Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38766819

RESUMO

BACKGROUND: Exogenous substances modulate metabolism by regulating the expression and function of UDP-glycosyltransferases (UGTs). However, the exact mechanism in the intestine was rarely understood. Herein, we explored the effects of representative flavonoids and organic acids on the regulation of UGT1A1. METHODS: MTT assays and western blot analysis were used to explore the effect of polyphenols. X-ray diffraction was used to reveal the catalytic mechanisms of UGTs. RESULTS: MTT assays showed that these compounds basically had no cytotoxicity, even in concentrations up to 200 µM. Then, through western blot assays, UGT1A1 expression was increased after being treated with liquiritigenin and caffeic acid. Furthermore, liquiritigenin and caffeic acid enhanced the nuclear translocation of Nrf2. Moreover, a 2.5-Å crystal structure of the complex containing UGTs C-terminal domain and organic acid was solved, and the UDPGA binding pocket could be occupied by organic acid, suggesting the enzyme activity might be impaired by organic acid. CONCLUSION: Above all, liquiritigenin and caffeic acid maintained the metabolism balance by upregulating the expression of UGT1A1 via Nrf2 activation and inhibiting the enzyme activity in Caco-2 cells.

2.
J Agric Food Chem ; 72(20): 11452-11464, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38736181

RESUMO

In this work, a new rapid and targeted method for screening α-glucosidase inhibitors from Hypericum beanii was developed and verified. Ten new polycyclic polyprenylated acylphloroglucinols (PPAPs), hyperlagarol A-J (1-10), and nine known PPAPs (11-19) were obtained from H. beanii. Their structures were identified by using comprehensive analyses involving mass spectrometry, ultraviolet spectroscopy, infrared spectroscopy, nuclear magnetic resonance spectroscopy, and electron capture dissociation calculations. 1 and 2 are two new rare 2,3-seco-spirocyclic PPAPs, 3 and 4 are two novel 12,13-seco-spirocyclic PPAPs, 5 and 6 are two novel spirocyclic PPAPs, 7 and 8 are two new unusual spirocyclic PPAPs with complex bridged ring systems, and 9 and 10 are two novel nonspirocyclic PPAPs. α-GC inhibitory activities of all isolated compounds were tested. Most of them displayed inhibitory activities against α-glucosidase, with the IC50 values ranging from 6.85 ± 0.65 to 112.5 ± 9.03 µM. Moreover, the inhibitory type and mechanism of the active compounds were further analyzed using kinetic studies and molecular docking.


Assuntos
Inibidores de Glicosídeo Hidrolases , Hypericum , Simulação de Acoplamento Molecular , Extratos Vegetais , alfa-Glucosidases , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , alfa-Glucosidases/química , alfa-Glucosidases/metabolismo , Hypericum/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Estrutura Molecular , Ligantes , Relação Estrutura-Atividade , Cinética
3.
Arch Biochem Biophys ; 757: 110024, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38703803

RESUMO

Non-alcoholic fatty liver disease (NAFLD) remains a prevailing etiological agent behind hepatocyte diseases like chronic liver disease. The spectrum of processes involved in NAFLD stages includes hepatic steatosis, non-alcoholic fatty liver, and non-alcoholic steatohepatitis (NASH). Without intervention, the progression of NASH can further deteriorate into cirrhosis and ultimately, hepatocellular carcinoma. The cardinal features that characterize NAFLD are insulin resistance, lipogenesis, oxidative stress and inflammation, extracellular matrix deposition and fibrosis. Due to its complex pathogenesis, existing pharmaceutical agents fail to take a curative or ameliorative effect on NAFLD. Consequently, it is imperative to identify novel therapeutic targets and strategies for NAFLD, ideally to improve the aforementioned key features in patients. As an enterohepatic regulator of bile acid homeostasis, lipid metabolism, and inflammation, FarnesoidX receptor (FXR) is an important pharmacological target for the treatment of NAFLD. Manipulating FXR to regulate lipid metabolic signaling pathways is a potential mechanism to mitigate NAFLD. Therefore, elucidating the modulatory character of FXR in regulating lipid metabolism in NAFLD has the potential to yield groundbreaking perspectives for drug design. This review details recent advances in the regulation of lipid depletion in hepatocytes and investigates the pivotal function of FXR in the progress of NAFLD.


Assuntos
Metabolismo dos Lipídeos , Hepatopatia Gordurosa não Alcoólica , Receptores Citoplasmáticos e Nucleares , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Metabolismo dos Lipídeos/efeitos dos fármacos , Ácidos e Sais Biliares/metabolismo , Transdução de Sinais/efeitos dos fármacos
4.
Int Immunopharmacol ; 130: 111765, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447414

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) displayed poor response to programmed death-1 (PD-1) blockade therapy. Regulatory T cells (Tregs) was one of major immunosuppressive components in Tumor microenvironment and plays a vital role in the resistance of immunotherapy. Coinhibitory receptors regulate function of regulatory Tregs and are associated with resistance of PD-1 blockade. However, the coinhibitory receptors expression and differentiated status of Tregs in AML patients remain to be unclear. METHODS: Phenotypic determination of Tregs and CD8+ T cells in bone marrow of healthy donors and AML patients was performed by flow cytometry. Coculture experiments of AML and Tregs in vitro were performed and the concentrations of lactate acid (LA) in the supernatant were examined by ELISA. RESULTS: More Tregs differentiated into effector subsets in AML patients. However, PD-1 and T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) expression on Tregs were comparable in healthy donors and AML patients. Further analysis showed that PD-1+ and PD-1+TIGIT+Tregs are more abundant in the bone marrow of patients with higher leukemic load. Moreover, PD-1+ Tregs accumulation was associated with higher level of senescent CD4+ T cells and increased frequencies of exhausted CD4+ as well as CD8+ T cells. Notably, neither Tregs nor their effector subsets were decreased among patients in complete remission. PD-1 expression was significantly downregulated in Tregs after achieving complete remission. Mechanistically, both AML cell line (KG-1α) and primary AML blasts produced high concentration of LA. Blockade of LA by lactate transporter inhibitor abrogated the upregulation of PD-1 by AML cells. CONCLUSION: PD-1+ Tregs accumulation in bone marrow in higher leukemic burden setting was linked to lactate acid secreted by AML blasts and decreased after disease remission. Our findings provided a novel insight into Tregs in AML and possible mechanism for resistance of PD-1 blockade in AML.


Assuntos
Medula Óssea , Leucemia Mieloide Aguda , Humanos , Medula Óssea/patologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Ácido Láctico , Carga Tumoral , Leucemia Mieloide Aguda/metabolismo , Microambiente Tumoral
5.
J Physiol Biochem ; 80(2): 261-275, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38329688

RESUMO

Pyruvate kinase M2 (PKM2), a subtype of pyruvate kinase (PK), has been shown to play an important role in the development of cancer. It regulates the last step of glycolytic pathway. PKM2 has both pyruvate kinase and protein kinase activity, and the conversion of these two functions of PKM2 depends on the mutual change of dimer and tetramer. The dimerization of PKM2 can promote the proliferation and growth of tumor cells, so inhibiting the dimerization of PKM2 is essential to curing cancer. The aggregation of PKM2 is regulated by both endogenous and exogenous cofactors as well as post-translational modification (PTM). Although there are many studies on the different aggregation of PKM2 in the process of tumor development, there are few summaries in recent years. In this review, we first introduce the role of PKM2 in various biological processes of tumor growth. Then, we summarize the aggregation regulation mechanism of PKM2 by various endogenous cofactors such as Fructose-1, 6-diphosphate (FBP), various amino acids, and post-translational modification (PTMs). Finally, the related inhibitors and agonists of PKM2 are summarized to provide reference for regulating PKM2 aggregation in the treatment of cancer in the future.


Assuntos
Proteínas de Transporte , Proteínas de Membrana , Neoplasias , Processamento de Proteína Pós-Traducional , Proteínas de Ligação a Hormônio da Tireoide , Hormônios Tireóideos , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/genética , Neoplasias/enzimologia , Hormônios Tireóideos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Animais , Progressão da Doença , Proliferação de Células , Multimerização Proteica , Piruvato Quinase/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/química
6.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398656

RESUMO

Melanoma is the most aggressive and difficult to treat of all skin cancers. Despite advances in the treatment of melanoma, the prognosis for melanoma patients remains poor, and the recurrence rate remains high. There is substantial evidence that Chinese herbals effectively prevent and treat melanoma. The bioactive ingredient Salvianolic acid B (SAB) found in Salvia miltiorrhiza, a well-known Chinese herbal with various biological functions, exhibits inhibitory activity against various cancers. A375 and mouse B16 cell lines were used to evaluate the main targets and mechanisms of SAB in inhibiting melanoma migration. Online bioinformatics analysis, Western blotting, immunofluorescence, molecular fishing, dot blot, and molecular docking assays were carried out to clarify the potential molecular mechanism. We found that SAB prevents the migration and invasion of melanoma cells by inhibiting the epithelial-mesenchymal transition (EMT) process of melanoma cells. As well as interacting directly with the N-terminal domain of ß-actin, SAB enhanced its compactness and stability, thereby inhibiting the migration of cells. Taken together, SAB could significantly suppress the migration of melanoma cells via direct binding with ß-actin, suggesting that SAB could be a helpful supplement that may enhance chemotherapeutic outcomes and benefit melanoma patients.


Assuntos
Actinas , Benzofuranos , Melanoma , Animais , Camundongos , Humanos , Actinas/genética , Melanoma/tratamento farmacológico , Simulação de Acoplamento Molecular , Depsídeos
7.
J Ethnopharmacol ; 321: 117483, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008273

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ulcerative colitis (UC) is a recurring chronic intestinal disease that can be debilitating and in severe cases, may further lead to cancer. However, all these treatment techniques still suffer from drug dependence, adverse effects and poor patient compliance. Therefore, there is an urgent need to seek new therapeutic strategies. In traditional Chinese medicine, Rabdosia rubescens (Hemsl.) H.Hara has the effects of clearing heat-toxin and promoting blood circulation to relieve pain, it is wildly used for treating inflammatory diseases such as sore throats and tonsillitis. Ponicidin is an important molecule for the anti-inflammatory effects of Rabdosia rubescens, but it has not been studied in the treatment of colitis. HSP90 is the most critical regulator in the development and progression of inflammatory diseases such as UC. AIM OF THE STUDY: The aim of this study was to explore the anti-inflammatory activity of ponicidin and its mechanism of effect in vitro and in vivo, as well as to identify the target proteins on which ponicidin may interact. MATERIAL AND METHODS: 2.5% (w/v) dextran sulfate sodium (DSS) was used to induce C57BL/6 mice to form an ulcerative colitis model, and then 5 mg/kg and 10 mg/kg ponicidin was given for treatment, while the Rabdosia rubescens extract group and Rabdosia rubescens diterpene extract group were set up for comparison of the efficacy of ponicidin. At the end of modeling and drug administration, mouse colon tissues were taken, and the length of colon was counted, inflammatory factors and inflammatory signaling pathways were detected. RAW264.7 cells were induced to form cell inflammation model with 1 µg/mL Lipopolysaccharide (LPS) for 24 h. 1 µM, 2 µM and 4 µM ponicidin were given at the same time, and after the end of the modeling and administration of the drug, the inflammatory factors and inflammatory signaling pathways were detected by qRT-PCR, western blotting, immunofluorescence and other methods. In vitro, target angling and combined with mass spectrometry were used to search for relevant targets of ponicidin, while isothermal titration calorimetry (ITC), protease degradation experiments and molecular dynamics simulations were used for further confirmation of the mode of action and site of action between ponicidin and target proteins. RESULTS: Ponicidin can alleviate DSS and LPS-induced inflammation by inhibiting the MAPK signaling pathway at the cellular and animal levels. In vitro, we confirmed that ponicidin can interact with the middle domain of HSP90 and induce the conformational changes in the N-terminal domain. CONCLUSION: These innovative efforts identified the molecular target of ponicidin in the treatment of UC and revealed the molecular mechanism of its interaction with HSP90.


Assuntos
Colite Ulcerativa , Colite , Diterpenos , Animais , Camundongos , Humanos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Diterpenos/farmacologia , Anti-Inflamatórios/efeitos adversos , Inflamação/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Colo , Colite/tratamento farmacológico , NF-kappa B/metabolismo
8.
Future Oncol ; 19(37): 2465-2479, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38054394

RESUMO

Aim: To elucidate the clinicopathological and prognostic values of interferon regulatory factor (IRF) family genes in acute myeloid leukemia (AML). Patients & methods: Differential expression analysis and survival analysis from several reliable databases were conducted and further validated using patients with AML. Results: The expression level of IRF1/2/4/5/7/8/9 in patients with AML was upregulated, while IRF3/6 expression was downregulated. High IRF1/7/9 expression indicated a worse overall survival rate. Conclusion: Overexpression of IRF1/7/9 may be associated with poor survival in patients with AML, suggesting that the IRF family may be a promising therapeutic target.


Assuntos
Fatores Reguladores de Interferon , Leucemia Mieloide Aguda , Humanos , Prognóstico , Fatores Reguladores de Interferon/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Análise de Sobrevida
9.
Phytomedicine ; 120: 155040, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683587

RESUMO

BACKGROUND: Irinotecan (CPT-11, Camptosar@) is a first-line drug for metastatic colorectal cancer. CPT-11-induced diarrhea, which is closely related to the concentrations of ß-glucuronidase (ß-GUS) and SN-38 in the gut, largely limits its clinical application. PURPOSE: Herein, Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese formula, was applied to mitigate CPT-11-induced toxicity. This study initially explored the mechanism by which XCHT alleviated diarrhea, especially for ß-GUS from the gut microbiota. METHODS: First, we examined the levels of the proinflammatory cytokines and the anti-inflammatory cytokines in the intestine. Furthermore, we researched the community abundances of the gut microbiota in the CPT-11 and XCHT-treated mice based on 16S rRNA high-throughput sequencing technology. Meanwhile, the level of SN-38 and the concentrations of ß-GUS in intestine were examined. We also resolved the 3D structure of ß-GUS from gut microbiota by X-ray crystallography technology. Moreover, we used virtual screening, SPR analysis, and enzyme activity assays to confirm whether the main active ingredients from XCHT could selectively inhibit ß-GUS. RESULTS: In XCHT-treated mice, the levels of the proinflammatory cytokines decreased, the anti-inflammatory cytokines increased, and the community abundances of beneficial Firmicutes and Bacteroidota improved in the gut microbiota. We also found that the concentrations of ß-GUS and the level of SN-38, the major ingredient that induces diarrhea in the gut, significantly decreased after coadministration of XCHT with CPT-11 in the intestine. Additionally, we revealed the structural differences of ß-GUS from different gut microbiota. Finally, we found that EcGUS had good affinity with baicalein and meanwhile could be selectively inhibited by baicalein from XCHT. CONCLUSIONS: Overall, XCHT could relieve the delayed diarrhea induced by CPT-11 through improving the abundance of beneficial gut microbiota and reduced inflammation. Furthermore, based on the three-dimensional structure, baicalein, especially, could be used as a candidate EcGUS inhibitor to alleviate CPT-11-induced diarrhea.


Assuntos
Microbioma Gastrointestinal , Glucuronidase , Animais , Camundongos , Irinotecano , RNA Ribossômico 16S/genética , Citocinas , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico
10.
Acta Pharmacol Sin ; 44(12): 2445-2454, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37580492

RESUMO

Acute pancreatitis (AP) is an inflammatory disease of the exocrine pancreas. Disruptions in organelle homeostasis, including macroautophagy/autophagy dysfunction and endoplasmic reticulum (ER) stress, have been implicated in human and rodent pancreatitis. Syntaxin 17 (STX17) belongs to the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) subfamily. The Qa-SNARE STX17 is an autophagosomal SNARE protein that interacts with SNAP29 (Qbc-SNARE) and the lysosomal SNARE VAMP8 (R-SNARE) to drive autophagosome-lysosome fusion. In this study, we investigated the role of STX17 in the pathogenesis of AP in male mice or rats induced by repeated intraperitoneal injections of cerulein. We showed that cerulein hyperstimulation induced AP in mouse and rat models, which was characterized by increased serum amylase and lipase activities, pancreatic edema, necrotic cell death and the infiltration of inflammatory cells, as well as markedly decreased pancreatic STX17 expression. A similar reduction in STX17 levels was observed in primary and AR42J pancreatic acinar cells treated with CCK (100 nM) in vitro. By analyzing autophagic flux, we found that the decrease in STX17 blocked autophagosome-lysosome fusion and autophagic degradation, as well as the activation of ER stress. Pancreas-specific STX17 knockdown using adenovirus-shSTX17 further exacerbated pancreatic edema, inflammatory cell infiltration and necrotic cell death after cerulein injection. These data demonstrate a critical role of STX17 in maintaining pancreatic homeostasis and provide new evidence that autophagy serves as a protective mechanism against AP.


Assuntos
Ceruletídeo , Pancreatite , Masculino , Camundongos , Animais , Ratos , Humanos , Doença Aguda , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Pancreatite/induzido quimicamente , Autofagia/fisiologia , Proteínas SNARE/metabolismo , Edema
11.
Front Immunol ; 14: 1163397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37090710

RESUMO

Introdcution: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are major causes of COVID-19 mortality. However, drug delivery to lung tissues is impeded by endothelial cell barriers, limiting the efficacy of existing treatments. A prompt and aggressive treatment strategy is therefore necessary. Methods: We assessed the ability of anti-CD31-ORI-NPs to penetrate endothelial cell barriers and specifically accumulate in lung tissues using an animal model. We also compared the efficacy of anti-CD31-ORI-NPs to that of free oridonin in ameliorating acute lung injury and evaluated the cytotoxicity of both treatments on endothelial cells. Results: Compared to free ORI, the amount of anti-CD31-ORI-NPs accumulated in lung tissues increase at least three times. Accordingly, anti-CD31-ORI-NPs improve the efficacy three times on suppressing IL-6 and TNF-a secretion, ROS production, eventually ameliorating acute lung injury in animal model. Importantly, anti-CD31-ORI-NPs significantly decrease the cytotoxicity at least two times than free oridonin on endothelial cells. Discussion: Our results from this study will not only offer a novel therapeutic strategy with high efficacy and low toxicity, but also provide the rational design of nanomaterials of a potential drug for acute lung injury therapy.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Animais , Células Endoteliais , Proteína 1 Associada a ECH Semelhante a Kelch , Fator 2 Relacionado a NF-E2 , Lesão Pulmonar Aguda/tratamento farmacológico , Inflamação/tratamento farmacológico , Células Epiteliais
12.
Front Immunol ; 14: 1139517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960073

RESUMO

Introduction: Despite accumulated evidence in T-cell exhaustion in acute myeloid leukemia (AML), the immunotherapeutic targeting exhausted T cells such as programmed cell death protein 1 (PD-1) blockade in AML failed to achieve satisfying efficacy. Characteristics of exhausted T cells in AML remained to be explored. Methods: Phenotypic analysis of T cells in bone marrow (BM) using flow cytometry combining senescent and exhausted markers was performed in de novo AML patients and healthy donors as well as AML patients with complete remission (CR). Functional analysis of T-cell subsets was also performed in de novo AML patients using flow cytometry. Results: T cells experienced a phenotypic shift to terminal differentiation characterized by increased loss of CD28 expression and decrease of naïve T cells. Additionally, lack of CD28 expression could help define a severely exhausted subset from generally exhausted T cells (PD-1+TIGIT+). Moreover, CD28- subsets rather than CD28+ subsets predominantly contributed to the significant accumulation of PD-1+TIGIT+ T cells in AML patients. Further comparison of de novo and CR AML patients showed that T-cell exhaustion status was improved after disease remission, especially in CD28+ subsets. Notably, higher frequency of CD28-TIGIT-CD4+ T cells correlated with the presence of minimal residual disease in AML-CR group. However, the correlation between CD28- exhausted T cells and cytogenetic risk or white blood cell count was not observed, except for that CD28- exhausted CD4+ T cells correlated with lymphocyte counts. Intriguingly, larger amount of CD28-TGITI+CD8+ T cells at diagnosis was associated with poor treatment response and shorter leukemia free survival. Discussion: In summary, lack of CD28 expression defined a severely exhausted status from exhausted T cells. Accumulation of CD28- exhausted T cells was linked to occurrence of AML, and correlated to poor clinical outcome. Our data might facilitate the development of combinatory strategies to improve the efficacy of PD-1 blockade in AML.


Assuntos
Linfócitos T CD8-Positivos , Leucemia Mieloide Aguda , Humanos , Linfócitos T CD8-Positivos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Antígenos CD28/metabolismo , Exaustão das Células T , Leucemia Mieloide Aguda/terapia , Receptores Imunológicos/metabolismo
13.
Acta Pharmacol Sin ; 44(6): 1191-1205, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36627345

RESUMO

UDP-glucose ceramide glucosyltransferase (UGCG) is the first key enzyme in glycosphingolipid (GSL) metabolism that produces glucosylceramide (GlcCer). Increased UGCG synthesis is associated with cell proliferation, invasion and multidrug resistance in human cancers. In this study we investigated the role of UGCG in the pathogenesis of hepatic fibrosis. We first found that UGCG was over-expressed in fibrotic livers and activated hepatic stellate cells (HSCs). In human HSC-LX2 cells, inhibition of UGCG with PDMP or knockdown of UGCG suppressed the expression of the biomarkers of HSC activation (α-SMA and collagen I). Furthermore, pretreatment with PDMP (40 µM) impaired lysosomal homeostasis and blocked the process of autophagy, leading to activation of retinoic acid signaling pathway and accumulation of lipid droplets. After exploring the structure and key catalytic residues of UGCG in the activation of HSCs, we conducted virtual screening, molecular interaction and molecular docking experiments, and demonstrated salvianolic acid B (SAB) from the traditional Chinese medicine Salvia miltiorrhiza as an UGCG inhibitor with an IC50 value of 159 µM. In CCl4-induced mouse liver fibrosis, intraperitoneal administration of SAB (30 mg · kg-1 · d-1, for 4 weeks) significantly alleviated hepatic fibrogenesis by inhibiting the activation of HSCs and collagen deposition. In addition, SAB displayed better anti-inflammatory effects in CCl4-induced liver fibrosis. These results suggest that UGCG may represent a therapeutic target for liver fibrosis; SAB could act as an inhibitor of UGCG, which is expected to be a candidate drug for the treatment of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Humanos , Animais , Simulação de Acoplamento Molecular , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/metabolismo , Colágeno Tipo I/metabolismo
14.
Front Pharmacol ; 13: 926945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36059938

RESUMO

Dysregulated immune response plays a pivotal role in Ulcerative colitis. In lamina propria of inflammatory colonic mucosa, macrophages tend to polarize into M1 type and metabolically reprogram to aerobic glycolysis. PKM2 orchestrates glucose metabolic switch in macrophages, which tetramer has high pyruvate kinase activity, while which dimer mainly works as a protein kinase to stabilize HIF-1α and mediate anabolism. Shikonin is a potent PKM2 inhibitor derived from traditional Chinese medicine Arnebiae Radix with anti-inflammatory and anticarcinogen activities. However, it is unclear which conformation of PKM2 is inhibited by Shikonin, and whether this inhibition mediates pharmacological effect of Shikonin. In this study, we examined the efficacy of Shikonin on dextran sulfate sodium-induced mice colitis and determined the states of PKM2 aggregation after Shikonin treatment. Results showed that Shikonin dose-dependently alleviated mice colitis, down-regulated expression of F4/80, iNOS and CD86, decreased IFN-γ, IL-1ß, IL-6 and TNF-α, while increased IL-10 in mice colon. Furthermore, Shikonin suppressed the pyruvate, lactate production and glucose consumption, inhibited the pyruvate kinase activity and nuclear translocation of PKM2, and decreased both dimerization and tetramerization of PKM2 in macrophages. In vitro assay revealed that Shikonin bounded to PKM2 protein, inhibited the formation of both dimer and tetramer, while promoted aggregation of PKM2 macromolecular polymer. TEPP-46, an activator of PKM2 tetramerization, attenuated the ameliorative effect of Shikonin on disuccinimidyl suberate mice. In summary, Shikonin improved mice colitis, which mechanism may be mediated by inhibiting dimerization and tetramerization of PKM2, suppressing aerobic glycolysis reprogram, improving mitochondrial dynamic, and therefore alleviating inflammatory response of macrophages.

15.
Transl Oncol ; 25: 101516, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35985203

RESUMO

OBJECTIVES: Despite advances in the development of novel targeted therapies, the need for B-ALL alternative treatments has not been met. Anlotinib could blunt the proangiogenic activity of VEGFR, PDGFR, and FGFR, and has shown strong antitumor activities across multiple tumors. However, anlotinib cytotoxicity against B-ALL has not ever been evaluated, thus prompting us to initiate this study. METHODS: Expression2Kinases program was used to identify potential treatment targets. Cell viability and apoptosis were determined by CCK-8 and Annexin V/PI staining kit, respectively. qRT-PCR and Western blotting were utilized to investigate the molecular mechanisms. In vivo antileukemia activity of Anlotinib was evaluated in a Ph+ B-ALL patient-Derived Xenograft (PDX) model. RESULTS: Compared with treatment-naive B-ALL cases, RR B-ALL patients had higher activities in the VEGF/VEGFR signaling and the PI3K/AKT/mTOR pathway. Exposure of Ph- and Ph+ B-ALL cells to anlotinib resulted in significant cell viability reduction, apoptosis enhancement, and cell cycle arrest at G2/M phase. Importantly, anlotinib treatment led to remarkably decreased leukemia burdens and extended the survival period in a Ph+ B-ALL PDX model. Blockade of the role of the proangiogenic mediators, comprising VEGFR2, PDGFR-beta, and FGFR3, played a critical role in the cytotoxicity of anlotinib against Ph- and Ph+ B-ALL. Moreover, anlotinib dampened the activity of PI3K/AKT/mTOR pathway that resides in the convergence of the three mentioned proangiogenic signals. CONCLUSION: This work provides impressive preclinical evidence of anlotinib against Ph- and Ph+ B-ALL and raises a rationale for future clinical evaluation of this drug in the management of Ph- and Ph+ B-ALL.

16.
Curr Drug Targets ; 23(10): 1023-1038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400341

RESUMO

Heat shock protein (Hsp) 90 is an ATP-dependent chaperone and plays a vital role in the folding, maturation, and stability of a protein. Hsp90 and its client proteins have become targets of various diseases through the regulation of disease-related proteins. Inhibition of Hsp90 production and activity prevents ATP hydrolysis, resulting in the ubiquitination and proteasome degradation of client proteins. However, the Hsp90 inhibitor has obvious toxic side effects and the inevitable heat shock response. Cell division cycle 37 (Cdc37) is a crucial Hsp90 kinase-specific co-chaperone, which forms a complex with Hsp90 to regulate kinase and non-kinase client's activities, cell communication, and signal transduction. The Hsp90-Cdc37 complex maintains cell survival by stabilizing abnormal client proteins and regulating cell growth signals. The abnormal activation of Hsp90-Cdc37 protein-protein interaction (PPI) often leads to the aggravation of diseases, such as cancer and neurodegenerative diseases. Compared with ATP competitive Hsp90 inhibitors, blocking Hsp90-Cdc37 PPI has higher selectivity, fewer toxic side effects, and better application prospects. This review detailed the biological characteristics of Hsp90-Cdc37 PPI and its role in several human diseases. Besides, the latest research progress in inhibitors is summarized and discussed to guide further research and clinical application.


Assuntos
Antineoplásicos , Chaperoninas , Trifosfato de Adenosina , Proteínas de Ciclo Celular , Proteínas de Choque Térmico HSP90 , Humanos , Chaperonas Moleculares , Ligação Proteica
17.
Acta Pharm Sin B ; 12(2): 651-664, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35256937

RESUMO

Inhibitor of nuclear factor kappa-B kinase subunit beta (IKKß) is one of important kinases in inflammation to phosphorylate inhibitor of nuclear factor kappa-B (IκBα) and then activate nuclear factor kappa-B (NF-κB). Inhibition of IKKß has been a therapeutic strategy for inflammatory and autoimmune diseases. Here we report that IKKß is constitutively activated in healthy donors and healthy Ikkß C46A (cysteine 46 mutated to alanine) knock-in mice although they possess intensive IKKß-IκBα-NF-κB signaling activation. These indicate that IKKß activation probably plays homeostatic role instead of causing inflammation. Compared to Ikkß WT littermates, lipopolysaccharides (LPS) could induce high mortality rate in Ikkß C46A mice which is correlated to breaking the homeostasis by intensively activating p-IκBα-NF-κB signaling and inhibiting phosphorylation of 5' adenosine monophosphate-activated protein kinase (p-AMPK) expression. We then demonstrated that IKKß kinase domain (KD) phosphorylates AMPKα1 via interacting with residues Thr183, Ser184, and Thr388, while IKKß helix-loop-helix motifs is essential to phosphorylate IκBα according to the previous reports. Kinase assay further demonstrated that IKKß simultaneously catalyzes phosphorylation of AMPK and IκBα to mediate homeostasis. Accordingly, activation of AMPK rather than inhibition of IKKß could substantially rescue LPS-induced mortality in Ikkß C46A mice by rebuilding the homeostasis. We conclude that IKKß activates AMPK to restrict inflammation and IKKß mediates homeostatic function in inflammation via competitively phosphorylating AMPK and IκBα.

18.
Acta Pharm Sin B ; 12(2): 821-837, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35251919

RESUMO

Acidosis, regardless of hypoxia involvement, is recognized as a chronic and harsh tumor microenvironment (TME) that educates malignant cells to thrive and metastasize. Although overwhelming evidence supports an acidic environment as a driver or ubiquitous hallmark of cancer progression, the unrevealed core mechanisms underlying the direct effect of acidification on tumorigenesis have hindered the discovery of novel therapeutic targets and clinical therapy. Here, chemical-induced and transgenic mouse models for colon, liver and lung cancer were established, respectively. miR-7 and TGF-ß2 expressions were examined in clinical tissues (n = 184). RNA-seq, miRNA-seq, proteomics, biosynthesis analyses and functional studies were performed to validate the mechanisms involved in the acidic TME-induced lung cancer metastasis. Our data show that lung cancer is sensitive to the increased acidification of TME, and acidic TME-induced lung cancer metastasis via inhibition of miR-7-5p. TGF-ß2 is a direct target of miR-7-5p. The reduced expression of miR-7-5p subsequently increases the expression of TGF-ß2 which enhances the metastatic potential of the lung cancer. Indeed, overexpression of miR-7-5p reduces the acidic pH-enhanced lung cancer metastasis. Furthermore, the human lung tumor samples also show a reduced miR-7-5p expression but an elevated level of activated TGF-ß2; the expressions of both miR-7-5p and TGF-ß2 are correlated with patients' survival. We are the first to identify the role of the miR-7/TGF-ß2 axis in acidic pH-enhanced lung cancer metastasis. Our study not only delineates how acidification directly affects tumorigenesis, but also suggests miR-7 is a novel reliable biomarker for acidic TME and a novel therapeutic target for non-small cell lung cancer (NSCLC) treatment. Our study opens an avenue to explore the pH-sensitive subcellular components as novel therapeutic targets for cancer treatment.

19.
Life Sci ; 282: 119791, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34229009

RESUMO

AIMS: Keap1-Nrf2 signaling pathway is one of the most important antioxidant signaling pathways, and its abnormal activation is related to cancer metastasis and drug resistance. Many studies have shown Keap1 and Nrf2 mutations are closely associated with cancer occurrence. However, few studies focus on Keap1-Nrf2 binding characteristics of cancer-associated mutations. The study investigated the molecular mechanism between Keap1/Nrf2 mutations and cancer. MAIN METHODS: We have determined the crystal structure of the Keap1-Kelch domain with Nrf2 25-mer peptide. What's more, we clarified the molecular effects of Nrf2Thr80 and Nrf2Pro85 on the binding of Keap1 by the method isothermal titration calorimetry (ITC), differential scanning fluorimetry (DSF) and electrophoretic mobility shift assay (EMSA). Especially, we confirmed the effect of Thr80 and Pro85 mutations on Keap1/Nrf2 signaling pathway in HEK293T cells by RT-PCR and western blot (WB). Finally, we verified the effect of six cancer-related high-frequency somatic mutations Keap1G364C, Keap1D422N, Keap1R470C, Keap1G480W, Keap1E493Q and Keap1R601L on binding with Nrf2 through ITC experiments. KEY FINDINGS: Nrf2Thr80 and Nrf2Pro85 play a vital role in the Keap1-Nrf2 interaction. Mutant or modification at position Thr80 will disrupt the interaction. Especially, Nrf2Thr80 and Nrf2Pro85 mutations activate the expression of cytoprotective genes in HEK293T cells. As for Keap1, except G364C, the binding affinity of other cancer-related mutants to Nrf2 hardly changed, which means that Keap1 mutants can activate Nrf2 without disrupting the binding to Nrf2. SIGNIFICANCE: The study provides new insight into Keap1/Nrf2 signaling pathway and cancer.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Neoplasias/metabolismo , Animais , Células HEK293 , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Modelos Moleculares , Mutação , Fator 2 Relacionado a NF-E2/química , Fator 2 Relacionado a NF-E2/genética , Neoplasias/genética , Ligação Proteica , Mapas de Interação de Proteínas
20.
Mol Biol Rep ; 48(5): 4747-4756, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34046849

RESUMO

AlkBH1 is a member of the AlkB superfamily which are kinds of Fe (II) and α-ketoglutarate (α-KG)-dependent dioxygenases. At present, only demethyltransferases FTO and AlkBH5 have relatively clear substrate studies among these members, the types and mechanisms of substrates catalysis of other members are not clear, especially the demethyltransferase AlkBH1. AlkBH1, as a demethylase, has important functions of reversing DNA methylation and repairing DNA damage. And it has become a promising target for the treatment of many cancers, the regulation of neurological and genetic related diseases. Many scholars have made important discoveries in the diversity of AlkBH1 substrates, but there is no comprehensive summary, which affects the design inhibitor target of AlkBH1. Herein, We are absorbed in the latest progress in the study of AlkBH1 substrate diversity and its relationship with human diseases. Besides, we also discuss future research directions and suggest other studies to reveal the specific catalytic effect of AlkBH1 on cancer substrates.


Assuntos
Homólogo AlkB 1 da Histona H2a Dioxigenase/genética , Neoplasias/genética , Doenças do Sistema Nervoso/genética , Homólogo AlkB 5 da RNA Desmetilase/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dano ao DNA/genética , Metilação de DNA/genética , Reparo do DNA/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Neoplasias/patologia , Doenças do Sistema Nervoso/patologia , Especificidade por Substrato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA