Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 178: 113943, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309869

RESUMO

Formation of starch-polyphenol complexes by high pressure homogenization (HPH) is widely used to reduce starch digestibility and delay the postprandial glycemic response, thereby benefiting obesity and associated metabolic diseases. This study investigated the effect of complexation temperature on multi-scale structures, physicochemical and digestive properties of pea starch-gallic acid (PS-GA) complexes during HPH process, while also elucidating the corresponding molecular mechanism regulating in vitro digestibility. The results demonstrated that elevating complexation temperature from 30 °C to 100 °C promoted the interaction between PS and GA and reached a peak complex index of 9.22 % at 90 °C through non-covalent binding. The enhanced interaction led to the formation of ordered multi-scale structures within PS-GA complexes, characterized by larger particles that exhibited greater thermal stability and elastic properties. Consequently, the PS-GA complexes exhibited substantially reduced digestion rates with the content of resistant starch increased from 28.50 % to 38.26 %. The potential molecular mechanism underlying how complexation temperature regulated digestibility of PS-GA complexes might be attributed to the synergistic effect of the physical barriers from newly ordered structure and inhibitory effect of GA against digestive enzymes. Overall, our findings contribute to the advancement of current knowledge regarding starch-polyphenol interactions and promote the development of functional starches with low postprandial glycemic responses.


Assuntos
Pisum sativum , Amido , Amido/química , Temperatura , Ácido Gálico/química , Digestão , Polifenóis
2.
Crit Rev Food Sci Nutr ; 63(15): 2407-2425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34494479

RESUMO

Food allergy is a serious health problem affecting more than 10% of the human population worldwide. Medical treatments for food allergy remain limited because immune therapy is risky and costly, and anti-allergic drugs have many harmful side effects and can cause drug dependence. In this paper, we review natural bioactive substances capable of alleviating food allergy. The sources of the anti-allergic substances reviewed include plants, animals, and microbes, and the types of substances include polysaccharides, oligosaccharides, polyphenols, phycocyanin, polyunsaturated fatty acids, flavonoids, terpenoids, quinones, alkaloids, phenylpropanoids, and probiotics. We describe five mechanisms involved in anti-allergic activities, including binding with epitopes located in allergens, affecting the gut microbiota, influencing intestinal epithelial cells, altering antigen presentation and T cell differentiation, and inhibiting the degranulation of effector cells. In the discussion, we present the limitations of existing researches as well as promising advances in the development of anti-allergic foods and/or immunomodulating food ingredients that can effectively prevent or alleviate food allergy. This review provides a reference for further research on anti-allergic materials and their hyposensitizing mechanisms.


Assuntos
Antialérgicos , Hipersensibilidade Alimentar , Probióticos , Animais , Humanos , Hipersensibilidade Alimentar/tratamento farmacológico , Alérgenos , Antialérgicos/farmacologia , Antialérgicos/uso terapêutico , Flavonoides/farmacologia
3.
Int J Biol Macromol ; 221: 108-120, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36075301

RESUMO

Due to the massive environmental pollution caused by synthetic plastic packaging accumulation and contemporary necessities of food packaging materials, the biodegradable and multifunctional bionanocomposite films based on potato starch (PS) incorporating tea polyphenol (TP) and MgO nanoparticles (MgO-NPs) were successfully fabricated by the solution casting method, and their physical and functional properties and application in fruits preservation were systematically investigated. Incorporation of TP and MgO-NPs improved the films' tensile strength, UV light-blocking, hydrophobicity and thermal stability, and decreased their moisture content (from 14.02 % to 11.21 %), water solubility (from 19.57 % to 16.56 %), and water vapor permeability (from 17.32 to 9.07 × 10-11 g∙m-1∙s-1∙Pa-1). Moreover, the PS/TP/MgO-NPs films exhibited strong antioxidant activity, and remarkable antibacterial activity against Escherichia coli and Staphylococcus aureus with the diameter of inhibition zone of 25.60 mm and 27.50 mm, respectively. SEM, ATR-FTIR and XRD analyses indicated the TP and MgO-NPs were dispersed homogeneously in the PS matrix, and identified the molecular interactions of hydrogen bond, hydrophobic interaction and electrostatic attraction. Biodegradability assessment showed that all the films were rapidly decomposed within ~20 days under simulated environmental conditions. Compared to control, the PS/TP/MgO-NPs film-forming solution coatings were capable of maintaining fruit quality by reducing the change in weight loss, firmness and total soluble solids. Overall, these results suggested that the multifunctional bionanocomposite films could be a potential approach for developing sustainable active food packaging.


Assuntos
Nanocompostos , Nanopartículas , Solanum tuberosum , Polifenóis , Óxido de Magnésio , Nanocompostos/química , Amido/química , Embalagem de Alimentos , Permeabilidade , Escherichia coli , Chá
4.
Mol Nutr Food Res ; 64(14): e1901093, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32420668

RESUMO

SCOPE: Factors such as food processing, the food matrix, and antacid medication may affect the bio-accessibility of proteins in the gastrointestinal tract and hence their allergenic activity. However, at present they are poorly understood. METHODS AND RESULTS: Roasted peanut flour was incorporated into either a chocolate dessert or cookie matrix and bio-accessibility were assessed using an in vitro digestion system comprising a model chew and simulated gastric and duodenal digestion. Protein digestion was monitored by SDS-PAGE and immunoreactivity analyzed by immunoblotting and immunoassay. IgE reactivity was assessed by immunoassay using serum panels from peanut-allergic subjects. Roasted peanut flour proteins proved highly digestible following gastro-duodenal digestion even when incurred into a food matrix, with only low molecular weight polypeptides of Mr < 8 kDa remaining. When gastric digestion was performed at pH 6.5 (simulating the effect of antacid medication), peanut proteins are not digested; subsequent duodenal digestion is also limited. IgE reactivity of the major peanut allergens Ara h 1, Ara h 2, and Ara h 6, although reduced, was retained after oral-gastro-duodenal digestion irrespective of digestion conditions employed. CONCLUSION: Peanut allergen bio-accessibility is unaffected by the dessert or cookie matrices whilst high intra-gastric pH conditions render allergens more resistant to digestion.


Assuntos
Arachis/química , Imunoglobulina E/imunologia , Hipersensibilidade a Amendoim/imunologia , Proteínas de Plantas/farmacocinética , Albuminas 2S de Plantas/imunologia , Albuminas 2S de Plantas/farmacocinética , Antígenos de Plantas/imunologia , Antígenos de Plantas/farmacologia , Arachis/imunologia , Disponibilidade Biológica , Digestão , Manipulação de Alimentos/métodos , Humanos , Concentração de Íons de Hidrogênio , Proteínas de Membrana/farmacocinética , Proteínas de Plantas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA