Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5727, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37714830

RESUMO

The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumors is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquire early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogram and reverse the immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells of healthy donors or metastatic female breast cancer patients, induce robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a promising therapy for solid tumors.


Assuntos
Neoplasias da Mama , Receptores de Antígenos Quiméricos , Humanos , Feminino , Animais , Camundongos , Leucócitos Mononucleares , Microambiente Tumoral , Neoplasias da Mama/terapia , Modelos Animais de Doenças , Imunossupressores , Linfócitos T
2.
Res Sq ; 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36865255

RESUMO

The poor efficacy of chimeric antigen receptor T-cell therapy (CAR T) for solid tumor is due to insufficient CAR T cell tumor infiltration, in vivo expansion, persistence, and effector function, as well as exhaustion, intrinsic target antigen heterogeneity or antigen loss of target cancer cells, and immunosuppressive tumor microenvironment (TME). Here we describe a broadly applicable nongenetic approach that simultaneously addresses the multiple challenges of CAR T as a therapy for solid tumors. The approach massively reprograms CAR T cells by exposing them to stressed target cancer cells which have been exposed to the cell stress inducer disulfiram (DSF) and copper (Cu)(DSF/Cu) plus ionizing irradiation (IR). The reprogrammed CAR T cells acquired early memory-like characteristics, potent cytotoxicity, enhanced in vivo expansion, persistence, and decreased exhaustion. Tumors stressed by DSF/Cu and IR also reprogrammed and reversed immunosuppressive TME in humanized mice. The reprogrammed CAR T cells, derived from peripheral blood mononuclear cells (PBMC) of healthy or metastatic breast cancer patients, induced robust, sustained memory and curative anti-solid tumor responses in multiple xenograft mouse models, establishing proof of concept for empowering CAR T by stressing tumor as a novel therapy for solid tumor.

3.
Cell Rep Med ; 4(3): 100959, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36863336

RESUMO

The transplanting islets to the liver approach suffers from an immediate posttransplant loss of islets of more than 50%, progressive graft dysfunction over time, and precludes recovery of grafts should there be serious complications such as the development of teratomas with grafts that are stem cell-derived islets (SC-islets). The omentum features an attractive extrahepatic alternative site for clinical islet transplantation. We explore an approach in which allogeneic islets are transplanted onto the omentum, which is bioengineered with a plasma-thrombin biodegradable matrix in three diabetic non-human primates (NHPs). Within 1 week posttransplant, each transplanted NHP achieves normoglycemia and insulin independence and remains stable until termination of the experiment. Success was achieved in each case with islets recovered from a single NHP donor. Histology demonstrates robust revascularization and reinnervation of the graft. This preclinical study can inform the development of strategies for ß cell replacement including the use of SC-islets or other types of novel cells in clinical settings.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Omento/cirurgia , Ilhotas Pancreáticas/cirurgia , Ilhotas Pancreáticas/metabolismo , Transplante Homólogo , Transplante das Ilhotas Pancreáticas/efeitos adversos , Transplante das Ilhotas Pancreáticas/patologia , Primatas , Aloenxertos
4.
Am J Respir Cell Mol Biol ; 62(5): 622-632, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31922885

RESUMO

Accumulating evidence suggests that fibrosis is a multicellular process with contributions from alveolar epithelial cells (AECs), recruited monocytes/macrophages, and fibroblasts. We have previously shown that AEC injury is sufficient to induce fibrosis, but the precise mechanism remains unclear. Several cell types, including AECs, can produce CCL2 and CCL12, which can promote fibrosis through CCR2 activation. CCR2 signaling is critical for the initiation and progression of pulmonary fibrosis, in part through recruitment of profibrotic bone marrow-derived monocytes. Attempts at inhibiting CCL2 in patients with fibrosis demonstrated a marked upregulation of CCL2 production and no therapeutic response. To better understand the mechanisms involved in CCL2/CCR2 signaling, we generated mice with conditional deletion of CCL12, a murine homolog of human CCL2. Surprisingly, we found that mice with complete deletion of CCL12 had markedly increased concentrations of other CCR2 ligands and were not protected from fibrosis after bleomycin injury. In contrast, mice with lung epithelial cell-specific deletion of CCL12 were protected from bleomycin-induced fibrosis and had expression of CCL2 and CCL7 similar to that of control mice treated with bleomycin. Deletion of CCL12 within AECs led to decreased recruitment of exudate macrophages. Finally, injury to murine and human primary AECs resulted in increased production of CCL2 and CCL12, in part through activation of the mTOR pathway. In conclusion, these data suggest that targeting CCL2 may be a viable antifibrotic strategy once the pathways involved in the production and function of CCL2 and other CCR2 ligands are better defined.


Assuntos
Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Quimiocina CCL2/metabolismo , Lesão Pulmonar/complicações , Proteínas Quimioatraentes de Monócitos/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , Animais , Deleção de Genes , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Proteína Regulatória Associada a mTOR/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
5.
Cell Death Dis ; 9(11): 1056, 2018 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-30333529

RESUMO

Type II alveolar epithelial cell (AEC) apoptosis is a prominent feature of fibrotic lung diseases and animal models of pulmonary fibrosis. While there is growing recognition of the importance of AEC injury and apoptosis as a causal factor in fibrosis, the underlying mechanisms that link these processes remain unknown. We have previously shown that targeting the type II alveolar epithelium for injury by repetitively administering diphtheria toxin to transgenic mice expressing the diphtheria toxin receptor off of the surfactant protein C promoter (SPC-DTR) develop lung fibrosis, confirming that AEC injury is sufficient to cause fibrosis. In the present study, we find that SPC-DTR mice develop increased activation of caspase 3/7 after initiation of diphtheria toxin treatment consistent with apoptosis within AECs. We also find evidence of efferocytosis, the uptake of apoptotic cells, by alveolar macrophages in this model. To determine the importance of efferocytosis in lung fibrosis, we treated cultured alveolar macrophages with apoptotic type II AECs and found that the uptake induced pro-fibrotic gene expression. We also found that the repetitive intrapulmonary administration of apoptotic type II AEC or MLE-12 cells induces lung fibrosis. Finally, mice lacking a key efferocytosis receptor, CD36, developed attenuated fibrosis in response to apoptotic MLE-12 cells. Collectively, these studies support a novel mechanism linking AEC apoptosis with macrophage pro-fibrotic activation via efferocytosis and reveal previously unrecognized therapeutic targets.


Assuntos
Células Epiteliais Alveolares/patologia , Apoptose/genética , Macrófagos Alveolares/patologia , Fagocitose , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/patologia , Células Epiteliais Alveolares/imunologia , Células Epiteliais Alveolares/transplante , Animais , Líquido da Lavagem Broncoalveolar/química , Antígenos CD36/deficiência , Antígenos CD36/genética , Antígenos CD36/imunologia , Caspase 3/genética , Caspase 3/imunologia , Caspase 7/genética , Caspase 7/imunologia , Linhagem Celular , Toxina Diftérica/administração & dosagem , Regulação da Expressão Gênica , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/genética , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Ativação de Macrófagos , Macrófagos Alveolares/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Cultura Primária de Células , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/imunologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , Fibrose Pulmonar/imunologia , Proteína C Associada a Surfactante Pulmonar , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Transdução de Sinais
6.
Am J Respir Cell Mol Biol ; 59(3): 295-305, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29652518

RESUMO

Progressive fibrosis is a complication of many chronic diseases, and collectively, organ fibrosis is the leading cause of death in the United States. Fibrosis is characterized by accumulation of activated fibroblasts and excessive deposition of extracellular matrix proteins, especially type I collagen. Extensive research has supported a role for matrix signaling in propagating fibrosis, but type I collagen itself is often considered an end product of fibrosis rather than an important regulator of continued collagen deposition. Type I collagen can activate several cell surface receptors, including α2ß1 integrin and discoidin domain receptor 2 (DDR2). We have previously shown that mice deficient in type I collagen have reduced activation of DDR2 and reduced accumulation of activated myofibroblasts. In the present study, we found that DDR2-null mice are protected from fibrosis. Surprisingly, DDR2-null fibroblasts have a normal and possibly exaggerated activation response to transforming growth factor-ß and do not have diminished proliferation compared with wild-type fibroblasts. DDR2-null fibroblasts are significantly more prone to apoptosis, in vitro and in vivo, than wild-type fibroblasts, supporting a paradigm in which fibroblast resistance to apoptosis is critical for progression of fibrosis. We have identified a novel molecular mechanism by which DDR2 can promote the activation of a PDK1 (3-phosphoinositide dependent protein kinase-1)/Akt survival pathway, and we have found that inhibition of PDK1 can augment fibroblast apoptosis. Furthermore, our studies demonstrate that DDR2 expression is heavily skewed to mesenchymal cells compared with epithelial cells and that idiopathic pulmonary fibrosis cells and tissue demonstrate increased activation of DDR2 and PDK1. Collectively, these findings identify a promising target for fibrosis therapy.


Assuntos
Colágeno Tipo II/metabolismo , Receptor com Domínio Discoidina 2/metabolismo , Fibroblastos/metabolismo , Integrinas/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo/metabolismo , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes/métodos , Humanos , Camundongos Nus , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia
7.
Am J Pathol ; 185(4): 1001-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25661109

RESUMO

Fibrosis is a multicellular process leading to excessive extracellular matrix deposition. Factors that affect lung epithelial cell proliferation and activation may be important regulators of the extent of fibrosis after injury. We and others have shown that activated alveolar epithelial cells (AECs) directly contribute to fibrogenesis by secreting mesenchymal proteins, such as type I collagen. Recent evidence suggests that epithelial cell acquisition of mesenchymal features during carcinogenesis and fibrogenesis is regulated by several mesenchymal transcription factors. Induced expression of direct inhibitors to these mesenchymal transcription factors offers a potentially novel therapeutic strategy. Inhibitor of DNA-binding 2 (Id2) is an inhibitory helix-loop-helix transcription factor that is highly expressed by lung epithelial cells during development and has been shown to coordinate cell proliferation and differentiation of cancer cells. We found that overexpression of Id2 in primary AECs promotes proliferation by inhibiting a retinoblastoma protein/c-Abl interaction leading to greater c-Abl activity. Id2 also blocks transforming growth factor ß1-mediated expression of type I collagen by inhibiting Twist, a prominent mesenchymal basic helix-loop-helix transcription factor. In vivo, Id2 induced AEC proliferation and protected mice from lung fibrosis. By using a high-throughput screen, we found that histone deacetylase inhibitors induce Id2 expression by adult AECs. Collectively, these findings suggest that Id2 expression by AECs can be induced, and overexpression of Id2 affects AEC phenotype, leading to protection from fibrosis.


Assuntos
Proteína 2 Inibidora de Diferenciação/metabolismo , Proteínas Proto-Oncogênicas c-abl/metabolismo , Fibrose Pulmonar/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Bleomicina , Proliferação de Células/efeitos dos fármacos , Colágeno/biossíntese , Inibidores de Histona Desacetilases/farmacologia , Humanos , Camundongos Endogâmicos C57BL , Ligação Proteica/efeitos dos fármacos , Fibrose Pulmonar/patologia , RNA Interferente Pequeno/metabolismo , Proteína do Retinoblastoma/metabolismo
8.
J Immunol ; 193(10): 5229-39, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25281715

RESUMO

Progressive fibrosis involves accumulation of activated collagen-producing mesenchymal cells. Fibrocytes are hematopoietic-derived cells with mesenchymal features that potentially have a unique and critical function during fibrosis. Fibrocytes have been proposed as an important direct contributor of type I collagen deposition during fibrosis based largely on fate-mapping studies. To determine the functional contribution of hematopoietic cell-derived type I collagen to fibrogenesis, we use a double-transgenic system to specifically delete the type I collagen gene across a broad population of hematopoietic cells. These mice develop a robust fibrotic response similar to littermate genotype control mice injured with bleomycin indicating that fibrocytes are not a necessary source of type I collagen. Using collagen-promoter GFP mice, we find that fibrocytes express type I collagen. However, fibrocytes with confirmed deletion of the type I collagen gene have readily detectable intracellular type I collagen indicating that uptake of collagen from neighboring cells account for much of the fibrocyte collagen. Collectively, these results clarify several seemingly conflicting reports regarding the direct contribution of fibrocytes to collagen deposition.


Assuntos
Colágeno Tipo I/deficiência , Fibrose Pulmonar/genética , Animais , Bleomicina , Diferenciação Celular , Linhagem da Célula , Células Cultivadas , Colágeno Tipo I/genética , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Transporte Proteico , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Células Estromais/metabolismo , Células Estromais/patologia
9.
Am J Physiol Lung Cell Mol Physiol ; 306(8): L786-96, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24508728

RESUMO

Fibrogenesis involves a pathological accumulation of activated fibroblasts and extensive matrix remodeling. Profibrotic cytokines, such as TGF-ß, stimulate fibroblasts to overexpress fibrotic matrix proteins and induce further expression of profibrotic cytokines, resulting in progressive fibrosis. Connective tissue growth factor (CTGF) is a profibrotic cytokine that is indicative of fibroblast activation. Epithelial cells are abundant in the normal lung, but their contribution to fibrogenesis remains poorly defined. Profibrotic cytokines may activate epithelial cells with protein expression and functions that overlap with the functions of active fibroblasts. We found that alveolar epithelial cells undergoing TGF-ß-mediated mesenchymal transition in vitro were also capable of activating lung fibroblasts through production of CTGF. Alveolar epithelial cell expression of CTGF was dramatically reduced by inhibition of Rho signaling. CTGF reporter mice demonstrated increased CTGF promoter activity by lung epithelial cells acutely after bleomycin in vivo. Furthermore, mice with lung epithelial cell-specific deletion of CTGF had an attenuated fibrotic response to bleomycin. These studies provide direct evidence that epithelial cell activation initiates a cycle of fibrogenic effector cell activation during progressive fibrosis. Therapy targeted at epithelial cell production of CTGF offers a novel pathway for abrogating this progressive cycle and limiting tissue fibrosis.


Assuntos
Comunicação Autócrina , Fator de Crescimento do Tecido Conjuntivo/fisiologia , Células Epiteliais/patologia , Comunicação Parácrina , Alvéolos Pulmonares/patologia , Fibrose Pulmonar/patologia , Animais , Antibióticos Antineoplásicos/farmacologia , Bleomicina/farmacologia , Western Blotting , Lavagem Broncoalveolar , Fator de Crescimento do Tecido Conjuntivo/antagonistas & inibidores , Meios de Cultivo Condicionados/farmacologia , Ensaio de Imunoadsorção Enzimática , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Imunofluorescência , Hidroxiprolina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Fibrose Pulmonar/etiologia , Fibrose Pulmonar/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA