Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(25): e2301753, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37382161

RESUMO

Renal fibrosis is a common characteristic of various chronic kidney diseases (CKDs) driving the loss of renal function. During this pathological process, persistent injury to renal tubular epithelial cells and activation of fibroblasts chiefly determine the extent of renal fibrosis. In this study, the role of tumor protein 53 regulating kinase (TP53RK) in the pathogenesis of renal fibrosis and its underlying mechanisms is investigated. TP53RK is upregulated in fibrotic human and animal kidneys with a positive correlation to kidney dysfunction and fibrotic markers. Interestingly, specific deletion of TP53RK either in renal tubule or in fibroblasts in mice can mitigate renal fibrosis in CKD models. Mechanistic investigations reveal that TP53RK phosphorylates baculoviral IAP repeat containing 5 (Birc5) and facilitates its nuclear translocation; enhanced Birc5 displays a profibrotic effect possibly via activating PI3K/Akt and MAPK pathways. Moreover, pharmacologically inhibiting TP53RK and Birc5 using fusidic acid (an FDA-approved antibiotic) and YM-155(currently in clinical phase 2 trials) respectively both ameliorate kidney fibrosis. These findings demonstrate that activated TP53RK/Birc5 signaling in renal tubular cells and fibroblasts alters cellular phenotypes and drives CKD progression. A genetic or pharmacological blockade of this axis serves as a potential strategy for treating CKDs.


Assuntos
Neoplasias , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Fibrose , Fosfatidilinositol 3-Quinases , Proteínas Quinases , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/metabolismo
2.
EMBO Mol Med ; 15(2): e16581, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36629048

RESUMO

Mitochondria comprise the central metabolic hub of cells and their imbalance plays a pathogenic role in chronic kidney disease (CKD). Here, we studied Lon protease 1 (LONP1), a major mitochondrial protease, as its role in CKD pathogenesis is unclear. LONP1 expression was decreased in human patients and mice with CKD, and tubular-specific Lonp1 overexpression mitigated renal injury and mitochondrial dysfunction in two different models of CKD, but these outcomes were aggravated by Lonp1 deletion. These results were confirmed in renal tubular epithelial cells in vitro. Mechanistically, LONP1 downregulation caused mitochondrial accumulation of the LONP1 substrate, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), which disrupted mitochondrial function and further accelerated CKD progression. Finally, computer-aided virtual screening was performed, which identified a novel LONP1 activator. Pharmacologically, the LONP1 activator attenuated renal fibrosis and mitochondrial dysfunction. Collectively, these results imply that LONP1 is a promising therapeutic target for treating CKD.


Assuntos
Protease La , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Proteases Dependentes de ATP/metabolismo , Células Epiteliais/metabolismo , Hidroximetilglutaril-CoA Sintase/metabolismo , Rim/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Protease La/metabolismo , Insuficiência Renal Crônica/metabolismo
3.
Free Radic Biol Med ; 194: 84-98, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403736

RESUMO

Cisplatin is one of the most effective chemotherapy drugs and is widely used for cancer treatment. However, its clinical use is limited by nephrotoxicity. Emerging findings suggested that both ferroptosis and mitochondrial dysfunction mediate cisplatin-induced nephrotoxicity. In the current study, a novel 3-phenylglutaric acid derivative 5-[[2-(4-methoxyphenoxy)-5-(trifluoromethyl)phenyl]amino]-5-oxo-3-phenylpentanoic acid (referred to as 84-B10) was found to play a protective role in cisplatin-induced acute kidney injury with no tumor promoting effects. A genome-wide transcriptome analysis indicated that the protective effect of 84-B10 might be dependent on antagonizing ferroptosis. In accordance, lipid peroxide accumulation and downregulation of key ferroptosis suppressors were reversed using 84-B10 treatment both in vivo and in vitro. In addition, 84-B10 inhibited cisplatin-induced mitochondrial damage and mitochondrial reactive oxygen species (mtROS) production and restored superoxide dismutases (SODs). Furthermore, 84-B10 showed similar therapeutic effects to MnTBAP (a cell-permeable SOD mimetic) in eliminating mtROS, restoring mitochondrial homeostasis, and inhibiting ferroptosis under cisplatin challenge. Comparable effects of 84-B10 and liproxstatin-1 in ameliorating cisplatin-induced ferroptosis were observed. However, liproxstatin-1 failed to prevent mitochondrial dysfunction. These data indicated that mtROS might act upstream of cisplatin-induced tubular ferroptosis. Taken together, the novel 3-phenylglutaric acid derivative 84-B10 showed therapeutic potential against cisplatin-induced nephrotoxicity possibly by restoring mitochondria homeostasis and inhibiting mtROS-induced ferroptosis, which suggests the potential use of 84-B10 in preventing and treating cisplatin-nephrotoxicity.


Assuntos
Injúria Renal Aguda , Ferroptose , Humanos , Cisplatino/efeitos adversos , Linhagem Celular , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/patologia , Estresse Oxidativo
4.
Molecules ; 29(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38202741

RESUMO

Acute kidney injury (AKI) and chronic kidney disease (CKD) have become public health problems due to high morbidity and mortality. Currently, drugs recommended for patients with AKI or CKD are extremely limited, and candidates based on a new mechanism need to be explored. 84-B10 is a novel 3-phenylglutaric acid derivative that can activate the mitochondrial protease, Lon protease 1 (LONP1), and may protect against cisplatin-induced AKI and unilateral ureteral obstruction- or 5/6 nephrectomy [5/6Nx]-induced CKD model. Preclinical studies have shown that 84-B10 has a good therapeutic effect, low toxicity, and is a good prospect for further development. In the present study, the UHPLC-MS/MS method was first validated then applied to the pharmacokinetic study and tissue distribution of 84-B10 in rats. Physicochemical properties of 84-B10 were then acquired in silico. Based on these physicochemical and integral physiological parameters, a physiological based pharmacokinetic (PBPK) model was developed using the PK-Sim platform. The fitting accuracy was estimated with the obtained experimental data. Subsequently, the validated model was employed to predict the pharmacokinetic profiles in healthy and chronic kidney injury patients to evaluate potential clinical outcomes. Cmax in CKD patients was about 3250 ng/mL after a single dose of 84-B10 (0.41 mg/kg), and Cmax,ss was 1360 ng/mL after multiple doses. This study may serve in clinical dosage setting in the future.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Humanos , Animais , Ratos , Espectrometria de Massas em Tandem , Injúria Renal Aguda/tratamento farmacológico , Insuficiência Renal Crônica/tratamento farmacológico , Cisplatino , Endopeptidases , Proteínas Mitocondriais , Proteases Dependentes de ATP
5.
Clin Sci (Lond) ; 135(14): 1707-1726, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34255035

RESUMO

Acute kidney injury (AKI) is a known risk factor for the development of chronic kidney disease (CKD), with no satisfactory strategy to prevent the progression of AKI to CKD. Damage to the renal vascular system and subsequent hypoxia are common contributors to both AKI and CKD. Hypoxia-inducible factor (HIF) is reported to protect the kidney from acute ischemic damage and a novel HIF stabilizer, FG4592 (Roxadustat), has become available in the clinic as an anti-anemia drug. However, the role of FG4592 in the AKI-to-CKD transition remains elusive. In the present study, we investigated the role of FG4592 in the AKI-to-CKD transition induced by unilateral kidney ischemia-reperfusion (UIR). The results showed that FG4592, given to mice 3 days after UIR, markedly alleviated kidney fibrosis and enhanced renal vascular regeneration, possibly via activating the HIF-1α/vascular endothelial growth factor A (VEGFA)/VEGF receptor 1 (VEGFR1) signaling pathway and driving the expression of the endogenous antioxidant superoxide dismutase 2 (SOD2). In accordance with the improved renal vascular regeneration and redox balance, the metabolic disorders of the UIR mice kidneys were also attenuated by treatment with FG4592. However, the inflammatory response in the UIR kidneys was not affected significantly by FG4592. Importantly, in the kidneys of CKD patients, we also observed enhanced HIF-1α expression which was positively correlated with the renal levels of VEGFA and SOD2. Together, these findings demonstrated the therapeutic effect of the anti-anemia drug FG4592 in preventing the AKI-to-CKD transition related to ischemia and the redox imbalance.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Antioxidantes/farmacologia , Glicina/análogos & derivados , Isoquinolinas/farmacologia , Regeneração/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Glicina/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Preparações Farmacêuticas/metabolismo , Insuficiência Renal Crônica/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Ethnopharmacol ; 243: 112093, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31325602

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginseng (Panax ginseng C. A. Mey) has been widely used in Asian countries for thousands of years. It has auxiliary anticancer efficacy and its derived preparations (e.g. Shenmai injection) are prescribed for cancer patients as Traditional Chinese Medicines clinically in China. AIM OF THE STUDY: The involved adjuvant anticancer mechanisms of ginseng are still unknown. The present study evaluated the anti-cancer effect of total ginsenosides extract (TGS) and determined the anticancer mechanisms of TGS-induced cell death in human non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS: The anti-cancer effect of TGS was evaluated in NSCLC by cell proliferation assay. The autophagy flux induction of TGS were tested and validated by Western blot, immunofluorescence and transmission electron microscope. The mechanisms of TGS in inducing autophagic cell death were validated by Western blot, gene knockdown and quantitative real time PCR assay. RESULTS: We found TGS could induce cell death in concentration and time dependent manners, and the cell morphology of NSCLC changed from cobblestone shape to elongated spindle shape after treated with TGS. In the study of cell autophagy, we confirm that TGS could upregulate autophagy flux and induce autophagic cell death through activation endoplasmic reticulum stress. Further investigations demonstrated this process was mediated by the ATF4-CHOP-AKT1-mTOR axis in NSCLC cells. CONCLUSION: Our findings suggested that TGS could induce autophagic cell death in NSCLC cells through activation of endoplasmic reticulum stress, disclosing another characteristic of TGS-induced cell death and a novel mechanism of TGS and its derived preparations in clinical treatment of cancer patients.


Assuntos
Antineoplásicos/farmacologia , Morte Celular Autofágica/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ginsenosídeos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fator 4 Ativador da Transcrição/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fator de Transcrição CHOP/metabolismo
7.
J Proteome Res ; 18(6): 2643-2653, 2019 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-31094201

RESUMO

Metronomic chemotherapy, a relatively new dosing paradigm for anticancer therapy, is an alternative to traditional chemotherapy that uses maximal tolerated dose (MTD). Although these two dosing regimens both lead to tumor cell death, how cell metabolism is differentially affected during apoptosis remains elusive. Herein, we employed metabolomics to monitor the metabolic profiles of MCF-7 cells in response to the two dosing regimens that mimic MTD and MN treatments using a model chemotherapeutic drug, doxorubicin (Dox), and correlated the changes of metabolic genes examined by PCR array to integratively describe the reprogrammed metabolic patterns. We found glycolysis, amino acid, and nucleotide synthesis-associated metabolic pathways were activated in response to the MN treatment, whereas these pathways were inhibited in a pronounced way in response to the MTD treatment. Direct supplementation of key metabolites and pharmacological modulation of targeted metabolic enzymes can both regulate cell fates. Subsequently, we tested the combined use of MN dosing with targeted metabolic intervention using a normal cell line and found the combined treatment hardly affected its apoptotic rate. Our in vitro findings using MCF-7 and MCF-10A cells thus suggest the promising perspective of combining MN dosing of chemotherapeutic agents with metabolic modulation to selectively kill cancer cells rather than normal cells.


Assuntos
Administração Metronômica , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Proteoma/efeitos dos fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Proteínas de Neoplasias/genética , Proteoma/genética
8.
Kidney Blood Press Res ; 43(4): 1297-1309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30099449

RESUMO

BACKGROUND/AIMS: In clinic, excessive acetaminophen (APAP) can cause kidney damage with uncertain mechanisms. Recently, accumulating evidence demonstrated a pathogenic role of mitochondrial dysfunction in the kidney injury. Thus, in this study, rotenone, a mitochondrial complex I inhibitor, was applied to the mice with APAP-induced acute kidney injury to evaluate the effect of mitochondrial complex I inhibition on APAP nephrotoxicity. METHODS: After 3 days of rotenone pretreatment, mice were administered with APAP (300mg/kg) by intraperitoneal injection for 24 h. Then the kidney injury, inflammation, and oxidative stress were evaluated. RESULTS: APAP significantly enhanced the BUN, serum creatine, and cystatin C levels in line with a moderate alteration of renal morphology. Strikingly, rotenone treatment normalized BUN, serum creatinine, and cystatin C levels, as well as the kidney morphology. Meanwhile, APAP enhanced tubular injury markers of NGAL and KIM-1 by 347- and 5-fold at mRNA levels, respectively. By Western blotting, we confirmed a 15-fold increment of NGAL in APAP-exposed kidneys. Importantly, rotenone treatment largely normalized NGAL and KIM-1 levels and attenuated inflammatory response in APAP-treated mice. Similarly, rotenone treatment enhanced the expressions of SOD1-3 compared with APAP group in line with a significant suppression of kidney MDA content. Finally, we observed that inhibition of mitochondrial complex III failed to protect against APAP-induced nephrotoxicity. CONCLUSION: Mitochondrial complex I inhibitor rotenone protected kidneys against APAP-induced injury possibly via the inhibition of mitochondrial oxidative stress and inflammation.


Assuntos
Injúria Renal Aguda/prevenção & controle , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Rotenona/uso terapêutico , Acetaminofen/efeitos adversos , Injúria Renal Aguda/induzido quimicamente , Animais , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Camundongos , Substâncias Protetoras , Rotenona/farmacologia , Desacopladores/farmacologia , Desacopladores/uso terapêutico
9.
Acta Pharmacol Sin ; 39(3): 449-458, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28836581

RESUMO

The use of ginseng extract as an adjuvant for cancer treatment has been reported in both animal models and clinical applications, but its molecular mechanisms have not been fully elucidated. Mitomycin C (MMC), an anticancer antibiotic used as a first- or second-line regimen in the treatment for non-small cell lung carcinoma (NSCLC), causes serious adverse reactions when used alone. Here, by using both in vitro and in vivo experiments, we provide evidence for an optimal therapy for NSCLC with total ginsenosides extract (TGS), which significantly enhanced the MMC-induced cytotoxicity against NSCLC A549 and PC-9 cells in vitro when used in combination with relatively low concentrations of MMC. A NSCLC xenograft mouse model was used to confirm the in vivo synergistic effects of the combination of TGS with MMC. Further investigation revealed that TGS could significantly reverse MMC-induced S-phase cell cycle arrest and inhibit Rad51-mediated DNA damage repair, which was evidenced by the inhibitory effects of TGS on the levels of phospho-MEK1/2, phospho-ERK1/2 and Rad51 protein and the translocation of Rad51 from the cytoplasm to the nucleus in response to MMC. In summary, our results demonstrate that TGS could effectively enhance the cytotoxicity of MMC against NSCLC cells in vitro and in vivo, thereby revealing a novel adjuvant anticancer mechanism of TGS. Combined treatment with TGS and MMC can significantly lower the required concentration of MMC and can further reduce the risk of side effects, suggesting a better treatment option for NSCLC patients.


Assuntos
Reparo do DNA/efeitos dos fármacos , Ginsenosídeos/farmacologia , Mitomicina/farmacologia , Rad51 Recombinase/antagonistas & inibidores , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Fosforilação/efeitos dos fármacos , Rad51 Recombinase/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Death Dis ; 8(10): e3130, 2017 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-29048401

RESUMO

Emerging evidence support that temporal dynamics is pivotal for signaling molecules in orchestrating smart responses to diverse stimuli. p53 is such a signaling molecule that employs temporal dynamics for the selective activation of downstream target genes and ultimately for cell fate decision. Yet how this fine-tuned p53 machinery is quantitatively decoded remains largely unclear. Here we report a quantitative mechanism defining how p53 dynamics orchestrates with binding affinity to target genes for cell fate decision. Treating cells with a genotoxic drug doxorubicin at various doses and durations, we found that a mild and prolonged challenge triggered sequential p53 pulses and ultimately resulted in a terminal pulse enacting apoptosis in a comparable rate with that induced by an acute and high-dose treatment. To transactivate proapoptotic genes and thereafter executing apoptosis, p53 must exceed a certain threshold and accumulate for sufficient time at levels above it. Effective cumulative levels above the threshold, defined as E∫p53, but not the total accumulation levels of p53, precisely discriminate survival and apoptotic cells. p53 accumulation below this threshold, even with prolonging time to reach a total level comparable to that from the accumulation over the threshold, could not transactivate proapoptotic genes to which the binding affinity of p53 is lower than that of proarrest genes, and this property is independent of dynamic features. Our findings indicate that the dynamic feature per se does not directly control cell fate, but rather it orchestrates with the binding affinity to target genes to confer an appropriate time window for cell fate choice. Our study provides a quantitative mechanism unifying p53 dynamics and binding affinity to target genes, providing novel insights to understand how p53 can respond quantitatively to chemotherapeutic drugs, and guiding the design of metronomic regimens for chemotherapeutic drugs.


Assuntos
Diferenciação Celular/genética , Proteína Supressora de Tumor p53/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Doxorrubicina/farmacologia , Regulação da Expressão Gênica , Humanos , Células MCF-7 , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais , Estresse Fisiológico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
11.
J Proteome Res ; 16(6): 2250-2261, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28467092

RESUMO

Apoptosis and senescence are two types of cell fates in response to chemotherapy. Besides canonical pathways that mediate cell fates, cancer cell metabolism has been revealed as a crucial factor affecting cell fate decisions and thus represents a new target for antitumor therapy. Therefore, a comprehensive description of metabolic pathways underlying cell senescence and apoptosis in response to chemotherapy is highly demanded for therapeutic exploitation of both processes. Herein we employed a metabolomics-proteomics combined approach to identify metabolism-associated molecular events that mediate cellular responses to senescence and apoptosis using doxorubicin-treated human breast cancer cells MCF7 as models. Such biomics approach revealed that tricarboxylic acid cycle, pentose phosphate pathway, and nucleotide synthesis pathways were significantly upregulated in the senescent model, whereas fatty acid synthesis was reduced. In apoptotic cells, an overall reduced activity of major metabolic pathways was observed except for the arginine and proline pathway. Combinatorially, these data show the utility of biomics in exploring biochemical mechanism-based differences between apoptosis and senescence and reveal an unprecedented finding of the metabolic events that were induced for survival by facilitating ROS elimination and DNA damage repair in senescent cells, while they were downregulated in apoptotic cells when DNA damage was irreparable.


Assuntos
Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica/métodos , Proteômica/métodos , Ciclo do Ácido Cítrico , Dano ao DNA , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Ácidos Graxos/biossíntese , Humanos , Células MCF-7 , Nucleotídeos/biossíntese , Via de Pentose Fosfato , Espécies Reativas de Oxigênio/metabolismo
12.
Sci Rep ; 6: 18751, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728993

RESUMO

Farnesoid X receptor (FXR) plays a pivotal role in the regulation of various metabolic pathways as well as liver regeneration. However, the casual link between cell proliferative effects during liver regeneration and metabolic regulation of FXR was elusive. In this study, we found that FXR activation significantly promotes HepG2 cell proliferation accompanied with metabolic switch towards the excessive accumulation of aerobic glycolytic intermediates including lactic acid, pyruvate and the subsequently increased biosynthesis of glycine. This FXR-induced metabolic switch was found dependent on an up-regulation of pyruvate dehydrogenate kinase 4 (PDK4), a FXR target gene. FXR agonists were found to promote liver regeneration in the murine model of APAP induced liver injury, which was associated with a metabolic switch favoring the accumulation of glycolytic intermediates as precursors for generation of biomass. However, FXR activation has little effect on the glycolytic metabolism in healthy primary hepatocytes in vitro and the liver of healthy mice in vivo. Therefore, we conclude that FXR may promote the proliferation of tumor cells and the hepatocytes in the process of liver regeneration by activating the PDK4-mediated metabolic reprogramming to generate glycolytic intermediates essential for rapid biomass generation, establishing a mechanistic link between cell proliferation and metabolic switch.


Assuntos
Metabolismo Energético , Proteínas Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Análise por Conglomerados , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Glicólise , Células Hep G2 , Humanos , Isoxazóis/farmacologia , Regeneração Hepática , Metaboloma , Metabolômica/métodos , Camundongos , Camundongos Knockout , Modelos Biológicos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética
13.
Drug Metab Dispos ; 43(8): 1181-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25986850

RESUMO

Pregnane X receptor (PXR) activation exhibits anti-inflammatory effects via repressing nuclear factor-κB (NF-κB); however, its overactivation may disrupt homeostasis of various enzymes and transporters. Here we found that ginsenosides restore PXR/NF-κB signaling in inflamed conditions without disrupting PXR function in normal conditions. The effects and mechanisms of ginsenosides in regulating PXR/NF-κB signals were determined both in vitro and in vivo. Ginsenosides significantly inhibited NF-κB activation and restored the expression of PXR target genes in tumor necrosis factor-α-stimulated LS174T cells. Despite not being PXR agonists, ginsenosides repressed NF-κB activation in a PXR-dependent manner. Ginsenosides significantly increased the physical association between PXR and the NF-κB p65 subunit and thereby decreased the nuclear translocation of p65. Ginsenoside Rb1 and compound K (CK) were major bioactive compounds in the regulating PXR/NF-κB signaling. Consistently, ginsenosides significantly attenuated dextran sulfate sodium-induced experimental colitis, which was associated with restored PXR/NF-κB signaling. This study indicates that ginsenosides may elicit anti-inflammatory effects via targeting PXR/NF-κB interaction without disrupting PXR function in healthy conditions. Ginsenoside Rb1 and CK may serve as leading compounds in the discovery of new drugs that target PXR/NF-κB interaction in therapy for inflammatory bowel disease.


Assuntos
Colite/tratamento farmacológico , Ginsenosídeos/farmacologia , NF-kappa B/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores de Esteroides/efeitos dos fármacos , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana , Ginsenosídeos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/uso terapêutico , Receptor de Pregnano X , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
14.
PLoS One ; 8(11): e79172, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24244442

RESUMO

BACKGROUND AND PURPOSE: NAD(P)H: quinone oxidoreductase 1 (NQO1) mediated quinone reduction and subsequent UDP-glucuronosyltransferases (UGTs) catalyzed glucuronidation is the dominant metabolic pathway of tanshinone IIA (TSA), a promising anti-cancer agent. UGTs are positively expressed in various tumor tissues and play an important role in the metabolic elimination of TSA. This study aims to explore the role of UGT1A in determining the intracellular accumulation and the resultant apoptotic effect of TSA. EXPERIMENTAL APPROACH: We examined TSA intracellular accumulation and glucuronidation in HT29 (UGT1A positive) and HCT116 (UGT1A negative) human colon cancer cell lines. We also examined TSA-mediated reactive oxygen species (ROS) production, cytotoxicity and apoptotic effect in HT29 and HCT116 cells to investigate whether UGT1A levels are directly associated with TSA anti-cancer effect. UGT1A siRNA or propofol, a UGT1A9 competitive inhibitor, was used to inhibit UGT1A expression or UGT1A9 activity. KEY RESULTS: Multiple UGT1A isoforms are positively expressed in HT29 but not in HCT116 cells. Cellular S9 fractions prepared from HT29 cells exhibit strong glucuronidation activity towards TSA, which can be inhibited by propofol or UGT1A siRNA interference. TSA intracellular accumulation in HT29 cells is much lower than that in HCT116 cells, which correlates with high expression levels of UGT1A in HT29 cells. Consistently, TSA induces less intracellular ROS, cytotoxicity, and apoptotic effect in HT29 cells than those in HCT116 cells. Pretreatment of HT29 cells with UGT1A siRNA or propofol can decrease TSA glucuronidation and simultaneously improve its intracellular accumulation, as well as enhance TSA anti-cancer effect. CONCLUSIONS AND IMPLICATIONS: UGT1A can compromise TSA cytotoxicity via reducing its intracellular exposure and switching the NQO1-triggered redox cycle to metabolic elimination. Our study may shed a light in understanding the cellular pharmacokinetic and molecular mechanism by which UGTs determine the chemotherapy effects of drugs that are UGTs' substrates.


Assuntos
Abietanos/farmacocinética , Antineoplásicos Fitogênicos/farmacocinética , Neoplasias do Colo/tratamento farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucuronosiltransferase/biossíntese , Abietanos/farmacologia , Anestésicos Intravenosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Neoplasias do Colo/enzimologia , Neoplasias do Colo/patologia , Inibidores Enzimáticos/farmacologia , Glucuronosiltransferase/antagonistas & inibidores , Humanos , NAD(P)H Desidrogenase (Quinona)/biossíntese , Propofol/farmacologia , Espécies Reativas de Oxigênio/metabolismo , UDP-Glucuronosiltransferase 1A
15.
Anal Chim Acta ; 772: 59-67, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23540248

RESUMO

NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase) is a prognostic biomarker and a potential therapeutic target for various tumors. Therefore, it is of significance to develop a robust method for the absolute quantification of NQO1. This study aimed to develop and validate a LC-MS/MS based method and to test the appropriateness of using non-isotopic analog peptide as the internal standard (IS) by comparing with a stable isotope labeled (SIL) peptide. The chromatographic performance and mass spectra between the selected signature peptide of NQO1 and the non-isotopic peptide were observed to be very similar. The use of the two internal standards was validated appropriate for the absolute quantification of NQO1, as evidenced by satisfactory validation results over a concentration range of 1.62-162 fmol µL(-1). This method has been successfully applied to the absolute quantification of NQO1 expression in various tumor cell lines and tissues. NQO1 expression in human tumor tissues is much higher than that in the neighboring normal tissues in both the cases of lung and colon cancer. The quantitative results obtained from the isotopic and non-isotopic methods are quite similar, further supporting that the use of non-isotopic analog peptide as internal standard is appropriate and feasible for the quantification of NQO1. By comparing with a classical isotopic IS, the present study indicates that the use of a non-isotopic peptide analog to the proteotypic peptide as the internal standard can get equal accuracy and preciseness in measuring NQO1. The universal applicability of the non-isotopic IS approach for the quantification of proteins warrants further research.


Assuntos
Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma/diagnóstico , Neoplasias do Colo/diagnóstico , Neoplasias Pulmonares/diagnóstico , NAD(P)H Desidrogenase (Quinona)/análise , Adulto , Idoso , Sequência de Aminoácidos , Biomarcadores Tumorais/metabolismo , Carcinoma/enzimologia , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular Tumoral , Cromatografia Líquida , Neoplasias do Colo/enzimologia , Feminino , Humanos , Marcação por Isótopo , Neoplasias Pulmonares/enzimologia , Masculino , Pessoa de Meia-Idade , Impressão Molecular , NAD(P)H Desidrogenase (Quinona)/metabolismo , Peptídeos/química , Padrões de Referência , Espectrometria de Massas em Tandem
16.
PLoS One ; 7(7): e42138, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848731

RESUMO

NQO1 is an emerging and promising therapeutic target in cancer therapy. This study was to determine whether the anti-tumor effect of tanshinone IIA (TSA) is NQO1 dependent and to elucidate the underlying apoptotic cell death pathways. NQO1(+) A549 cells and isogenically matched NQO1 transfected and negative H596 cells were used to test the properties and mechanisms of TSA induced cell death. The in vivo anti-tumor efficacy and the tissue distribution properties of TSA were tested in tumor xenografted nude mice. We observed that TSA induced an excessive generation of ROS, DNA damage, and dramatic apoptotic cell death in NQO1(+) A549 cells and H596-NQO1 cells, but not in NQO1(-) H596 cells. Inhibition or silence of NQO1 as well as the antioxidant NAC markedly reversed TSA induced apoptotic effects. TSA treatment significantly retarded the tumor growth of A549 tumor xenografts, which was significantly antagonized by dicoumarol co-treatment in spite of the increased and prolonged TSA accumulations in tumor tissues. TSA activated a ROS triggered, p53 independent and caspase dependent mitochondria apoptotic cell death pathway that is characterized with increased ratio of Bax to Bcl-xl, mitochondrial membrane potential disruption, cytochrome c release, and subsequent caspase activation and PARP-1 cleavage. The results of these findings suggest that TSA is a highly specific NQO1 target agent and is promising in developing as an effective drug in the therapy of NQO1 positive NSCLC.


Assuntos
Abietanos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , NAD(P)H Desidrogenase (Quinona)/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Abietanos/metabolismo , Animais , Antineoplásicos/metabolismo , Transporte Biológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA