomic location and impact human health. Microbial communities differ in composition based on age, diet, and location in the gastrointestinal tract. Differences in microbial composition have been associated with chronic disease states. In terms of function, microbial metabolites provide key signals that help maintain healthy human physiology. Alterations of the healthy gastrointestinal microbiome have been linked to the development of various disease states including inflammatory bowel disease, diabetes, and colorectal cancer. While the definition of a healthy GI microbiome cannot be precisely identified, features of a healthy gut microbiome include relatively greater biodiversity and relative abundances of specific phyla and genera. Microbes with desirable functional profiles for the human host have been identified, in addition to specific metabolic features of the microbiome. This article reviews the composition and function of the healthy human GI microbiome, including the relative abundances of different bacterial taxa and the specific metabolic pathways and classes of microbial metabolites contributing to human health and disease prevention.


Assuntos
Pesquisa Biomédica/tendências , Microbioma Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Nível de Saúde , Pesquisa Biomédica/métodos , Humanos , Microbiota/fisiologia
12.
Microb Cell Fact ; 18(1): 212, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31830990

RESUMO

BACKGROUND: Histamine is a key mediator of the anti-inflammatory activity conferred by the probiotic organism Lactobacillus reuteri ATCC PTA 6475 in animal models of colitis and colorectal cancer. In L. reuteri, histamine synthesis and secretion requires L-histidine decarboxylase and a L-histidine/histamine exchanger. Chloride channel (ClC)-family proton/chloride antiporters have been proposed to act as electrochemical shunts in conjunction with amino acid decarboxylase systems, correcting ion imbalances generated by decarboxylation through fixed ratio exchange of two chloride ions for one proton. This family is unique among transporters by facilitating ion flux in either direction. Here we examine the histidine decarboxylase system in relation to ClC antiporters in the probiotic organism Lactobacillus reuteri. RESULTS: In silico analyses reveal that L. reuteri possesses two ClC transporters, EriC and EriC2, as well as a complete histidine decarboxylase gene cluster (HDC) for the synthesis and export of histamine. When the transport activity of either proton/chloride antiporter is disrupted by genetic manipulation, bacterial histamine output is reduced. Using fluorescent reporter assays, we further show that ClC transporters affect histamine output by altering intracellular pH and membrane potential. ClC transport also alters the expression and activity of two key HDC genes: the histidine decarboxylase (hdcA) and the histidine/histamine exchanger (hdcP). CONCLUSIONS: Histamine production is a potentially beneficial feature for intestinal microbes by promoting long-term colonization and suppression of inflammation and host immune responses. ClC transporters may serve as tunable modulators for histamine production by L. reuteri and other gut microbes.


Assuntos
Canais de Cloreto/metabolismo , Histidina/metabolismo , Limosilactobacillus reuteri/metabolismo , Transporte Biológico , Concentração de Íons de Hidrogênio , Potenciais da Membrana
13.
Microbiologyopen ; 8(10): e908, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31369218

RESUMO

The histamine H2 receptor (H2R) is a G protein-coupled receptor that mediates cyclic AMP production, protein kinase A activation, and MAP kinase signaling. In order to explore the multifaceted effects of histamine signaling on immune cells, phagocytosis was evaluated using primary mouse-derived macrophages. Phagocytosis is initiated by signaling via surface-bound scavenger receptors and can be regulated by autophagy. Absence of H2R signaling resulted in diminished phagocytosis of live bacteria and synthetic microspheres by primary macrophages from histamine H2 receptor gene (Hrh2)-deficient mice. Flow cytometry and immunofluorescence microscopy were used to quantify phagocytosis of phylogenetically diverse bacteria as well as microspheres of defined chemical composition. Autophagy and scavenger receptor gene expression were quantified in macrophages after exposure to Escherichia coli. Expression of the autophagy genes, Becn1 and Atg12, was increased in Hrh2-/- macrophages, indicating upregulation of autophagy pathways. Expression of the Macrophage Scavenger Receptor 1 gene (Msr1) was diminished in Hrh2-deficient macrophages, supporting the possible importance of histamine signaling in scavenger receptor abundance and macrophage function. Flow cytometry confirmed diminished MSR1 surface abundance in Hrh2-/- macrophages. These data suggest that H2R signaling is required for effective phagocytosis by regulating the process of autophagy and scavenger receptor MSR1 abundance in macrophages.


Assuntos
Macrófagos/imunologia , Fagocitose , Receptores Histamínicos H2/metabolismo , Receptores Depuradores Classe A/metabolismo , Transdução de Sinais , Animais , Autofagia , Células Cultivadas , Escherichia coli/imunologia , Citometria de Fluxo , Camundongos , Microscopia de Fluorescência , Microesferas , Receptores Histamínicos H2/deficiência
14.
FASEB J ; 33(3): 3536-3548, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30452879

RESUMO

Colonization of the gut by certain probiotic Lactobacillus reuteri strains has been associated with reduced risk of inflammatory diseases and colorectal cancer. Previous studies pointed to a functional link between immunomodulation, histamine production, and folate metabolism, the central 1-carbon pathway for the transfer of methyl groups. Using mass spectrometry and NMR spectroscopy, we analyzed folate metabolites of L. reuteri strain 6475 and discovered that the bacterium produces a 2-carbon-transporting folate in the form of 5,10-ethenyl-tetrahydrofolyl polyglutamate. Isotopic labeling permitted us to trace the source of the 2-carbon unit back to acetate of the culture medium. We show that the 2C folate cycle of L. reuteri is capable of transferring 2 carbon atoms to homocysteine to generate the unconventional amino acid ethionine, a known immunomodulator. When we treated monocytic THP-1 cells with ethionine, their transcription of TNF-α was inhibited and cell proliferation reduced. Mass spectrometry of THP-1 histones revealed incorporation of ethionine instead of methionine into proteins, a reduction of histone-methylation, and ethylation of histone lysine residues. Our findings suggest that the microbiome can expose the host to ethionine through a novel 2-carbon transporting variant of the folate cycle and modify human chromatin via ethylation.-Röth, D., Chiang, A. J., Hu, W., Gugiu, G. B., Morra, C. N., Versalovic, J., Kalkum, M. The two-carbon folate cycle of commensal Lactobacillus reuteri 6475 gives rise to immunomodulatory ethionine, a source for histone ethylation.


Assuntos
Carbono/metabolismo , Etionina/metabolismo , Ácido Fólico/metabolismo , Histonas/metabolismo , Imunomodulação/fisiologia , Limosilactobacillus reuteri/metabolismo , Aminoácidos/metabolismo , Proliferação de Células/fisiologia , Células Cultivadas , Meios de Cultura/metabolismo , Homocisteína/metabolismo , Humanos , Metionina/metabolismo , Metilação , Microbiota/fisiologia , Probióticos/metabolismo , Células THP-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G205-G216, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30462522

RESUMO

Inflammatory bowel disease (IBD) is a well-known risk factor for the development of colorectal cancer. Prior studies have demonstrated that microbial histamine can ameliorate intestinal inflammation in mice. We tested the hypothesis whether microbe-derived luminal histamine suppresses inflammation-associated colon cancer in Apcmin/+ mice. Mice were colonized with the human-derived Lactobacillus reuteri. Chronic inflammation was induced by repeated cycles of low-dose dextran sulfate sodium (DSS). Mice that were given histamine-producing L. reuteri via oral gavage developed fewer colonic tumors, despite the presence of a complex mouse gut microbiome. We further demonstrated that administration of a histamine H1-receptor (H1R) antagonist suppressed tumorigenesis, while administration of histamine H2-receptor (H2R) antagonist significantly increased both tumor number and size. The bimodal functions of histamine include protumorigenic effects through H1R and antitumorigenic effects via H2R, and these results were supported by gene expression profiling studies on tumor specimens of patients with colorectal cancer. Greater ratios of gene expression of H2R ( HRH2) vs. H1R ( HRH1) were correlated with improved overall survival outcomes in patients with colorectal cancer. Additionally, activation of H2R suppressed phosphorylation of mitogen-activated protein kinases (MAPKs) and inhibited chemokine gene expression induced by H1R activation in colorectal cancer cells. Moreover, the combination of a H1R antagonist and a H2R agonist yielded potent suppression of lipopolysaccharide-induced MAPK signaling in macrophages. Given the impact on intestinal epithelial and immune cells, simultaneous modulation of H1R and H2R signaling pathways may be a promising therapeutic target for the prevention and treatment of inflammation-associated colorectal cancer. NEW & NOTEWORTHY Histamine-producing Lactobacillus reuteri can suppress development of inflammation-associated colon cancer in an established mouse model. The net effects of histamine may depend on the relative activity of H1R and H2R signaling pathways in the intestinal mucosa. Our findings suggest that treatment with H1R or H2R antagonists could yield opposite effects. However, by harnessing the ability to block H1R signaling while stimulating H2R signaling, novel strategies for suppression of intestinal inflammation and colorectal neoplasia could be developed.


Assuntos
Carcinogênese/metabolismo , Inflamação/metabolismo , Receptores Histamínicos H1/metabolismo , Receptores Histamínicos H2/metabolismo , Animais , Carcinogênese/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Modelos Animais de Doenças , Microbioma Gastrointestinal/efeitos dos fármacos , Histamina/metabolismo , Antagonistas dos Receptores Histamínicos H1/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Transgênicos , Receptores Histamínicos H1/efeitos dos fármacos , Receptores Histamínicos H2/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
J Pediatr ; 204: 126-133.e2, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30297287

RESUMO

OBJECTIVES: To summarize evidence regarding microbial dysbiosis of the airway associated with bronchopulmonary dysplasia (BPD) and to explore heterogeneity among studies. STUDY DESIGN: We included studies that evaluated the airway microbiome in preterm infants who developed BPD using culture-independent molecular techniques and reported alpha- and beta-diversity metrics and microbial profiles. RESULTS: The 6 included studies had substantial clinical and methodological heterogeneity. Most studies reported the presence of an airway microbiome early after birth and an evolution in the first weeks of life with increasing bacterial loads. The early airway microbiome was dominated by Staphylococcus and Ureaplasma spp. Two studies reported differences in alpha- and beta- diversity indices in preterm infants with BPD compared with those who did not develop BPD. Increased microbial community turnover, changes in the relative abundance of Proteobacteria and Firmicutes, and decreased Lactobacilli were reported with BPD progression. Most included infants were born by cesarean delivery, and a majority were exposed to postnatal antibiotics. No data regarding feeding human milk or correlations with the development of gut microbiota (gut-lung axis) were available. CONCLUSIONS: Microbial dysbiosis may be associated with BPD progression and severity, and further study of microbiome optimization in preterm infants at risk for BPD is warranted.


Assuntos
Displasia Broncopulmonar/microbiologia , Disbiose/complicações , Microbiota/genética , Sistema Respiratório/microbiologia , Disbiose/genética , Humanos , Recém-Nascido , Recém-Nascido Prematuro
17.
Curr Pathobiol Rep ; 6(1): 47-54, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30294506

RESUMO

Microbial metabolites influence the function of epithelial, endothelial and immune cells in the intestinal mucosa. Microbial metabolites like SCFAs and B complex vitamins direct macrophage polarization whereas microbial derived biogenic amines modulate intestinal epithelium and immune response. Aberrant bacterial lipopolysaccharide-mediated signaling may be involved in the pathogenesis of chronic intestinal inflammation and colorectal carcinogenesis. Our perception of human microbes has changed from that of opportunistic pathogens to active participants maintaining intestinal and whole body homeostasis. This review attempts to explain the dynamic and enriched interactions between the intestinal epithelial mucosa and commensal bacteria in homeostasis maintenance.

18.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G43-G52, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29597352

RESUMO

Clostridium difficile infection (CDI) is the primary cause of nosocomial diarrhea in the United States. Although C. difficile toxins A and B are the primary mediators of CDI, the overall pathophysiology underlying C. difficile-associated diarrhea remains poorly understood. Studies have shown that a decrease in both NHE3 (Na+/H+ exchanger) and DRA (downregulated in adenoma, Cl-/[Formula: see text] exchanger), resulting in decreased electrolyte absorption, is implicated in infectious and inflammatory diarrhea. Furthermore, studies have shown that NHE3 is depleted at the apical surface of intestinal epithelial cells and downregulated in patients with CDI, but the role of DRA in CDI remains unknown. In the current studies, we examined the effects of C. difficile toxins TcdA and TcdB on DRA protein and mRNA levels in intestinal epithelial cells (IECs). Our data demonstrated that DRA protein levels were significantly reduced in response to TcdA and TcdB in IECs in culture. This effect was also specific to DRA, as NHE3 and PAT-1 (putative anion transporter 1) protein levels were unaffected by TcdA and TcdB. Additionally, purified TcdA and TcdA + TcdB, but not TcdB, resulted in a decrease in colonic DRA protein levels in a toxigenic mouse model of CDI. Finally, patients with recurrent CDI also exhibited significantly reduced expression of colonic DRA protein. Together, these findings indicate that C. difficile toxins markedly downregulate intestinal expression of DRA which may contribute to the diarrheal phenotype of CDI. NEW & NOTEWORTHY Our studies demonstrate, for the first time, that C. difficile toxins reduce DRA protein, but not mRNA, levels in intestinal epithelial cells. These findings suggest that a downregulation of DRA may be a critical factor in C. difficile infection-associated diarrhea.


Assuntos
Antiporters/metabolismo , Toxinas Bacterianas/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Clostridioides difficile/fisiologia , Enterocolite Pseudomembranosa , Transportadores de Sulfato/metabolismo , Animais , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/metabolismo , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/patologia , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , RNA Mensageiro/metabolismo , Trocadores de Sódio-Hidrogênio , Fatores de Transcrição/metabolismo
19.
Am J Pathol ; 187(10): 2323-2336, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28917668

RESUMO

Microbiome-mediated suppression of carcinogenesis may open new avenues for identification of therapeutic targets and prevention strategies in oncology. Histidine decarboxylase (HDC) deficiency has been shown to promote inflammation-associated colorectal cancer by accumulation of CD11b+Gr-1+ immature myeloid cells, indicating a potential antitumorigenic effect of histamine. Here, we demonstrate that administration of hdc+Lactobacillus reuteri in the gut resulted in luminal hdc gene expression and histamine production in the intestines of Hdc-/- mice. This histamine-producing probiotic decreased the number and size of colon tumors and colonic uptake of [18F]-fluorodeoxyglucose by positron emission tomography in Hdc-/- mice. Administration of L. reuteri suppressed keratinocyte chemoattractant (KC), Il22, Il6, Tnf, and IL1α gene expression in the colonic mucosa and reduced the amounts of proinflammatory, cancer-associated cytokines, keratinocyte chemoattractant, IL-22, and IL-6, in plasma. Histamine-generating L. reuteri also decreased the relative numbers of splenic CD11b+Gr-1+ immature myeloid cells. Furthermore, an isogenic HDC-deficient L. reuteri mutant that was unable to generate histamine did not suppress carcinogenesis, indicating a significant role of the cometabolite, histamine, in suppression of chronic intestinal inflammation and colorectal tumorigenesis. These findings link luminal conversion of amino acids to biogenic amines by gut microbes and probiotic-mediated suppression of colorectal neoplasia.


Assuntos
Carcinogênese/patologia , Neoplasias Colorretais/patologia , Microbioma Gastrointestinal , Histamina/biossíntese , Inflamação/patologia , Animais , Carcinogênese/genética , Neoplasias Colorretais/sangue , Neoplasias Colorretais/diagnóstico por imagem , Neoplasias Colorretais/genética , Citocinas/sangue , Regulação Neoplásica da Expressão Gênica , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Humanos , Inflamação/sangue , Inflamação/genética , Mucosa Intestinal/patologia , Limosilactobacillus reuteri/metabolismo , Camundongos Endogâmicos BALB C , Modelos Biológicos , Células Mieloides/metabolismo , Tomografia por Emissão de Pósitrons , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Histamínicos H2/genética , Receptores Histamínicos H2/metabolismo , Baço/patologia , Análise de Sobrevida
20.
Cell Mol Gastroenterol Hepatol ; 3(2): 218-230, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28275689

RESUMO

BACKGROUND & AIMS: Emerging data on the gut microbiome in autism spectrum disorder (ASD) suggest that altered host-microbe interactions may contribute to disease symptoms. Although gut microbial communities in children with ASD are reported to differ from individuals with neurotypical development, it is not known whether these bacteria induce pathogenic neuroimmune signals. METHODS: Because commensal clostridia interactions with the intestinal mucosa can regulate disease-associated cytokine and serotonergic pathways in animal models, we evaluated whether microbiome-neuroimmune profiles (from rectal biopsy specimens and blood) differed in ASD children with functional gastrointestinal disorders (ASD-FGID, n = 14) compared with neurotypical (NT) children with FGID (NT-FGID, n = 15) and without abdominal pain (NT, n = 6). Microbial 16S ribosomal DNA community signatures, cytokines, and serotonergic metabolites were quantified and correlated with gastrointestinal symptoms. RESULTS: A significant increase in several mucosa-associated Clostridiales was observed in ASD-FGID, whereas marked decreases in Dorea and Blautia, as well as Sutterella, were evident. Stratification by abdominal pain showed multiple organisms in ASD-FGID that correlated significantly with cytokines (interleukin [IL]6, IL1, IL17A, and interferon-γ). Group comparisons showed that IL6 and tryptophan release by mucosal biopsy specimens was highest in ASD children with abdominal pain, whereas serotonergic metabolites generally were increased in children with FGIDs. Furthermore, proinflammatory cytokines correlated significantly with several Clostridiales previously reported to associate with ASD, as did tryptophan and serotonin. CONCLUSIONS: Our findings identify distinctive mucosal microbial signatures in ASD children with FGID that correlate with cytokine and tryptophan homeostasis. Future studies are needed to establish whether these disease-associated Clostridiales species confer early pathogenic signals in children with ASD and FGID.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA