Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Optica ; 9(5): 532-544, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35968259

RESUMO

Near-infrared (NIR) fluorescence lifetime imaging (FLI) provides a unique contrast mechanism to monitor biological parameters and molecular events in vivo. Single-photon avalanche diode (SPAD) cameras have been recently demonstrated in FLI microscopy (FLIM) applications, but their suitability for in vivo macroscopic FLI (MFLI) in deep tissues remains to be demonstrated. Herein, we report in vivo NIR MFLI measurement with SwissSPAD2, a large time-gated SPAD camera. We first benchmark its performance in well-controlled in vitro experiments, ranging from monitoring environmental effects on fluorescence lifetime, to quantifying Förster resonant energy transfer (FRET) between dyes. Next, we use it for in vivo studies of target-drug engagement in live and intact tumor xenografts using FRET. Information obtained with SwissSPAD2 was successfully compared to that obtained with a gated intensified charge-coupled device (ICCD) camera, using two different approaches. Our results demonstrate that SPAD cameras offer a powerful technology for in vivo preclinical applications in the NIR window.

2.
Commun Biol ; 5(1): 407, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501466

RESUMO

Epithelial-mesenchymal Transition (EMT) is a multi-step process that involves cytoskeletal rearrangement. Here, developing and using an image quantification tool, Statistical Parametrization of Cell Cytoskeleton (SPOCC), we have identified an intermediate EMT state with a specific cytoskeletal signature. We have been able to partition EMT into two steps: (1) initial formation of transverse arcs and dorsal stress fibers and (2) their subsequent conversion to ventral stress fibers with a concurrent alignment of fibers. Using the Orientational Order Parameter (OOP) as a figure of merit, we have been able to track EMT progression in live cells as well as characterize and quantify their cytoskeletal response to drugs. SPOCC has improved throughput and is non-destructive, making it a viable candidate for studying a broad range of biological processes. Further, owing to the increased stiffness (and by inference invasiveness) of the intermediate EMT phenotype compared to mesenchymal cells, our work can be instrumental in aiding the search for future treatment strategies that combat metastasis by specifically targeting the fiber alignment process.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Citoesqueleto , Transição Epitelial-Mesenquimal/fisiologia , Humanos , Neoplasias Pulmonares/genética , Microtúbulos , Fenótipo
3.
Biophys Rev (Melville) ; 3(4): 041304, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38505516

RESUMO

Actin, a primary component of the cell cytoskeleton can have multiple isoforms, each of which can have specific properties uniquely suited for their purpose. These monomers are then bound together to form polymeric filaments utilizing adenosine triphosphate hydrolysis as a source of energy. Proteins, such as Arp2/3, VASP, formin, profilin, and cofilin, serve important roles in the polymerization process. These filaments can further be linked to form stress fibers by proteins called actin-binding proteins, such as α-actinin, myosin, fascin, filamin, zyxin, and epsin. These stress fibers are responsible for mechanotransduction, maintaining cell shape, cell motility, and intracellular cargo transport. Cancer metastasis, specifically epithelial mesenchymal transition (EMT), which is one of the key steps of the process, is accompanied by the formation of thick stress fibers through the Rho-associated protein kinase, MAPK/ERK, and Wnt pathways. Recently, with the advent of "field cancerization," pre-malignant cells have also been demonstrated to possess stress fibers and related cytoskeletal features. Analytical methods ranging from western blot and RNA-sequencing to cryo-EM and fluorescent imaging have been employed to understand the structure and dynamics of actin and related proteins including polymerization/depolymerization. More recent methods involve quantifying properties of the actin cytoskeleton from fluorescent images and utilizing them to study biological processes, such as EMT. These image analysis approaches exploit the fact that filaments have a unique structure (curvilinear) compared to the noise or other artifacts to separate them. Line segments are extracted from these filament images that have assigned lengths and orientations. Coupling such methods with statistical analysis has resulted in development of a new reporter for EMT in lung cancer cells as well as their drug responses.

4.
Cell Rep ; 35(8): 109181, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-34038737

RESUMO

Cancer immunotherapy focuses on inhibitors of checkpoint proteins, such as programmed death ligand 1 (PD-L1). Unlike RAS-mutated lung cancers, EGFR mutant tumors have a generally low response to immunotherapy. Because treatment outcomes vary by EGFR allele, intrinsic and microenvironmental factors may be involved. Among all non-immunological signaling pathways surveyed in patients' datasets, EGFR signaling is best associated with high PD-L1. Correspondingly, active EGFRs stabilize PD-L1 transcripts and depletion of PD-L1 severely inhibits EGFR-driven tumorigenicity and metastasis in mice. The underlying mechanisms involve the recruitment of phospholipase C-γ1 (PLC-γ1) to a cytoplasmic motif of PD-L1, which enhances PLC-γ1 activation by EGFR. Once stimulated, PLC-γ1 activates calcium flux, Rho GTPases, and protein kinase C, collectively promoting an aggressive phenotype. Anti-PD-L1 antibodies can inhibit these intrinsic functions of PD-L1. Our results portray PD-L1 as a molecular amplifier of EGFR signaling and improve the understanding of the resistance of EGFR+ tumors to immunotherapy.


Assuntos
Antígeno B7-H1/metabolismo , Fosfolipases Tipo C/metabolismo , Testes de Carcinogenicidade , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Humanos , Neoplasias Pulmonares/patologia
5.
Int J Mol Sci ; 22(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922487

RESUMO

Weak electromagnetic fields (WEF) alter Ca2+ handling in skeletal muscle myotubes. Owing to the involvement of Ca2+ in muscle development, we investigated whether WEF affects fusion of myoblasts in culture. Rat primary myoblast cultures were exposed to WEF (1.75 µT, 16 Hz) for up to six days. Under control conditions, cell fusion and creatine kinase (CK) activity increased in parallel and peaked at 4-6 days. WEF enhanced the extent of fusion after one and two days (by ~40%) vs. control, but not thereafter. Exposure to WEF also enhanced CK activity after two days (almost four-fold), but not afterwards. Incorporation of 3H-thymidine into DNA was enhanced by one-day exposure to WEF (~40%), indicating increased cell replication. Using the potentiometric fluorescent dye di-8-ANEPPS, we found that exposure of cells to 150 mM KCl resulted in depolarization of the cell membrane. However, prior exposure of cells to WEF for one day followed by addition of KCl resulted in hyperpolarization of the cell membrane. Acute exposure of cells to WEF also resulted in hyperpolarization of the cell membrane. Twenty-four hour incubation of myoblasts with gambogic acid, an inhibitor of the inward rectifying K+ channel 2.1 (Kir2.1), did not affect cell fusion, WEF-mediated acceleration of fusion or hyperpolarization. These data demonstrate that WEF accelerates fusion of myoblasts, resulting in myotube formation. The WEF effect is associated with hyperpolarization but WEF does not appear to mediate its effects on fusion by activating Kir2.1 channels.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Campos Eletromagnéticos , Músculo Esquelético/fisiologia , Mioblastos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Diferenciação Celular , Fusão Celular , Células Cultivadas , Potenciais da Membrana , Músculo Esquelético/citologia , Mioblastos/citologia , Ratos , Ratos Sprague-Dawley
6.
Proc Natl Acad Sci U S A ; 115(24): E5487-E5496, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29848629

RESUMO

Signal recognition particle (SRP) is a universally conserved targeting machine that mediates the targeted delivery of ∼30% of the proteome. The molecular mechanism by which eukaryotic SRP achieves efficient and selective protein targeting remains elusive. Here, we describe quantitative analyses of completely reconstituted human SRP (hSRP) and SRP receptor (SR). Enzymatic and fluorescence analyses showed that the ribosome, together with a functional signal sequence on the nascent polypeptide, are required to activate SRP for rapid recruitment of the SR, thereby delivering translating ribosomes to the endoplasmic reticulum. Single-molecule fluorescence spectroscopy combined with cross-complementation analyses reveal a sequential mechanism of activation whereby the ribosome unlocks the hSRP from an autoinhibited state and primes SRP to sample a variety of conformations. The signal sequence further preorganizes the mammalian SRP into the optimal conformation for efficient recruitment of the SR. Finally, the use of a signal sequence to activate SRP for receptor recruitment is a universally conserved feature to enable efficient and selective protein targeting, and the eukaryote-specific components confer upon the mammalian SRP the ability to sense and respond to ribosomes.


Assuntos
Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico/fisiologia , Ribossomos/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Retículo Endoplasmático/metabolismo , Escherichia coli/metabolismo , Humanos , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Biossíntese de Proteínas/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo
7.
Chembiochem ; 19(12): 1232-1238, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29341391

RESUMO

The use of light to control the expression of genes and the activity of proteins is a rapidly expanding field. Whereas many of these approaches use fusion between a light-activable protein and the protein of interest to control the activity of the latter, it is also possible to control the activity of a protein by uncaging a specific ligand. In that context, controlling the activation of a protein fused to the modified estrogen receptor (ERT) by uncaging its ligand cyclofen-OH has emerged as a generic and versatile method to control the activation of proteins quantitatively, quickly, and locally in a live organism. We present that approach and its uses in a variety of physiological contexts.


Assuntos
Optogenética/métodos , Compostos Policíclicos/metabolismo , Receptores de Estrogênio/genética , Animais , Regulação da Expressão Gênica/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ligantes , Compostos Policíclicos/química , Receptores de Estrogênio/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
Proc Natl Acad Sci U S A ; 114(41): E8585-E8594, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973888

RESUMO

Proper localization of proteins to target membranes is a fundamental cellular process. How the nature and dynamics of the targeting complex help guide substrate proteins to the target membrane is not understood for most pathways. Here, we address this question for the conserved ATPase guided entry of tail-anchored protein 3 (Get3), which targets the essential class of tail-anchored proteins (TAs) to the endoplasmic reticulum (ER). Single-molecule fluorescence spectroscopy showed that, contrary to previous models of a static closed Get3•TA complex, Get3 samples open conformations on the submillisecond timescale upon TA binding, generating a fluctuating "protean clamp" that stably traps the substrate. Point mutations at the ATPase site bias Get3 toward closed conformations, uncouple TA binding from induced Get3•Get4/5 disassembly, and inhibit the ER targeting of the Get3•TA complex. These results demonstrate an essential role of substrate-induced Get3 dynamics in driving TA targeting to the membrane, and reveal a tightly coupled channel of communication between the TA-binding site, ATPase site, and effector interaction surfaces of Get3. Our results provide a precedent for large-scale dynamics in a substrate-bound chaperone, which provides an effective mechanism to retain substrate proteins with high affinity while also generating functional switches to drive vectorial cellular processes.


Assuntos
Adenosina Trifosfatases/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Fatores de Troca do Nucleotídeo Guanina/química , Modelos Moleculares , Chaperonas Moleculares , Conformação Molecular , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química
9.
Sci Rep ; 7(1): 9195, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28835665

RESUMO

The zebrafish has become an increasingly popular and valuable cancer model over the past few decades. While most zebrafish cancer models are generated by expressing mammalian oncogenes under tissue-specific promoters, here we describe a method that allows for the precise optical control of oncogene expression in live zebrafish. We utilize this technique to transiently or constitutively activate a typical human oncogene, kRASG12V, in zebrafish embryos and investigate the developmental and tumorigenic phenotypes. We demonstrate the spatiotemporal control of oncogene expression in live zebrafish, and characterize the different tumorigenic probabilities when kRASG12V is expressed transiently or constitutively at different developmental stages. Moreover, we show that light can be used to activate oncogene expression in selected tissues and single cells without tissue-specific promoters. Our work presents a novel approach to initiate and study cancer in zebrafish, and the high spatiotemporal resolution of this method makes it a valuable tool for studying cancer initiation from single cells.


Assuntos
Transformação Celular Neoplásica , Neoplasias/etiologia , Neoplasias/patologia , Animais , Biomarcadores Tumorais , Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Mutação , Oncogenes , Proteínas Proto-Oncogênicas p21(ras)/genética , Ativação Transcricional/efeitos da radiação , Peixe-Zebra
10.
J Phys Chem B ; 116(36): 11370-8, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22900542

RESUMO

We developed a new peptide, natural phytochelatin (PC), which tightly binds to CdSe/ZnS quantum dots' (QDs) surfaces and renders them water-soluble. Coating QDs with this flexible and all-hydrophilic peptide offers high colloidal stability, adds only 0.8-0.9 nm to the radius of the particles (as compared to their original inorganic radius), preserves very high quantum yield (QY) in water, and affords facile bioconjugation with various functional groups. We demonstrate specific targeting (with minimal nonspecific binding) of such fluorescein-conjugated QDs to ScFv-fused mouse prion protein expressed in live N2A cells. We also demonstrated homogeneous in vivo biodistribution with no significant toxicity in live zebrafish.


Assuntos
Compostos de Cádmio/química , Peptídeos/química , Pontos Quânticos , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química , Animais , Compostos de Cádmio/farmacocinética , Linhagem Celular Tumoral , Camundongos , Imagem Molecular , Tamanho da Partícula , Peptídeos/farmacocinética , Compostos de Selênio/farmacocinética , Solubilidade , Sulfetos/farmacocinética , Distribuição Tecidual , Água/química , Peixe-Zebra , Compostos de Zinco/farmacocinética
11.
Clin Chem ; 58(4): 707-16, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22266381

RESUMO

BACKGROUND: Single-molecule detection (SMD) technologies are well suited for clinical diagnostic applications by offering the prospect of minimizing precious patient sample requirements while maximizing clinical information content. Not yet available, however, is a universal SMD-based platform technology that permits multiplexed detection of both nucleic acid and protein targets and that is suitable for automation and integration into the clinical laboratory work flow. METHODS: We have used a sensitive, specific, quantitative, and cost-effective homogeneous SMD method that has high single-well multiplexing potential and uses alternating-laser excitation (ALEX) fluorescence-aided molecule sorting extended to 4 colors (4c-ALEX). Recognition molecules are tagged with different-color fluorescence dyes, and coincident confocal detection of ≥2 colors constitutes a positive target-detection event. The virtual exclusion of the majority of sources of background noise eliminates washing steps. Sorting molecules with multidimensional probe stoichiometries (S) and single-molecule fluorescence resonance energy transfer efficiencies (E) allows differentiation of numerous targets simultaneously. RESULTS: We show detection, differentiation, and quantification-in a single well-of (a) 25 different fluorescently labeled DNAs; (b) 8 bacterial genetic markers, including 3 antibiotic drug-resistance determinants found in 11 septicemia-causing Staphylococcus and Enterococcus strains; and (c) 6 tumor markers present in blood. CONCLUSIONS: The results demonstrate assay utility for clinical molecular diagnostic applications by means of multiplexed detection of nucleic acids and proteins and suggest potential uses for early diagnosis of cancer and infectious and other diseases, as well as for personalized medicine. Future integration of additional technology components to minimize preanalytical sample manipulation while maximizing throughput should allow development of a user-friendly ("sample in, answer out") point-of-care platform for next-generation medical diagnostic tests that offer considerable savings in costs and patient sample.


Assuntos
Bioensaio/métodos , Biomarcadores Tumorais/sangue , DNA/análise , Enterococcus/genética , Transferência Ressonante de Energia de Fluorescência/métodos , Marcadores Genéticos , Staphylococcus/genética , DNA/genética , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Corantes Fluorescentes , Genes Bacterianos , Humanos , Lasers , Sensibilidade e Especificidade
12.
Methods Mol Biol ; 751: 553-63, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21674354

RESUMO

Labeling of cell surface receptors in living cells can be achieved using antibody-conjugated semiconductor quantum dots (QDs). The inherent photostable property of QDs can be exploited for understanding the arrangement and distribution of receptors in the plasma membrane. We describe herein methods that allow conjugation of antibodies to QDs in a single step without the formation of side products. This protocol can be adapted universally for any type of QD structure with a coating of free amino groups.


Assuntos
Anticorpos/química , Receptores ErbB/química , Pontos Quânticos , Coloração e Rotulagem/métodos , Aminas/química , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Benzaldeídos/química , Linhagem Celular Tumoral , Sobrevivência Celular , Receptores ErbB/imunologia , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Camundongos , Microscopia de Fluorescência , Imagem Molecular , Dados de Sequência Molecular , Peptídeos/química , Succinimidas/química
13.
Bioconjug Chem ; 22(6): 1006-11, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21553893

RESUMO

We present a robust scheme for preparation of semiconductor quantum dots (QDs) and cognate partners in a conjugation ready format. Our approach is based on bis-aryl hydrazone bond formation mediated by aromatic aldehyde and hydrazinonicotinate acetone hydrazone (HyNic) activated peptide coated quantum dots. We demonstrate controlled preparation of antibody--QD bioconjugates for specific targeting of endogenous epidermal growth factor receptors in breast cancer cells and for single QD tracking of transmembrane proteins via an extracellular epitope. The same approach was also used for optical mapping of RNA polymerases bound to combed genomic DNA in vitro.


Assuntos
Aldeídos/química , Materiais Revestidos Biocompatíveis/química , Hidrazinas/química , Imagem Molecular/métodos , Peptídeos/química , Pontos Quânticos , Animais , Anticorpos/imunologia , Células CHO , Linhagem Celular Tumoral , Sobrevivência Celular , Materiais Revestidos Biocompatíveis/síntese química , Cricetinae , Cricetulus , Receptores ErbB/imunologia , Feminino , Células HeLa , Humanos , Teste de Materiais , Estrutura Molecular , Peptídeos/síntese química , Semicondutores
14.
Bioconjug Chem ; 20(8): 1474-81, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19642689

RESUMO

The present work demonstrates the use of small bivalent engineered antibody fragments, cys-diabodies, for biological modification of nanoscale particles such as quantum dots (Qdots) for detection of target antigens. Novel bioconjugated quantum dots known as immunoQdots (iQdots) were developed by thiol-specific oriented coupling of tumor specific cys-diabodies, at a position away from the antigen binding site to amino PEG CdSe/ZnS Qdots. Initially, amino PEG Qdot 655 were coupled with reduced anti-HER2 cys-diabody by amine-sulfhydryl-reactive linker [N-ε-maleimidocaproyloxy] succinimide ester (EMCS) to produce anti-HER2 iQdot 655. Spectral characterization of the conjugate revealed that the spectrum was symmetrical and essentially identical to unconjugated Qdot. Specific receptor binding activity of anti-HER2 iQdot 655 was confirmed by flow cytometry on HER2 positive and negative cells. Immunofluorescence results showed homogeneous surface labeling of the cell membrane with Qdot 655 conjugate. In addition, cys-diabodies specific for HER2, as well as prostate stem cell antigen (PSCA), were conjugated successfully with amino PEG Qdot 800. All of these iQdots retain the photoluminescence properties of the unconjugated Qdot 800 as well as the antigen binding specificity of the cys-diabody as demonstrated by flow cytometry. Simultaneous detection of two tumor antigens on LNCaP/PSCA prostate cancer cells (which express PSCA and HER2) in culture was possible using two iQdots, anti-HER2 iQdot 655 and anti-PSCA iQdot 800. Thus, these iQdots are potentially useful as optical probes for sensitive, multiplexed detection of surface markers on tumor cells. The present thiol-specific conjugation method demonstrates a general approach for site-specific oriented coupling of cys-diabodies to a wide variety of nanoparticles without disturbing the antigen binding site and maintaining small size compared to intact antibody.


Assuntos
Anticorpos/química , Biomarcadores Tumorais/análise , Imunoconjugados/química , Neoplasias/diagnóstico , Pontos Quânticos , Animais , Anticorpos/imunologia , Anticorpos/isolamento & purificação , Compostos de Cádmio/química , Linhagem Celular Tumoral , Humanos , Imunoconjugados/imunologia , Luminescência , Camundongos , Polietilenoglicóis/química , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Compostos de Selênio/química , Sulfetos/química , Compostos de Zinco/química
15.
J Nucl Med ; 50(4): 493-6, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19289434

RESUMO

Nanotechnology is poised to transform research, prevention, and treatment of cancer through the development of novel diagnostic imaging methods and targeted therapies. In particular, the use of nanoparticles for imaging has gained considerable momentum in recent years. This review focuses on the growing contribution of quantum dots (QDs) for in vivo imaging in small-animal models. Fluorescent QDs, which are small nanocrystals (1-10 nm) made of inorganic semiconductor materials, possess several unique optical properties best suited for in vivo imaging. Because of quantum confinement effects, the emission color of QDs can be precisely tuned by size from the ultraviolet to the near-infrared. QDs are extremely bright and photostable. They are also characterized by a wide absorption band and a narrow emission band, which makes them ideal for multiplexing. Finally, the large surface area of QDs permits the assembly of various contrast agents to design multimodality imaging probes. To date, biocompatible QD conjugates have been used successfully for sentinel lymph node mapping, tumor targeting, tumor angiogenesis imaging, and metastatic cell tracking. Here we consider these novel breakthroughs in light of their potential clinical applications and discuss how QDs might offer a suitable platform to unite disparate imaging modalities and provide information along a continuum of length scales.


Assuntos
Diagnóstico por Imagem/métodos , Diagnóstico por Imagem/veterinária , Aumento da Imagem/métodos , Técnicas de Sonda Molecular/veterinária , Pontos Quânticos , Animais , Diagnóstico por Imagem/tendências , Modelos Animais , Técnicas de Sonda Molecular/tendências
16.
Small ; 5(1): 126-34, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19051182

RESUMO

This study evaluates the influence of particle size, PEGylation, and surface coating on the quantitative biodistribution of near-infrared-emitting quantum dots (QDs) in mice. Polymer- or peptide-coated 64Cu-labeled QDs 2 or 12 nm in diameter, with or without polyethylene glycol (PEG) of molecular weight 2000, are studied by serial micropositron emission tomography imaging and region-of-interest analysis, as well as transmission electron microscopy and inductively coupled plasma mass spectrometry. PEGylation and peptide coating slow QD uptake into the organs of the reticuloendothelial system (RES), liver and spleen, by a factor of 6-9 and 2-3, respectively. Small particles are in part renally excreted. Peptide-coated particles are cleared from liver faster than physical decay alone would suggest. Renal excretion of small QDs and slowing of RES clearance by PEGylation or peptide surface coating are encouraging steps toward the use of modified QDs for imaging living subjects.


Assuntos
Polietilenoglicóis/química , Pontos Quânticos , Animais , Fígado/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão , Peso Molecular , Tamanho da Partícula , Peptídeos/química , Tomografia por Emissão de Pósitrons , Baço/metabolismo , Propriedades de Superfície
17.
Bioconjug Chem ; 19(3): 786-91, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18275130

RESUMO

Methods for chemical modifications of proteins have been crucial for the advancement of proteomics. In particular, site-specific covalent labeling of proteins with fluorophores and other moieties has permitted the development of a multitude of assays for proteome analysis. A common approach for such a modification is solvent-accessible cysteine labeling using thiol-reactive dyes. Cysteine is very attractive for site-specific conjugation due to its relative rarity throughout the proteome and the ease of its introduction into a specific site along the protein's amino acid chain. This is achieved by site-directed mutagenesis, most often without perturbing the protein's function. Bottlenecks in this reaction, however, include the maintenance of reactive thiol groups without oxidation before the reaction, and the effective removal of unreacted molecules prior to fluorescence studies. Here, we describe an efficient, specific, and rapid procedure for cysteine labeling starting from well-reduced proteins in the solid state. The efficacy and specificity of the improved procedure are estimated using a variety of single-cysteine proteins and thiol-reactive dyes. Based on UV/vis absorbance spectra, coupling efficiencies are typically in the range 70-90%, and specificities are better than approximately 95%. The labeled proteins are evaluated using fluorescence assays, proving that the covalent modification does not alter their function. In addition to maleimide-based conjugation, this improved procedure may be used for other thiol-reactive conjugations such as haloacetyl, alkyl halide, and disulfide interchange derivatives. This facile and rapid procedure is well suited for high throughput proteome analysis.


Assuntos
Cisteína/química , Proteínas/química , Sulfato de Amônio/química , Corantes , Eletroforese em Gel de Poliacrilamida , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Corantes Fluorescentes , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Indicadores e Reagentes , Antígenos de Histocompatibilidade Menor , Modelos Moleculares , Fatores de Iniciação de Peptídeos/genética , Plasmídeos/química , Plasmídeos/genética , Shewanella/química , Espectrofotometria Ultravioleta
18.
J Am Chem Soc ; 129(21): 6865-71, 2007 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-17477530

RESUMO

Peptide-coated quantum dot-photosensitizer conjugates were developed using novel covalent conjugation strategies on peptides which overcoat quantum dots (QDs). Rose bengal and chlorin e6, photosensitizers (PSs) that generate singlet oxygen in high yield, were covalently attached to phytochelatin-related peptides. The photosensitizer-peptide conjugates were subsequently used to overcoat green- and red-emitting CdSe/CdS/ZnS nanocrystals. Generation of singlet oxygen could be achieved via indirect excitation through Förster (fluorescence) resonance energy transfer (FRET) from the nanocrystals to PSs, or by direct excitation of the PSs. In the latter case, by using two color excitations, the conjugate could be simultaneously used for fluorescence imaging and singlet oxygen generation. Singlet oxygen quantum yields as high as 0.31 were achieved using 532-nm excitation wavelengths.


Assuntos
Peptídeos/química , Fármacos Fotossensibilizantes/química , Pontos Quânticos , Oxigênio Singlete/química , Clorofilídeos , Transferência Ressonante de Energia de Fluorescência , Glutationa/química , Fitoquelatinas , Porfirinas/química , Rosa Bengala/química
20.
IEEE Trans Nanobioscience ; 5(4): 231-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17181021

RESUMO

Quantum dots (QDOTs) have been widely recognized by the scientific community and the biotechnology industry, as witnessed by the exponential growth of this field in the past several years. We describe the synthesis and characterization of visible and near infrared QDots--a critical step for engineering organic molecules like proteins and peptides for building nanocomposite materials with multifunctional properties suitable for biological applications.


Assuntos
Materiais Revestidos Biocompatíveis/química , Técnicas de Sonda Molecular , Peptídeos/química , Peptídeos/metabolismo , Pontos Quânticos , Espectrofotometria Infravermelho/métodos , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA