Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Pharmaceutics ; 16(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38931942

RESUMO

DOX/TPOR4@CB[7]4 was synthesized via self-assembly, and its physicochemical properties and ability to generate reactive oxygen species (ROS) were evaluated. The impact of photodynamic therapy on SH-SY5Y cells was assessed using the MTT assay, while flow cytometry analysis was employed to detect cell apoptosis. Confocal laser scanning microscopy was utilized to observe the intracellular distribution of DOX/TPOR4@CB[7]4 in SH-SY5Y cells. Additionally, fluorescence imaging of DOX/TPOR4@CB[7]4 in nude mice bearing SH-SY5Y tumors and examination of the combined effects of photodynamic and chemical therapies were conducted. The incorporation of CB[7] significantly enhanced the optical properties of DOX/TPOR4@CB[7]4, resulting in increased ROS production and pronounced toxicity towards SH-SY5Y cells. Moreover, both the apoptotic and mortality rates exhibited significant elevation. In vivo experiments demonstrated that tumor growth inhibition was most prominent in the DOX/TPOR4@CB[7]4 group. π-π interactions facilitated the binding between DOX and photosensitizer TPOR, with TPOR's naphthalene hydrophilic groups encapsulated within CB[7]'s cavity through host-guest interactions with CB[7]. Therefore, CB[7] can serve as a nanocarrier to enhance the combined application of chemical therapy and photodynamic therapy, thereby significantly improving treatment efficacy against neuroblastoma tumors.

2.
ACS Appl Mater Interfaces ; 16(4): 5149-5157, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38247294

RESUMO

Water/light regulated room-temperature phosphorescence (RTP) of polypseudorotaxane supramolecular gel is constructed by threading the poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEG-PPG-PEG) chain with the bromoaromatic aldehyde into mono-(6-ethylenediamine-6-deoxygenated)-ß-cyclodextrin (ECD) cavities and further assembling with negatively charged Laponite XLG (CNS) and diarylethene derivative (DAE) through electrostatic interaction. This hydrogel exhibits significant blue fluorescence emission; instead, after lyophilization to xerogel, the system exhibits both blue fluorescence and yellow RTP based on the rigid network structure of the xerogel, which restricts the vibration of the phosphor and suppresses the nonradiative relaxation process. Interestingly, the addition of excess ECDs to the gel system can enhance the RTP emission. Furthermore, the reversible luminescence behavior can be adjusted by the photoresponsive isomerism of DAE and humidity. This polypseudorotaxane supramolecular gel system provides a novel strategy for constructing tunable RTP materials.

3.
J Med Chem ; 66(13): 8628-8642, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37332162

RESUMO

Nonsubstrate allosteric inhibitors of P-glycoprotein (Pgp), which are considered promising modulators for overcoming multidrug resistance (MDR), are relatively unknown. Herein, we designed and synthesized amino acids bearing amide derivatives of pyxinol, the main ginsenoside metabolite produced by the human liver, and examined their MDR reversal abilities. A potential nonsubstrate inhibitor (7a) was identified to undergo high-affinity binding to the putative allosteric site of Pgp at the nucleotide-binding domains. Subsequent assays confirmed that 7a (25 µM) was able to suppress both basal and verapamil-stimulated Pgp-ATPase activities (inhibition rates of 87 and 60%, respectively) and could not be pumped out by Pgp, indicating that it was a rare nonsubstrate allosteric inhibitor. Moreover, 7a interfered with Pgp-mediated Rhodamine123 efflux while exhibiting high selectivity for Pgp. Notably, 7a also markedly enhanced the therapeutic efficacy of paclitaxel, with a tumor inhibition ratio of 58.1%, when used to treat nude mice bearing KBV xenograft tumors.


Assuntos
Antineoplásicos , Neoplasias , Animais , Camundongos , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Amidas/farmacologia , Aminoácidos/farmacologia , Camundongos Nus , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos
4.
iScience ; 26(4): 106521, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-37123245

RESUMO

Small extracellular vesicles (sEVs) and large extracellular vesicles (lEVs), play vital roles in intercellular communication. We optimized a method that extracts EVs from epithelial ovarian cancer (EOC) tissues for the purpose of investigating whether cryopreservation of EOC tissues affects the phenotypes, contents, and biological functions of extracted EVs. EV morphology, the number and size distribution of EVs, and EV-related markers were analyzed. Storage of lysates at -80°C decreased lEV yield and increased sEV yield, whereas storage of tissues at -80°C increased both sEV and lEV yields; neither changed the morphology or particle mass ratio of EVs. The two cryopreservation groups retained over 90% of proteins and 80% of miRNAs detected in the "fresh" group. EVs extracted following lysate/tissue storage at -80°C could also promote angiogenesis and invasive migration ability in human endothelial cells. Cryopreserved EOC tissue may benefit clinical applications for studies of tissue-derived EVs, especially EV proteins-related ones.

5.
Eur J Med Chem ; 250: 115193, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36774698

RESUMO

Eudistomin Y is a novel class of ß-carbolines of marine origin with potential antiproliferation activity against MDA-MB-231 cells (triple-negative breast carcinoma). However, the subcellular target or the detailed mechanism against cancer cell proliferation has not yet been identified. In this study, based on its special structure, a novel series of Eudistomin Y fluorescent derivatives were designed and synthesized by enhancing the electron-donor effect of N-9 to endow it with fluorescent properties through N-alkylation. The structure-activity relationships against the proliferation of cancer cells were also analyzed. A quarter of Eudistomin Y derivatives showed much higher potency against cancer cell proliferation than the original Eudistomin Y1. Fluorescent derivative H1k with robust antiproliferative activity could arrest MDA-MB-231 cells in the G2-M phase. The subcellular localization studies of the probes, including H1k, and Eudistomin Y1 were performed in MDA-MB-231 cells, and the co-localization and competitive inhibition assays revealed their lysosome-specific localization. Moreover, H1k could dose-dependently increase the autophagy signal and downregulate the expression of cyclin-dependent kinase (CDK1) and cyclin B1 which principally regulated the G2-M transition. Furthermore, the specific autophagy inhibitor 3-methyladenine significantly inhibited the H1k-triggered antiproliferation of cancer cells and the downregulation of CDK1 and cyclin B1. Overall, the lysosome is identified as the subcellular target of Eudistomin Y for the first time, and derivative H1k showed robust antiproliferative activity against MDA-MB-231 cells by decreasing Cyclin B1-CDK1 complex via a lysosome-dependent pathway.


Assuntos
Antineoplásicos , Ciclina B1/farmacologia , Divisão Celular , Antineoplásicos/farmacologia , Proliferação de Células , Quinases Ciclina-Dependentes , Linhagem Celular Tumoral , Apoptose
6.
Lancet Microbe ; 3(5): e348-e356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35345417

RESUMO

Background: The memory immune response is crucial for preventing reinfection or reducing disease severity. However, the robustness and functionality of the humoral and T-cell response to SARS-CoV-2 remains unknown 12 months after initial infection. The aim of this study is to investigate the durability and functionality of the humoral and T-cell response to the original SARS-CoV-2 strain and variants in recovered patients 12 months after infection. Methods: In this longitudinal cohort study, we recruited participants who had recovered from COVID-19 and who were discharged from the Wuhan Research Center for Communicable Disease Diagnosis and Treatment at the Chinese Academy of Medical Sciences, Wuhan, China, between Jan 7 and May 29, 2020. Patients received a follow-up visit between Dec 16, 2020, and Jan 27, 2021. We evaluated the presence of IgM, IgA, and IgG antibodies against the SARS-CoV-2 nucleoprotein, Spike protein, and the receptor-binding domain 12 months after initial infection, using ELISA. Neutralising antibodies against the original SARS-CoV-2 strain, and the D614G, beta (B.1.351), and delta (B.1.617.2) variants were analysed using a microneutralisation assay in a subset of plasma samples. We analysed the magnitude and breadth of the SARS-CoV-2-specific memory T-cell responses using the interferon γ (IFNγ) enzyme-linked immune absorbent spot (ELISpot) assay and intracellular cytokine staining (ICS) assay. The antibody response and T-cell response (ie, IFN-γ, interleukin-2 [IL-2], and tumour necrosis factor α [TNFα]) were analysed by age and disease severity. Antibody titres were also analysed according to sequelae symptoms. Findings: We enrolled 1096 patients, including 289 (26·4%) patients with moderate initial disease, 734 (67·0%) with severe initial disease, and 73 (6·7%) with critical initial disease. Paired plasma samples were collected from 141 patients during the follow-up visits for the microneutralisation assay. PBMCs were collected from 92 of 141 individuals at the 12-month follow-up visit, of which 80 were analysed by ELISpot and 92 by ICS assay to detect the SARS-CoV-2-specific memory T-cell responses. N-IgG (899 [82·0%]), S-IgG (1043 [95·2%]), RBD-IgG (1032 [94·2%]), and neutralising (115 [81·6%] of 141) antibodies were detectable 12 months after initial infection in most individuals. Neutralising antibodies remained stable 6 and 12 months after initial infection in most individuals younger than 60 years. Multifunctional T-cell responses were detected for all SARS-CoV-2 viral proteins tested. There was no difference in the magnitude of T-cell responses or cytokine profiles in individuals with different symptom severity. Moreover, we evaluated both antibody and T-cell responses to the D614G, beta, and delta viral strains. The degree of reduced in-vitro neutralising antibody responses to the D614G and delta variants, but not to the beta variant, was associated with the neutralising antibody titres after SARS-CoV-2 infection. We also found poor neutralising antibody responses to the beta variant; 83 (72·2%) of 115 patients showed no response at all. Moreover, the neutralising antibody titre reduction of the recovered patient plasma against the delta variant was similar to that of the D614G variant and lower than that of the beta variant. By contrast, T-cell responses were cross-reactive to the beta variant in most individuals. Importantly, T-cell responses could be detected in all individuals who had lost the neutralising antibody response to SARS-CoV-2 12 months after the initial infection. Interpretation: SARS-CoV-2-specific neutralising antibody and T-cell responses were retained 12 months after initial infection. Neutralising antibodies to the D614G, beta, and delta viral strains were reduced compared with those for the original strain, and were diminished in general. Memory T-cell responses to the original strain were not disrupted by new variants. This study suggests that cross-reactive SARS-CoV-2-specific T-cell responses could be particularly important in the protection against severe disease caused by variants of concern whereas neutralising antibody responses seem to reduce over time. Funding: Chinese Academy of Medical Sciences, National Natural Science Foundation, and UK Medical Research Council.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/epidemiologia , Estudos de Coortes , Citocinas , Humanos , Imunoglobulina G , Estudos Longitudinais , Linfócitos T
7.
Cell Death Discov ; 7(1): 259, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34552062

RESUMO

The poly(adenosine diphosphate-ribose) polymerase (PARP) inhibitors show survival benefits in ovarian cancer patients with BRCA1/2 mutation or homologous recombination (HR) deficiency, but only limited efficacy in HR-proficient ones. Another drug, arsenic trioxide (ATO) or arsenic drug (RIF), exerts antitumor effects via inducing DNA damage. Here, we investigated the combined therapeutic effects of the PARP inhibitors and the arsenic compound in HR-proficient ovarian cancer. The combined treatment of niraparib, olaparib, or fluazolepali with ATO showed a significant suppression in tumor cell viability and colony formation. The drug treatment also induced synergistic inhibition of cell proliferation and DNA damage, and acceleration of cell apoptosis in two HR-proficient ovarian cancer cell lines SKOV3 and CAOV3, either by simultaneous or sequential administration. The mechanism underlying these synergistic effects were reflected by the significantly increased ratio of cleaved-PARP/total PARP and decreased ratio of p-AKT/total AKT. Consistently, the combination of olaparib with RIF synergistically reduced the tumor growth in mouse xenograft models. In conclusion, the arsenic compound greatly sensitizes HR-proficient ovarian cancer cells to the PARP inhibitors, and our findings provide an evidence for the clinical treatment development of this combination in HR-proficient ovarian cancer patients.

8.
Clin Transl Med ; 11(5): e425, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34047469

RESUMO

INTRODUCTION: Exosomal microRNA (miRNA) as a mediator of intercellular communication plays an essential part in tumor-relevant angiogenesis. Therapy against angiogenesis has been demonstrated to have a remarkable antitumor efficacy in various malignancies, but not as expected in ovarian cancer. METHODS: Exosomes were isolated by ultracentrifugation. Exosomal miRNA sequencing and gene function experiments were used to identify the differential expressed miRNAs in exosomes and their mRNA targets. SKOV3 cell line that stably overexpressed miR-92b-3p was constructed by lentivirus. In vitro, angiogenesis was analyzed by tube formation assay and migration assay. The angiogenic and antitumor effects in vivo were assessed in zebrafish and nude mouse models. Combination index was calculated to assess the synergetic inhibition of angiogenesis between miR-92b-3p and Apatinib. Peptides were conjugated with exosomal membranes to obtain engineered exosomes. RESULTS: Ovarian cancer cell-derived exosomes facilitated the angiogenesis and migration capability of vascular endothelial cells in vitro and in vivo. The expression of miR-92b-3p was much lower in ovarian cancer cell-derived exosomes than that in immortalized ovarian epithelial cell-derived exosomes. The exosomal miR-92b-3p modulated tumor-associated angiogenesis via targeting SOX4. Besides, Peptide-engineered exosomes with overexpressed miR-92b-3p showed the stronger abilities of anti-angiogenesis and antitumor than parental exosomes, whether alone or combined with Apatinib. CONCLUSIONS: Our findings demonstrate the effect and mechanism of exosomal miR-92b-3p from ovarian cancer cells on tumor-associated angiogenesis and the potential of artificially generated exosomes with overexpressed miR-92b-3p to be used as anti-angiogenic agent, which may provide a new approach for anti-angiogenic therapy of ovarian cancer.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Exossomos/metabolismo , MicroRNAs/genética , Neovascularização Patológica/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Peptídeos/metabolismo , Engenharia de Proteínas , Animais , Linhagem Celular Tumoral , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Nus , Neoplasias Ovarianas/irrigação sanguínea , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Piridinas/uso terapêutico , Fatores de Transcrição SOXC/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 38(5): 435-438, 2021 May 10.
Artigo em Chinês | MEDLINE | ID: mdl-33974250

RESUMO

OBJECTIVE: To carry out genetic testing and prenatal diagnosis for 29 Chinese pedigrees affected with tuberous sclerosis complex (TSC) and assess efficacy of combined next generation sequencing (NGS) and multiple ligation-dependent probe amplification (MLPA) for the diagnosis. METHODS: NGS and MLPA were used in conjunct to detect variants of TSC1 and TSC2 genes among the probands of the pedigrees. Paternity test was carried out to exclude maternal DNA contamination. Prenatal diagnosis was provided to 14 couples based on the discoveries in the probands. RESULTS: Twenty-seven variants were identified in the TSC1 and TSC2 genes among the 29 pedigrees, which yielded a detection rate of 93.1%. Respectively, 5 (18.5%) and 22 (81.5%) variants were identified in the TSC1 and TSC2 genes. Twelve variants were unreported previously. Prenatal diagnosis showed that five fetuses were affected with TSC, whilst the remaining nine were unaffected. CONCLUSION: Above finding has expanded the spectrum of TSC1 and TSC2 gene variants. Combined NGS and MLPA has enabled diagnosis of TSC with efficiency and accuracy.


Assuntos
Esclerose Tuberosa , Análise Mutacional de DNA , Feminino , Testes Genéticos , Humanos , Mutação , Gravidez , Diagnóstico Pré-Natal , Esclerose Tuberosa/diagnóstico , Esclerose Tuberosa/genética , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética
10.
Eur J Med Chem ; 216: 113317, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33706147

RESUMO

The P-glycoprotein (Pgp) is a major transporter involved in multidrug resistance (MDR) of cancer cells leading to chemotherapy failure. In our previous study, we demonstrated that the amide derivatives of pyxinol are promising modulators against Pgp-mediated MDR in cancer. In the present study, we designed and synthesized novel pyxinol derivatives linked to amino acid residues. We evaluated MDR (paclitaxel (Ptx) resistance) reversal potency of forty pyxinol derivatives in KBV cells and analyzed their structure-activity relationships. Half of our derivatives sensitized KBV cells to Ptx at non-toxic concentrations, among which the pyxinol compound bearing a methionine residue (3c) exhibited the best activity in MDR reversal. Compound 3c was found to possess high selectivity toward Pgp and sensitize the KBV cells to Pgp substrates by blocking the efflux function of Pgp. This manifestation may be attributed to its high binding affinity with Pgp, as suggested by docking studies. Overall, the biological profile and ease of synthesizing these pyxinol derivatives render them promising lead compounds for further development for Pgp-mediated MDR.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Aminoácidos/química , Antineoplásicos/química , Resistencia a Medicamentos Antineoplásicos , Sapogeninas/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Sítios de Ligação , Domínio Catalítico , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Simulação de Dinâmica Molecular , Paclitaxel/farmacologia , Relação Estrutura-Atividade
11.
J Exp Clin Cancer Res ; 40(1): 101, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33726799

RESUMO

BACKGROUND: Metastasis is the key cause of death in ovarian cancer patients. To figure out the biological nature of cancer metastasis is essential for developing effective targeted therapy. Here we investigate how long non-coding RNA (lncRNA) SPOCD1-AS from ovarian cancer extracellular vesicles (EVs) remodel mesothelial cells through a mesothelial-to-mesenchymal transition (MMT) manner and facilitate peritoneal metastasis. METHODS: EVs purified from ovarian cancer cells and ascites of patients were applied to mesothelial cells. The MMT process of mesothelial cells was assessed by morphology observation, western blot analysis, migration assay and adhesion assay. Altered lncRNAs of EV-treated mesothelial cells were screened by RNA sequencing and identified by qRT-PCR. SPOCD1-AS was overexpressed or silenced by overexpression lentivirus or shRNA, respectively. RNA pull-down and RNA immunoprecipitation assays were conducted to reveal the mechanism by which SPOCD1-AS remodeled mesothelial cells. Interfering peptides were synthesized and applied. Ovarian cancer orthotopic implantation mouse model was established in vivo. RESULTS: We found that ovarian cancer-secreted EVs could be taken into recipient mesothelial cells, induce the MMT phenotype and enhance cancer cell adhesion to mesothelial cells. Furthermore, SPOCD1-AS embedded in ovarian cancer-secreted EVs was transmitted to mesothelial cells to induce the MMT process and facilitate peritoneal colonization in vitro and in vivo. SPOCD1-AS induced the MMT process of mesothelial cells via interacting with G3BP1 protein. Additionally, G3BP1 interfering peptide based on the F380/F382 residues was able to block SPOCD1-AS/G3BP1 interaction, inhibit the MMT phenotype of mesothelial cells, and diminish peritoneal metastasis in vivo. CONCLUSIONS: Our findings elucidate the mechanism associated with EVs and their cargos in ovarian cancer peritoneal metastasis and may provide a potential approach for metastatic ovarian cancer therapeutics.


Assuntos
Carcinoma Epitelial do Ovário/metabolismo , DNA Helicases/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/secundário , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Longo não Codificante/genética , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , DNA Helicases/genética , Vesículas Extracelulares/patologia , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos SCID , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/patologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Antissenso/genética , RNA Antissenso/metabolismo
12.
J Ovarian Res ; 14(1): 38, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627162

RESUMO

OBJECTIVE: To investigate the detailed roles and mechanisms of tumor-derived exosomes in progression and metastasis of ovarian cancer in vitro. METHODS: Exosomes were isolated by differential centrifugation method; the morphology, size and biological markers of exosomes were separately defined by transmission electron microscopy, nanoS90 and Western blotting; Trans-well chambers assay was used to assess the ability of migration and invasion of recipient cells uptaking the exosomes from HO8910PM cells. The downstream molecule was screened by mass spectrometry.CD44 was identified by western blotting and the function of CD44 was identified by trans-well chambers assay and CCK8 assay. RESULTS: Exosomes derived from HO8910PM cells could be transferred to HO8910 cells and promote cell migration and invasion in the recipient cells of ovarian cancer. And CD44 could be transferred to the HO8910 cells through exosomes from HO8910PM cells and influence the migration and invasion ability of HO8910 cells. CONCLUSION: The more aggressive subpopulation can transfer a metastatic phenotype to the less one via secreting exosomes within a heterogeneous tumor. CD44 may be a potential therapeutic approach for ovarian cancer.


Assuntos
Carcinoma Epitelial do Ovário/genética , Movimento Celular/genética , Exossomos/metabolismo , Receptores de Hialuronatos/metabolismo , Neoplasias Ovarianas/genética , Carcinoma Epitelial do Ovário/metabolismo , Carcinoma Epitelial do Ovário/secundário , Linhagem Celular Tumoral , Feminino , Humanos , Receptores de Hialuronatos/genética , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Metástase Neoplásica/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Fenótipo
13.
Cell Mol Immunol ; 18(4): 945-953, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33637958

RESUMO

SARS-CoV-2 is the pathogenic agent of COVID-19, which has evolved into a global pandemic. Compared with some other respiratory RNA viruses, SARS-CoV-2 is a poor inducer of type I interferon (IFN). Here, we report that SARS-CoV-2 nsp12, the viral RNA-dependent RNA polymerase (RdRp), suppresses host antiviral responses. SARS-CoV-2 nsp12 attenuated Sendai virus (SeV)- or poly(I:C)-induced IFN-ß promoter activation in a dose-dependent manner. It also inhibited IFN promoter activation triggered by RIG-I, MDA5, MAVS, and IRF3 overexpression. Nsp12 did not impair IRF3 phosphorylation but suppressed the nuclear translocation of IRF3. Mutational analyses suggested that this suppression was not dependent on the polymerase activity of nsp12. Given these findings, our study reveals that SARS-CoV-2 RdRp can antagonize host antiviral innate immunity and thus provides insights into viral pathogenesis.


Assuntos
COVID-19/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Fator Regulador 3 de Interferon/metabolismo , Interferon Tipo I/metabolismo , SARS-CoV-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Fator Regulador 3 de Interferon/genética , Interferon Tipo I/genética , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Mutação , Fosforilação , Regiões Promotoras Genéticas , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , SARS-CoV-2/enzimologia , Vírus Sendai/metabolismo
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(11): 1269-1271, 2020 Nov 10.
Artigo em Chinês | MEDLINE | ID: mdl-33179237

RESUMO

OBJECTIVE: To detect variant of EDA gene in a fetus with absence of germ teeth detected by prenatal ultrasonography. METHODS: Clinical data and amniotic fluid and peripheral venous blood samples of the pregnant woman were collected for the analysis. Following extraction of genome DNA, the coding regions of the EDA gene were amplified by PCR and subjected to next-generation sequencing. Candidate variant was verified by Sanger sequencing. RESULTS: The pregnant woman was found to carry a heterozygous c.574G>A variant in the EDA gene, for which the fetus was hemizygous. Bioinformatic analysis suggested the variant to be pathogenic. CONCLUSION: Combined ultrasonographic and genetic findings suggested the fetus is affected with X-linked hypohidrotic ectodermal dysplasia due to pathogenic variant of the EDA gene.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1 , Ectodisplasinas/genética , Diagnóstico Pré-Natal , Displasia Ectodérmica Anidrótica Tipo 1/diagnóstico , Displasia Ectodérmica Anidrótica Tipo 1/genética , Feminino , Feto , Humanos , Mutação , Linhagem , Gravidez
15.
Medicine (Baltimore) ; 99(37): e22189, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32925793

RESUMO

Herein, a Harris corner detection algorithm is proposed based on the concepts of iterated threshold segmentation and adaptive iterative threshold (AIT-Harris), and a stepwise local stitching algorithm is used to obtain wide-field ultrasound (US) images.Cone-beam computer tomography (CBCT) and US images from 9 cervical cancer patients and 1 prostate cancer patient were examined. In the experiment, corner features were extracted based on the AIT-Harris, Harris, and Morave algorithms. Accordingly, wide-field ultrasonic images were obtained based on the extracted features after local stitching, and the corner matching rates of all tested algorithms were compared. The accuracies of the drawn contours of organs at risk (OARs) were compared based on the stitched ultrasonic images and CBCT.The corner matching rate of the Morave algorithm was compared with those obtained by the Harris and AIT-Harris algorithms, and paired sample t tests were conducted (t = 6.142, t = 31.859, P < .05). The results showed that the differences were statistically significant. The average Dice similarity coefficient between the automatically delineated bladder region based on wide-field US images and the manually delineated bladder region based on ground truth CBCT images was 0.924, and the average Jaccard coefficient was 0.894.The proposed algorithm improved the accuracy of corner detection, and the stitched wide-field US image could modify the delineation range of OARs in the pelvic cavity.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias do Colo do Útero/diagnóstico por imagem , Feminino , Humanos , Masculino , Sensibilidade e Especificidade , Ultrassonografia/métodos
16.
Eur J Med Chem ; 202: 112507, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32650181

RESUMO

Ocotillol-type sapogenins (OTS) are major ginsenoside metabolites in human hepatic tissue. In order to better utilize OTS and derivatives thereof as anti-inflammatory compounds, present study produced multiple novel 3-amino acid OTS derivatives and evaluated their anti-inflammatory activity in vitro. The nitric oxide (NO) inhibitory activity of these compounds was used for OTS structure-activity relationship (SAR) evaluations, revealing that both R/S stereochemistry at C-24 and the amino acid type at C-3 influence such NO inhibitory activity. This activity was highest for an N-Boc-protected neutral aliphatic amino acid derivative of 24R-OTS (5a), which performed better than even hydrocortisone sodium succinate in vitro. Compound 5a was also able to markedly suppress the LPS-induced upregulation of TNF-α, IL-6, iNOS, and COX-2 via the NF-κB and MAPK pathways. This suggests that OTS derivatives may be valuable anti-inflammatory compounds worthy of further preclinical evaluation.


Assuntos
Anti-Inflamatórios/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Ginsenosídeos/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Ciclo-Oxigenase 2/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ginsenosídeos/síntese química , Ginsenosídeos/química , Interleucina-6/antagonistas & inibidores , Interleucina-6/metabolismo , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
17.
Exp Cell Res ; 394(1): 112153, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32589888

RESUMO

Wide peritoneal metastasis is the cause of the highest lethality of ovarian cancer in gynecologic malignancies. Ascites play a key role in ovarian cancer metastasis, but involved mechanism is uncertain. Here, we performed a quantitative proteomics of ascites, and found that collagen type I alpha 1 (COL1A1) was notably elevated in ascites from epithelial ovarian cancer patients compared to normal peritoneal fluids, and verified that elevated COL1A1 was mainly originated from fibroblasts. COL1A1 promoted migration and invasion of ovarian cancer cells, but such effects were partially eliminated by COL1A1 antibodies. Intraperitoneally injected COL1A1 accelerated intraperitoneal metastasis of ovarian cancer xenograft in NOD/SCID mice. Further, COL1A1 activated downstream AKT phosphorylation by binding to membrane surface receptor integrin ß1 (ITGB1). Knockdown or blockage of ITGB1 reversed COL1A1 enhanced migration and invasion in ovarian cancer cells. Conversely, ovarian cancer ascites and fibrinogen promoted fibroblasts to secrete COL1A1. Elevated fibrinogen in ascites might be associated with increased vascular permeability induced by ovarian cancer. Our findings suggest that microenvironment remodeled by tumor cells and stromal cells promotes fibroblasts to secrete COL1A1 and facilitates the metastasis of ovarian cancer, which may provide a new approach for ovarian cancer therapeutics.


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Metástase Neoplásica/patologia , Neoplasias Ovarianas/patologia , Microambiente Tumoral , Animais , Carcinoma Epitelial do Ovário/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Humanos , Camundongos Endogâmicos NOD , Neoplasias Ovarianas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Estromais/metabolismo , Microambiente Tumoral/efeitos dos fármacos
18.
Am J Respir Crit Care Med ; 202(5): 717-729, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32543879

RESUMO

Rationale: Respiratory syncytial virus (RSV) is the leading cause of childhood respiratory infections worldwide; however, no vaccine is available, and treatment options are limited. Identification of host factors pivotal to viral replication may inform the development of novel therapies, prophylaxes, or diagnoses.Objectives: To identify host factors involved in RSV replication and to evaluate their potential for disease management.Methods: A gain-of-function screening was performed on the basis of a genome-wide human complementary DNA library screen for host factors involved in RSV replication. The antiviral mechanism of CXCL4 (chemokine [C-X-C motif] ligand 4) was analyzed. Its clinical role was evaluated via nasopharyngeal aspirates and plasma samples from patients with RSV infection and different disease severities.Measurements and Main Results: Forty-nine host factors restricting RSV replication were identified by gain-of-function screening, with CXCL4 showing the strongest antiviral effect, which was secretion dependent. CXCL4 blocked viral attachment through binding to the RSV main receptor heparan sulfate, instead of through interacting with RSV surface proteins. Intranasal pretreatment with CXCL4 alleviated inflammation in RSV-infected mice, as shown by decreased concentrations of tumor necrosis factor and viral load in BAL fluid samples as well as by viral nucleocapsid protein histological staining in lungs. Compared with non-RSV infections, RSV infections induced elevated CXCL4 concentrations both in plasma and airway samples from mice and pediatric patients. The airway CXCL4 concentration was correlated with viral load and disease severity in patients (P < 0.001).Conclusions: Our results suggest that CXCL4 is an RSV restriction factor that can block viral entry and serve as an indicator of clinical severity in RSV infections.


Assuntos
Antivirais/uso terapêutico , Quimiocinas CXC/metabolismo , Infecções por Vírus Respiratório Sincicial/metabolismo , Vírus Sincicial Respiratório Humano/genética , Biomarcadores/metabolismo , Pré-Escolar , DNA Viral/análise , Feminino , Humanos , Lactente , Recém-Nascido , Ligantes , Masculino , Infecções por Vírus Respiratório Sincicial/diagnóstico , Infecções por Vírus Respiratório Sincicial/virologia , Índice de Gravidade de Doença
19.
Nature ; 583(7818): 830-833, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32380511

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of coronavirus disease 2019 (COVID-19), which has become a public health emergency of international concern1. Angiotensin-converting enzyme 2 (ACE2) is the cell-entry receptor for severe acute respiratory syndrome coronavirus (SARS-CoV)2. Here we infected transgenic mice that express human ACE2 (hereafter, hACE2 mice) with SARS-CoV-2 and studied the pathogenicity of the virus. We observed weight loss as well as virus replication in the lungs of hACE2 mice infected with SARS-CoV-2. The typical histopathology was interstitial pneumonia with infiltration of considerable numbers of macrophages and lymphocytes into the alveolar interstitium, and the accumulation of macrophages in alveolar cavities. We observed viral antigens in bronchial epithelial cells, macrophages and alveolar epithelia. These phenomena were not found in wild-type mice infected with SARS-CoV-2. Notably, we have confirmed the pathogenicity of SARS-CoV-2 in hACE2 mice. This mouse model of SARS-CoV-2 infection will be valuable for evaluating antiviral therapeutic agents and vaccines, as well as understanding the pathogenesis of COVID-19.


Assuntos
Betacoronavirus/patogenicidade , Infecções por Coronavirus/patologia , Infecções por Coronavirus/virologia , Pulmão/patologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/patologia , Pneumonia Viral/virologia , Transgenes , Enzima de Conversão de Angiotensina 2 , Animais , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Betacoronavirus/imunologia , Betacoronavirus/metabolismo , Brônquios/patologia , Brônquios/virologia , COVID-19 , Infecções por Coronavirus/imunologia , Modelos Animais de Doenças , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Imunoglobulina G/imunologia , Pulmão/imunologia , Pulmão/virologia , Linfócitos/imunologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Masculino , Camundongos , Camundongos Transgênicos , Pandemias , Pneumonia Viral/imunologia , Receptores de Complemento 3d/genética , Receptores de Complemento 3d/metabolismo , SARS-CoV-2 , Replicação Viral , Redução de Peso
20.
Biomed Pharmacother ; 125: 109984, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32066042

RESUMO

Melanoma is a life-threatening cancer with limited treatments. Retinoic acid-inducible gene I (RIG-I) is a cytosolic pattern recognition receptor (PRR) crucial to RNA virus sensing, interferon production, and tumor suppression. Quercetin, a natural flavonoid, has particularly therapeutic interests to prevent and treat cancer, for its pharmacological effects against oxidant, inflammation, and angiogenesis. Quercetin was investigated for its anti-melanoma activity and potential mechanisms in this study. We found that quercetin inhibited mouse melanoma growth in vivo, and suppressed proliferation and promoted apoptosis of both B16 and A375 cells in vitro. Quercetin upregulated IFN-α and IFN-ß expression through activating RIG-I promoter in B16 cells. The induction of IFN-α and IFN-ß, which could be severely impaired by silencing RIG-I induced interferon stimulated genes (ISGs). Moreover, RIG-I likely amplifies antitumor effects by activating signal transduction and activator of transcription 1 (STAT1) in the IFN-JAK-STAT pathway in an autocrine and paracrine manner. Our study provided novel insights regarding biological and anti-proliferative activities of quercetin against melanoma, and we identified RIG-I as a potential target in anti-tumor therapies.


Assuntos
Proteína DEAD-box 58/metabolismo , Interferon Tipo I/metabolismo , Melanoma/metabolismo , Quercetina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Proteína DEAD-box 58/genética , Modelos Animais de Doenças , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica , Humanos , Melanoma/tratamento farmacológico , Melanoma/etiologia , Melanoma/patologia , Melanoma Experimental , Camundongos , Regiões Promotoras Genéticas , Receptores Imunológicos , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA