Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
iScience ; 26(6): 106904, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37275530

RESUMO

CD200 is overexpressed in many solid tumors and considered as an immune checkpoint molecule dampening cancer immunity. In this study, we found that CD200R-/- mice were significantly more potent in rejecting these CD200+ tumors. scRNA sequencing demonstrated that tumors from CD200R-/- mice had more infiltration of CD4+ and CD8+ T cells, and NK cells but less infiltration of neutrophils. Antibody depletion experiments revealed that immune effector cells are crucial in inhibiting tumor growth in CD200R-/- mice. Mechanistically, we found that CD200R signaling regulates the expression of chemokines in tumor-associated myeloid cells (TAMCs). In the absence of CD200R, TAMCs increased expression of CCL24 and resulted in increased infiltration of eosinophils, which contributes to anti-tumor activity. Overall, we conclude that CD200R signaling contributes to unfavorable TME through chemokine-dependent recruitment of immune suppressive neutrophils and exclusion of anti-cancer immune effectors. Our study has implications in developing CD200-CD200R targeted immunotherapy of solid tumors.

2.
Nat Commun ; 14(1): 97, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609611

RESUMO

Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia
3.
Leukemia ; 37(2): 326-338, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36376377

RESUMO

Chronic lymphocytic leukemia (CLL) is effectively treated with targeted therapies including Bruton tyrosine kinase inhibitors and BCL2 antagonists. When these become ineffective, treatment options are limited. Positive transcription elongation factor complex (P-TEFb), a heterodimeric protein complex composed of cyclin dependent kinase 9 (CDK9) and cyclin T1, functions to regulate short half-life transcripts by phosphorylation of RNA Polymerase II (POLII). These transcripts are frequently dysregulated in hematologic malignancies; however, therapies targeting inhibition of P-TEFb have not yet achieved approval for cancer treatment. VIP152 kinome profiling revealed CDK9 as the main enzyme inhibited at 100 nM, with over a 10-fold increase in potency compared with other inhibitors currently in development for this target. VIP152 induced cell death in CLL cell lines and primary patient samples. Transcriptome analysis revealed inhibition of RNA degradation through the AU-Rich Element (ARE) dysregulation. Mechanistically, VIP152 inhibits the assembly of P-TEFb onto the transcription machinery and disturbs binding partners. Finally, immune competent mice engrafted with CLL-like cells of Eµ-MTCP1 over-expressing mice and treated with VIP152 demonstrated reduced disease burden and improvement in overall survival compared to vehicle-treated mice. These data suggest that VIP152 is a highly selective inhibitor of CDK9 that represents an attractive new therapy for CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Fator B de Elongação Transcricional Positiva , Animais , Camundongos , Fator B de Elongação Transcricional Positiva/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Quinase 9 Dependente de Ciclina , Ciclina T/metabolismo , Fosforilação , Núcleo Celular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
4.
Sci Adv ; 8(37): eabp9005, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112677

RESUMO

Using a genome-wide CRISPR screen, we identified CDK9, DHODH, and PRMT5 as synthetic lethal partners with gilteritinib treatment in fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) acute myeloid leukemia (AML) and genetically and pharmacologically validated their roles in gilteritinib sensitivity. The presence of FLT3-ITD is associated with an increase in anaerobic glycolysis, rendering leukemia cells highly sensitive to inhibition of glycolysis. Supportive of this, our data show the enrichment of single guide RNAs targeting 28 glycolysis-related genes upon gilteritinib treatment, suggesting that switching from glycolysis to oxidative phosphorylation (OXPHOS) may represent a metabolic adaption of AML in gilteritinib resistance. CDK9i/FLT3i, DHODHi/FLT3i, and PRMT5i/FLT3i pairs mechanistically converge on OXPHOS and purine biosynthesis blockade, implying that targeting the metabolic functions of these three genes and/or proteins may represent attractive strategies to sensitize AML to gilteritinib treatment. Our findings provide the basis for maximizing therapeutic impact of FLT3-ITD inhibitors and a rationale for a clinical trial of these novel combinations.

5.
Cell Rep ; 40(3): 111115, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858552

RESUMO

The existence of "leukemia-initiating cells" (LICs) in chronic lymphocytic leukemia (CLL) remains controversial due to the difficulty in isolating and identifying the tumor-initiating cells. Here, we demonstrate a microchannel electroporation (MEP) microarray that injects RNA-detecting probes into single live cells, allowing the imaging and characterization of heterogeneous LICs by intracellular RNA expression. Using limited-cell FACS sequencing (LC-FACSeq), we can detect and monitor rare live LICs during leukemogenesis and characterize their differential drug sensitivity. Disease-associated mutation accumulation in developing B lymphoid but not myeloid lineage in CLL patient hematopoietic stem cells (CLL-HSCs), and development of independent clonal CLL-like cells in murine patient-derived xenograft models, suggests the existence of CLL LICs. Furthermore, we identify differential protein ubiquitination and unfolding response signatures in GATA2high CLL-HSCs that exhibit increased sensitivity to lenalidomide and resistance to fludarabine compared to GATA2lowCLL-HSCs. These results highlight the existence of therapeutically targetable disease precursors in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Animais , Células Cultivadas , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , RNA/metabolismo
6.
Front Cell Dev Biol ; 10: 853652, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399501

RESUMO

BRD4, a chromatin modifier frequently upregulated in a variety of neoplasms including hepatocellular cancer (HCC), promotes cancer cell growth by activating oncogenes through its interaction with acetylated histone tails of nucleosomes. Here, we determined the anti-HCC efficacy of AZD5153, a potent bivalent BRD4 inhibitor, and elucidated its underlying molecular mechanism of action. AZD5153 treatment inhibited HCC cell proliferation, clonogenic survival and induced apoptosis in HCC cells. In vivo, AZD5153-formulated lipid nanoemulsions inhibited both orthotopic and subcutaneous HCCLM3 xenograft growth in NSG mice. Mapping of BRD4- chromosomal targets by ChIP-seq analysis identified the occupancy of BRD4 with the promoters, gene bodies, and super-enhancers of both mRNA and noncoding RNA genes, which were disrupted upon AZD5153 treatment. RNA-seq analysis of polyadenylated RNAs showed several BRD4 target genes involved in DNA replication, cell proliferation, and anti-apoptosis were repressed in AZD5153-treated HCC cells. In addition to known tumor-promoting genes, e.g., c-MYC, YAP1, RAD51B, TRIB3, SLC17A9, JADE1, we found that NAPRT, encoding a key enzyme for NAD+ biosynthesis from nicotinic acid, was also suppressed in HCC cells by the BRD4 inhibitor. Interestingly, AZD5153 treatment upregulated NAMPT, whose product is the rate-limiting enzyme for NAD+ synthesis from nicotinamide. This may explain why AZD5153 acted in concert with FK866, a potent NAMPT inhibitor, in reducing HCC cell proliferation and clonogenic survival. In conclusion, our results identified novel targets of BRD4 in the HCCLM3 cell genome and demonstrated anti-HCC efficacy of AZD5153, which was potentiated in combination with an NAMPT inhibitor.

7.
Acta Neurochir (Wien) ; 164(5): 1401-1405, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34981192

RESUMO

To identify genes altered in a highly aggressive metastatic meningioma primary as well as its metastases. Exome sequencing of a primary anaplastic meningioma and metastatic lesions in which DNA could be extracted and compared to germline DNA. Genetic analysis of the metastatic sites found 31 common mutations among the primary tumor and two metastatic sites. Additionally, genetic mutations were identified which were either infrequently (MUC3A, ALDH1A3, HOXA1) or not at all previously described in meningiomas (CASS4, CMKLR1). Exome sequencing of a metastatic meningioma and its distant metastases outside the CNS identified mutations that were not previously well described.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patologia , Meningioma/patologia , Mutação/genética
8.
Blood ; 139(9): 1340-1358, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-34788382

RESUMO

Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. In this study, we found that the silencing of protein phosphatase 2A (PP2A) directly blocks differentiation in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling revealed that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent, OSU-2S, in parallel with genetic approaches, we discovered that PP2A enforced c-Myc and p21 dependent terminal differentiation, proliferation arrest, and apoptosis in AML. Finally, we demonstrated that PP2A activation decreased leukemia-initiating stem cells, increased leukemic blast maturation, and improved overall survival in murine Tet2-/-Flt3ITD/WT and human cell-line derived xenograft AML models in vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Leucemia Mieloide Aguda/genética , Camundongos , Camundongos Knockout , Proteína Fosfatase 2/genética , Proteínas Proto-Oncogênicas c-myc/genética
9.
J Nutr Biochem ; 99: 108839, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34411715

RESUMO

Omega-3 or n-3 polyunsaturated fatty acids (PUFAs) are widely studied for health benefits that may relate to anti-inflammatory activity. However, mechanisms mediating an anti-inflammatory response to n-3 PUFA intake are not fully understood. Of interest is the emerging role of fatty acids to impact DNA methylation (DNAm) and thereby modulate mediating inflammatory processes. In this pilot study, we investigated the impact of n-3 PUFA intake on DNAm in inflammation-related signaling pathways in peripheral blood mononuclear cells (PBMCs) of women at high risk of breast cancer. PBMCs of women at high risk of breast cancer (n=10) were obtained at baseline and after 6 months of n-3 PUFA (5 g/d EPA+DHA dose arm) intake in a previously reported dose finding trial. DNA methylation of PBMCs was assayed by reduced representation bisulfite sequencing (RRBS) to obtain genome-wide methylation profiles at the single nucleotide level. We examined the impact of n-3 PUFA on genome-wide DNAm and focused upon a set of candidate genes associated with inflammation signaling pathways and breast cancer. We identified 24,842 differentially methylated CpGs (DMCs) in gene promoters of 5507 genes showing significant enrichment for hypermethylation in both the candidate gene and genome-wide analyses. Pathway analysis identified significantly hypermethylated signaling networks after n-3 PUFA treatment, such as the Toll-like Receptor inflammatory pathway. The DNAm pattern in individuals and the response to n-3 PUFA intake are heterogeneous. PBMC DNAm profiling suggests a mechanism whereby n-3 PUFAs may impact inflammatory cascades associated with disease processes including carcinogenesis.


Assuntos
Anti-Inflamatórios/metabolismo , Neoplasias da Mama/genética , Metilação de DNA , Ácidos Graxos Ômega-3/metabolismo , Leucócitos Mononucleares/metabolismo , Adulto , Neoplasias da Mama/metabolismo , Neoplasias da Mama/prevenção & controle , Ilhas de CpG , Suplementos Nutricionais/análise , Feminino , Humanos , Leucócitos Mononucleares/química , Pessoa de Meia-Idade , Projetos Piloto , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
10.
Nat Commun ; 12(1): 6338, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732719

RESUMO

Rare, recurrent balanced translocations occur in a variety of cancers but are often not functionally interrogated. Balanced translocations with the immunoglobulin heavy chain locus (IGH; 14q32) in chronic lymphocytic leukemia (CLL) are infrequent but have led to the discovery of pathogenic genes including CCND1, BCL2, and BCL3. Following identification of a t(X;14)(q28;q32) translocation that placed the mature T cell proliferation 1 gene (MTCP1) adjacent to the immunoglobulin locus in a CLL patient, we hypothesized that this gene may have previously unrecognized importance. Indeed, here we report overexpression of human MTCP1 restricted to the B cell compartment in mice produces a clonal CD5+/CD19+ leukemia recapitulating the major characteristics of human CLL and demonstrates favorable response to therapeutic intervention with ibrutinib. We reinforce the importance of genetic interrogation of rare, recurrent balanced translocations to identify cancer driving genes via the story of MTCP1 as a contributor to CLL pathogenesis.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Translocação Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Proteína 3 do Linfoma de Células B , Ciclina D1 , Feminino , Regulação da Expressão Gênica , Genes de Cadeia Pesada de Imunoglobulina , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Oncogenes/genética , Proteínas Proto-Oncogênicas c-bcl-2
11.
Sci Rep ; 11(1): 14126, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238982

RESUMO

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. The molecular characteristics of histologically normal appearing tissue adjacent to the tumor (NAT) from PTC patients are not well characterized. The aim of this study was to characterize the global gene expression profile of NAT and compare it with those of normal and tumor thyroid tissues. We performed total RNA sequencing with fresh frozen thyroid tissues from a cohort of three categories of samples including NAT, normal thyroid (N), and PTC tumor (T). Transcriptome analysis shows that NAT presents a unique gene expression profile, which was not associated with sex or the presence of lymphocytic thyroiditis. Among the differentially expressed genes (DEGs) of NAT vs N, 256 coding genes and 5 noncoding genes have been reported as cancer genes involved in cell proliferation, apoptosis, and/or tumorigenesis. Bioinformatics analysis with Ingenuity Pathway Analysis software revealed that "Cancer, Organismal Injury and Abnormalities, Cellular Response to Therapeutics, and Cellular Movement" were major dysregulated pathways in the NAT tissues. This study provides improved insight into the complexity of gene expression changes in the thyroid glands of patients with PTC.


Assuntos
Carcinogênese/genética , Câncer Papilífero da Tireoide/genética , Glândula Tireoide/metabolismo , Transcriptoma/genética , Idoso , Apoptose/genética , Proliferação de Células/genética , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Análise em Microsséries , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Câncer Papilífero da Tireoide/patologia
12.
Front Oncol ; 11: 575667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718136

RESUMO

PURPOSE: The purpose of this study was to identify genes that were epigenetically silenced by STAT3 in gastric cancer. METHODS: MBDcap-Seq and expression microarray were performed to identify genes that were epigenetically silenced in AGS gastric cancer cell lines depleted of STAT3. Cell lines and animal experiments were performed to investigate proliferation and metastasis of miR-193a and YWHAZ in gastric cancer cell lines. Bisulfite pyrosequencing and tissue microarray were performed to investigate the promoter methylation of miR-193a and expression of STAT3, YWHAZ in patients with gastritis (n = 8) and gastric cancer (n = 71). Quantitative methylation-specific PCR was performed to examine miR-193a promoter methylation in cell-free DNA of serum samples in gastric cancer patients (n = 19). RESULTS: As compared with parental cells, depletion of STAT3 resulted in demethylation of a putative STAT3 target, miR-193a, in AGS gastric cancer cells. Although bisulfite pyrosequencing and epigenetic treatment confirmed that miR-193a was epigenetically silenced in gastric cancer cell lines, ChIP-PCR found that it may be indirectly affected by STAT3. Ectopic expression of miR-193a in AGS cells inhibited proliferation and migration of gastric cancer cells. Further expression microarray and bioinformatics analysis identified YWHAZ as one of the target of miR-193a in AGS gastric cancer cells, such that depletion of YWHAZ reduced migration in AGS cells, while its overexpression increased invasion in MKN45 cells in vitro and in vivo. Clinically, bisulfite pyrosequencing revealed that promoter methylation of miR-193a was significantly higher in human gastric cancer tissues (n = 11) as compared to gastritis (n = 8, p < 0.05). Patients infected with H. pylori showed a significantly higher miR-193a methylation than those without H. pylori infection (p < 0.05). Tissue microarray also showed a positive trend between STAT3 and YWHAZ expression in gastric cancer patients (n = 60). Patients with serum miR-193a methylation was associated with shorter overall survival than those without methylation (p < 0.05). CONCLUSIONS: Constitutive activation of JAK/STAT signaling may confer epigenetic silencing of the STAT3 indirect target and tumor suppressor microRNA, miR-193a in gastric cancer. Transcriptional suppression of miR-193a may led to overexpression of YWHAZ resulting in tumor progression. Targeted inhibition of STAT3 may be a novel therapeutic strategy against gastric cancer.

13.
Clin Cancer Res ; 27(8): 2352-2366, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33542077

RESUMO

PURPOSE: Nicotinamide phosphoribosyltransferase (NAMPT) inhibitors (NAMPTi) are currently in development, but may be limited as single-agent therapy due to compound-specific toxicity and cancer metabolic plasticity allowing resistance development. To potentially lower the doses of NAMPTis required for therapeutic benefit against acute myeloid leukemia (AML), we performed a genome-wide CRISPRi screen to identify rational disease-specific partners for a novel NAMPTi, KPT-9274. EXPERIMENTAL DESIGN: Cell lines and primary cells were analyzed for cell viability, self-renewal, and responses at RNA and protein levels with loss-of-function approaches and pharmacologic treatments. In vivo efficacy of combination therapy was evaluated with a xenograft model. RESULTS: We identified two histone deacetylases (HDAC), HDAC8 and SIRT6, whose knockout conferred synthetic lethality with KPT-9274 in AML. Furthermore, HDAC8-specific inhibitor, PCI-34051, or clinical class I HDAC inhibitor, AR-42, in combination with KPT-9274, synergistically decreased the survival of AML cells in a dose-dependent manner. AR-42/KPT-9274 cotreatment attenuated colony-forming potentials of patient cells while sparing healthy hematopoietic cells. Importantly, combined therapy demonstrated promising in vivo efficacy compared with KPT-9274 or AR-42 monotherapy. Mechanistically, genetic inhibition of SIRT6 potentiated the effect of KPT-9274 on PARP-1 suppression by abolishing mono-ADP ribosylation. AR-42/KPT-9274 cotreatment resulted in synergistic attenuation of homologous recombination and nonhomologous end joining pathways in cell lines and leukemia-initiating cells. CONCLUSIONS: Our findings provide evidence that HDAC8 inhibition- or shSIRT6-induced DNA repair deficiencies are potently synergistic with NAMPT targeting, with minimal toxicity toward normal cells, providing a rationale for a novel-novel combination-based treatment for AML.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Citocinas/antagonistas & inibidores , Leucemia Mieloide Aguda/tratamento farmacológico , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Proteínas Repressoras/antagonistas & inibidores , Sirtuínas/antagonistas & inibidores , Acrilamidas/farmacologia , Acrilamidas/uso terapêutico , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Inativação de Genes , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Fenilbutiratos/farmacologia , Fenilbutiratos/uso terapêutico , Reparo de DNA por Recombinação/efeitos dos fármacos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33495337

RESUMO

Doxorubicin is a commonly used anticancer agent that can cause debilitating and irreversible cardiac injury. The initiating mechanisms contributing to this side effect remain unknown, and current preventative strategies offer only modest protection. Using stem-cell-derived cardiomyocytes from patients receiving doxorubicin, we probed the transcriptomic landscape of solute carriers and identified organic cation transporter 3 (OCT3) (SLC22A3) as a critical transporter regulating the cardiac accumulation of doxorubicin. Functional validation studies in heterologous overexpression models confirmed that doxorubicin is transported into cardiomyocytes by OCT3 and that deficiency of OCT3 protected mice from acute and chronic doxorubicin-related changes in cardiovascular function and genetic pathways associated with cardiac damage. To provide proof-of-principle and demonstrate translational relevance of this transport mechanism, we identified several pharmacological inhibitors of OCT3, including nilotinib, and found that pharmacological targeting of OCT3 can also preserve cardiovascular function following treatment with doxorubicin without affecting its plasma levels or antitumor effects in multiple models of leukemia and breast cancer. Finally, we identified a previously unrecognized, OCT3-dependent pathway of doxorubicin-induced cardiotoxicity that results in a downstream signaling cascade involving the calcium-binding proteins S100A8 and S100A9. These collective findings not only shed light on the etiology of doxorubicin-induced cardiotoxicity, but also are of potential translational relevance and provide a rationale for the implementation of a targeted intervention strategy to prevent this debilitating side effect.


Assuntos
Doxorrubicina/efeitos adversos , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/tratamento farmacológico , Terapia de Alvo Molecular , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Animais , Criança , Regulação da Expressão Gênica , Traumatismos Cardíacos/fisiopatologia , Humanos , Camundongos , Miócitos Cardíacos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/deficiência , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Análise de Sequência de RNA
15.
Microbiome ; 8(1): 108, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678024

RESUMO

BACKGROUND: Altered microbiome composition and aberrant promoter hypermethylation of tumor suppressor genes (TSGs) are two important hallmarks of colorectal cancer (CRC). Here we performed concurrent 16S rRNA gene sequencing and methyl-CpG binding domain-based capture sequencing in 33 tissue biopsies (5 normal colonic mucosa tissues, 4 pairs of adenoma and adenoma-adjacent tissues, and 10 pairs of CRC and CRC-adjacent tissues) to identify significant associations between TSG promoter hypermethylation and CRC-associated bacteria, followed by functional validation of the methylation-associated bacteria. RESULTS: Fusobacterium nucleatum and Hungatella hathewayi were identified as the top two methylation-regulating bacteria. Targeted analysis on bona fide TSGs revealed that H. hathewayi and Streptococcus spp. significantly correlated with CDX2 and MLH1 promoter hypermethylation, respectively. Mechanistic validation with cell-line and animal models revealed that F. nucleatum and H. hathewayi upregulated DNA methyltransferase. H. hathewayi inoculation also promoted colonic epithelial cell proliferation in germ-free and conventional mice. CONCLUSION: Our integrative analysis revealed previously unknown epigenetic regulation of TSGs in host cells through inducing DNA methyltransferase by F. nucleatum and H. hathewayi, and established the latter as CRC-promoting bacteria. Video abstract.


Assuntos
Clostridiaceae/patogenicidade , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metilação de DNA , Células Epiteliais/metabolismo , Fusobacterium nucleatum/patogenicidade , Genes Supressores de Tumor , Regiões Promotoras Genéticas/genética , Idoso , Animais , Epigênese Genética , Epigenoma , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética
16.
J Transl Med ; 18(1): 63, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32039730

RESUMO

BACKGROUND: Direct cDNA preamplification protocols developed for single-cell RNA-seq have enabled transcriptome profiling of precious clinical samples and rare cell populations without the need for sample pooling or RNA extraction. We term the use of single-cell chemistries for sequencing low numbers of cells limiting-cell RNA-seq (lcRNA-seq). Currently, there is no customized algorithm to select robust/low-noise transcripts from lcRNA-seq data for between-group comparisons. METHODS: Herein, we present CLEAR, a workflow that identifies reliably quantifiable transcripts in lcRNA-seq data for differentially expressed genes (DEG) analysis. Total RNA obtained from primary chronic lymphocytic leukemia (CLL) CD5+ and CD5- cells were used to develop the CLEAR algorithm. Once established, the performance of CLEAR was evaluated with FACS-sorted cells enriched from mouse Dentate Gyrus (DG). RESULTS: When using CLEAR transcripts vs. using all transcripts in CLL samples, downstream analyses revealed a higher proportion of shared transcripts across three input amounts and improved principal component analysis (PCA) separation of the two cell types. In mouse DG samples, CLEAR identifies noisy transcripts and their removal improves PCA separation of the anticipated cell populations. In addition, CLEAR was applied to two publicly-available datasets to demonstrate its utility in lcRNA-seq data from other institutions. If imputation is applied to limit the effect of missing data points, CLEAR can also be used in large clinical trials and in single cell studies. CONCLUSIONS: lcRNA-seq coupled with CLEAR is widely used in our institution for profiling immune cells (circulating or tissue-infiltrating) for its transcript preservation characteristics. CLEAR fills an important niche in pre-processing lcRNA-seq data to facilitate transcriptome profiling and DEG analysis. We demonstrate the utility of CLEAR in analyzing rare cell populations in clinical samples and in murine neural DG region without sample pooling.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , RNA-Seq , Análise de Sequência de RNA , Transcriptoma/genética , Sequenciamento do Exoma
17.
Clin Cancer Res ; 25(20): 6260-6273, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31296529

RESUMO

PURPOSE: Aberrant Myc expression is a major factor in the pathogenesis of aggressive lymphoma, and these lymphomas, while clinically heterogeneous, often are resistant to currently available treatments and have poor survival. Myc expression can also be seen in aggressive lymphomas that are observed in the context of CLL, and we sought to develop a mouse model that could be used to study therapeutic strategies for aggressive lymphoma in the context of CLL. EXPERIMENTAL DESIGN: We crossed the Eµ-TCL1 mouse model with the Eµ-Myc mouse model to investigate the clinical phenotype associated with B-cell-restricted expression of these oncogenes. The resulting malignancy was then extensively characterized, from both a clinical and biologic perspective. RESULTS: Eµ-TCL1xMyc mice uniformly developed highly aggressive lymphoid disease with histologically, immunophenotypically, and molecularly distinct concurrent CLL and B-cell lymphoma, leading to a significantly reduced lifespan. Injection of cells from diseased Eµ-TCL1xMyc into WT mice established a disease similar to that in the double-transgenic mice. Both Eµ-TCL1xMyc mice and mice with disease after adoptive transfer failed to respond to ibrutinib. Effective and durable disease control was, however, observed by selective inhibition of nuclear export protein exportin-1 (XPO1) using a compound currently in clinical development for relapsed/refractory malignancies, including CLL and lymphoma. CONCLUSIONS: The Eµ-TCL1xMyc mouse is a new preclinical tool for testing experimental drugs for aggressive B-cell lymphoma, including in the context of CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B/genética , Linfoma de Células B/genética , Neoplasias Primárias Múltiplas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas/genética , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Carioferinas/antagonistas & inibidores , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma de Células B/tratamento farmacológico , Linfoma de Células B/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Primárias Múltiplas/patologia , Estudo de Prova de Conceito , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Células Tumorais Cultivadas/transplante , Proteína Exportina 1
18.
Metabolites ; 9(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336728

RESUMO

Oral cancer is a public health problem with an incidence of almost 50,000 and a mortality of 10,000 each year in the USA alone. Black raspberries (BRBs) have been shown to inhibit oral carcinogenesis in several preclinical models, but our understanding of how BRB phytochemicals affect the metabolic pathways during oral carcinogenesis remains incomplete. We used a well-established rat oral cancer model to determine potential metabolic pathways impacted by BRBs during oral carcinogenesis. F344 rats were exposed to the oral carcinogen 4-nitroquinoline-1-oxide in drinking water for 14 weeks, then regular drinking water for six weeks. Carcinogen exposed rats were fed a 5% or 10% BRB supplemented diet or control diet for six weeks after carcinogen exposure. RNA-Seq transcriptome analysis on rat tongue, and mass spectrometry and NMR metabolomics analysis on rat urine were performed. We tentatively identified 57 differentially or uniquely expressed metabolites and over 662 modulated genes in rats being fed with BRB. Glycolysis and AMPK pathways were modulated during BRB-mediated oral cancer chemoprevention. Glycolytic enzymes Aldoa, Hk2, Tpi1, Pgam2, Pfkl, and Pkm2 as well as the PKA-AMPK pathway genes Prkaa2, Pde4a, Pde10a, Ywhag, and Crebbp were downregulated by BRBs during oral cancer chemoprevention. Furthermore, the glycolysis metabolite glucose-6-phosphate decreased in BRB-administered rats. Our data reveal the novel metabolic pathways modulated by BRB phytochemicals that can be targeted during the chemoprevention of oral cancer.

19.
Blood ; 134(5): 432-444, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151986

RESUMO

Chronic lymphocytic leukemia (CLL) occurs in 2 major forms: aggressive and indolent. Low miR-29b expression in aggressive CLL is associated with poor prognosis. Indiscriminate miR-29b overexpression in the B-lineage of mice causes aberrance, thus warranting the need for selective introduction of miR-29b into B-CLL cells for therapeutic benefit. The oncofetal antigen receptor tyrosine kinase orphan receptor 1 (ROR1) is expressed on malignant B-CLL cells, but not normal B cells, encouraging us with ROR1-targeted delivery for therapeutic miRs. Here, we describe targeted delivery of miR-29b to ROR1+ CLL cells leading to downregulation of DNMT1 and DNMT3A, modulation of global DNA methylation, decreased SP1, and increased p21 expression in cell lines and primary CLL cells in vitro. Furthermore, using an Eµ-TCL1 mouse model expressing human ROR1, we report the therapeutic benefit of enhanced survival via cellular reprograming by downregulation of DNMT1 and DNMT3A in vivo. Gene expression profiling of engrafted murine leukemia identified reprogramming of cell cycle regulators with decreased SP1 and increased p21 expression after targeted miR-29b treatment. This finding was confirmed by protein modulation, leading to cell cycle arrest and survival benefit in vivo. Importantly, SP1 knockdown results in p21-dependent compensation of the miR-29b effect on cell cycle arrest. These studies form a basis for leukemic cell-targeted delivery of miR-29b as a promising therapeutic approach for CLL and other ROR1+ B-cell malignancies.


Assuntos
Pontos de Checagem do Ciclo Celular/genética , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/antagonistas & inibidores , Animais , Biomarcadores Tumorais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Metilação de DNA , Modelos Animais de Doenças , Epigênese Genética , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/mortalidade , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , MicroRNAs/administração & dosagem , MicroRNAs/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Taxa de Sobrevida , Nanomedicina Teranóstica , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Pathol ; 248(3): 363-376, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30883733

RESUMO

Ten-eleven translocation methylcytosine dioxygenase-1, TET1, takes part in active DNA demethylation. However, our understanding of DNA demethylation in cancer biology and its clinical significance remain limited. This study showed that TET1 expression correlated with poor survival in advanced-stage epithelial ovarian carcinoma (EOC), and with cell migration, anchorage-independent growth, cancer stemness, and tumorigenicity. In particular, TET1 was highly expressed in serous tubal intraepithelial carcinoma (STIC), a currently accepted type II EOC precursor, and inversely correlated with TP53 mutations. Moreover, TET1 could demethylate the epigenome and activate multiple oncogenic pathways, including an immunomodulation network having casein kinase II subunit alpha (CK2α) as a hub. Patients with TET1high CK2αhigh EOCs had the worst outcomes, and TET1-expressing EOCs were more sensitive to a CK2 inhibitor, both in vitro and in vivo. Our findings uncover the oncogenic and poor prognostic roles of TET1 in EOC and suggest an unexplored role of epigenetic reprogramming in early ovarian carcinogenesis. Moreover, the immunomodulator CK2α represents a promising new therapeutic target, warranting clinical trials of the tolerable CK2 inhibitor, CX4945, for precision medicine against EOC. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Caseína Quinase II/genética , Cistadenocarcinoma Seroso/patologia , Regulação Neoplásica da Expressão Gênica/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética , Animais , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Cistadenocarcinoma Seroso/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias das Tubas Uterinas/genética , Neoplasias das Tubas Uterinas/patologia , Feminino , Humanos , Camundongos Nus , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA