Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
FASEB J ; 38(4): e23490, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38363581

RESUMO

Appropriate Ca2+ concentration in the endoplasmic reticulum (ER), modulating cytosolic Ca2+ signal, serves significant roles in physiological function of pancreatic ß cells. To maintaining ER homeostasis, Ca2+ movement across the ER membrane is always accompanied by a simultaneous K+ flux in the opposite direction. KCNH6 was proven to modulate insulin secretion by controlling plasma membrane action potential duration and intracellular Ca2+ influx. Meanwhile, the specific function of KCNH6 in pancreatic ß-cells remains unclear. In this study, we found that KCNH6 exhibited mainly ER localization and Kcnh6 ß-cell-specific knockout (ßKO) mice suffered from abnormal glucose tolerance and impaired insulin secretion in adulthood. ER Ca2+ store was overloaded in islets of ßKO mice, which contributed to ER stress and ER stress-induced apoptosis in ß cells. Next, we verified that ethanol treatment induced increases in ER Ca2+ store and apoptosis in pancreatic ß cells, whereas adenovirus-mediated KCNH6 overexpression in islets attenuated ethanol-induced ER stress and apoptosis. In addition, tail-vein injections of KCNH6 lentivirus rescued KCNH6 expression in ßKO mice, restored ER Ca2+ overload and attenuated ER stress in ß cells, which further confirms that KCNH6 protects islets from ER stress and apoptosis. These data suggest that KCNH6 on the ER membrane may help to stabilize intracellular ER Ca2+ stores and protect ß cells from ER stress and apoptosis. In conclusion, our study reveals the protective potential of KCNH6-targeting drugs in ER stress-induced diabetes.


Assuntos
Diabetes Mellitus , Células Secretoras de Insulina , Camundongos , Animais , Secreção de Insulina , Diabetes Mellitus/metabolismo , Células Secretoras de Insulina/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Cálcio/metabolismo , Etanol , Insulina/metabolismo
2.
Mol Metab ; 80: 101885, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38246588

RESUMO

OBJECTIVE: Genome-scale CRISPR-Cas9 knockout coupled with single-cell RNA sequencing (scRNA-seq) has been used to identify function-related genes. However, this method may knock out too many genes, leading to low efficiency in finding genes of interest. Insulin secretion is controlled by several electrophysiological events, including fluxes of KATP depolarization and K+ repolarization. It is well known that glucose stimulates insulin secretion from pancreatic ß-cells, mainly via the KATP depolarization channel, but whether other nutrients directly regulate the repolarization K+ channel to promote insulin secretion is unknown. METHODS: We used a system involving CRISPR-Cas9-mediated knockout of all 83 K+ channels and scRNA-seq in a pancreatic ß cell line to identify genes associated with insulin secretion. RESULTS: The expression levels of insulin genes were significantly increased after all-K+ channel knockout. Furthermore, Kcnb1 and Kcnh6 were the two most important repolarization K+ channels for the increase in high-glucose-dependent insulin secretion that occurred upon application of specific inhibitors of the channels. Kcnh6 currents, but not Kcnb1 currents, were reduced by one of the amino acids, lysine, in both transfected cells, primary cells and mice with ß-cell-specific deletion of Kcnh6. CONCLUSIONS: Our function-related CRISPR screen with scRNA-seq identifies Kcnh6 as a lysine-specific channel.


Assuntos
Insulina , Lisina , Camundongos , Animais , Secreção de Insulina , Lisina/metabolismo , Insulina/metabolismo , Glucose/farmacologia , Trifosfato de Adenosina/metabolismo
3.
J Biol Chem ; 299(4): 103045, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36822326

RESUMO

Glucose-stimulated insulin secretion of pancreatic ß cells is essential in maintaining glucose homeostasis. Recent evidence suggests that the Nephrin-mediated intercellular junction between ß cells is implicated in the regulation of insulin secretion. However, the underlying mechanisms are only partially characterized. Herein we report that GIV is a signaling mediator coordinating glucose-stimulated Nephrin phosphorylation and endocytosis with insulin secretion. We demonstrate that GIV is expressed in mouse islets and cultured ß cells. The loss of function study suggests that GIV is essential for the second phase of glucose-stimulated insulin secretion. Next, we demonstrate that GIV mediates the high glucose-stimulated tyrosine phosphorylation of GIV and Nephrin by recruiting Src kinase, which leads to the endocytosis of Nephrin. Subsequently, the glucose-induced GIV/Nephrin/Src signaling events trigger downstream Akt phosphorylation, which activates Rac1-mediated cytoskeleton reorganization, allowing insulin secretory granules to access the plasma membrane for the second-phase secretion. Finally, we found that GIV is downregulated in the islets isolated from diabetic mice, and rescue of GIV ameliorates the ß-cell dysfunction to restore the glucose-stimulated insulin secretion. We conclude that the GIV/Nephrin/Akt signaling axis is vital to regulate glucose-stimulated insulin secretion. This mechanism might be further targeted for therapeutic intervention of diabetic mellitus.


Assuntos
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Ilhotas Pancreáticas , Animais , Camundongos , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Transporte Vesicular/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 1011238, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325440

RESUMO

Mutations in KCNH6 has been proved to cause hypoinsulinemia and diabetes in human and mice. Cisapride is a stomach-intestinal motility drug used to treat gastrointestinal dysfunction. Cisapride has been reported to be a potential inhibitor of the KCNH family, but it remained unclear whether cisapride inhibited KCNH6. Here, we discovered the role of cisapride on glucose metabolism, focusing on the KCNH6 potassium channel protein. Cisapride reduced blood glucose level and increased serum insulin secretion in wild-type (WT) mice fed standard normal chow/a high-fat diet or in db/db mice, especially when combined with tolbutamide. This effect was much stronger after 4 weeks of intraperitoneal injection. Whole-cell patch-clamp showed that cisapride inhibited KCNH6 currents in transfected HEK293 cells in a concentration-dependent manner. Cisapride induced an increased insulin secretion through the disruption of intracellular calcium homeostasis in a rat pancreatic ß-cell line, INS-1E. Further experiments revealed that cisapride did not decrease blood glucose or increase serum insulin in KCNH6 ß-cell knockout (Kcnh6-ß-KO) mice when compared with WT mice. Cisapride also ameliorated glucose-stimulated insulin secretion (GSIS) in response to high glucose in WT but not Kcnh6-ß-KO mice. Thus, our data reveal a novel way for the effect of KCNH6 in cisapride-induced hypoglycemia.


Assuntos
Glicemia , Hipoglicemia , Humanos , Ratos , Camundongos , Animais , Glicemia/metabolismo , Cisaprida , Insulina/metabolismo , Canais de Potássio , Células HEK293 , Glucose/metabolismo , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo
5.
Environ Microbiol ; 24(12): 6524-6538, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36260054

RESUMO

The cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) signalling pathway is evolutionarily conserved in eukaryotes and plays a crucial role in defending against external environmental challenges, which can modulate the cellular response to external stimuli. Arthrobotrys oligospora is a typical nematode-trapping fungus that specializes in adhesive networks to kill nematodes. To elucidate the biological roles of the cAMP-PKA signalling pathway, we characterized the orthologous adenylate cyclase AoAcy, a regulatory subunit (AoPkaR), and two catalytic subunits (AoPkaC1 and AoPkaC2) of PKA in A. oligospora by gene disruption, transcriptome, and metabolome analyses. Deletion of Aoacy significantly reduced the levels of cAMP and arthrobotrisins. Results revealed that Aoacy, AopkaR, and AopkaC1 were involved in hyphal growth, trap morphogenesis, sporulation, stress resistance, and autophagy. In addition, Aoacy and AopkaC1 were involved in the regulation of mitochondrial morphology, thereby affecting energy metabolism, whereas AopkaC2 affected sporulation, nuclei, and autophagy. Multi-omics results showed that the cAMP-PKA signalling pathway regulated multiple metabolic and cellular processes. Collectively, these data highlight the indispensable role of cAMP-PKA signalling pathway in the growth, development, and pathogenicity of A. oligospora, and provide insights into the regulatory mechanisms of signalling pathways in sporulation, trap formation, and lifestyle transition.


Assuntos
Ascomicetos , Nematoides , Animais , Ascomicetos/genética , Nematoides/microbiologia , AMP Cíclico/metabolismo , Morfogênese , Autofagia/genética
6.
Oxid Med Cell Longev ; 2022: 3739556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36217412

RESUMO

KCNH6 has been proven to affect glucose metabolism and insulin secretion both in humans and mice. Further study revealed that Kcnh6 knockout (KO) mice showed impaired glucose tolerance. However, the precise function of KCNH6 in the liver remains unknown. Mitochondria have been suggested to maintain intracellular Ca2+ homeostasis; ROS generation and defective mitochondria can cause glucose metabolism disorders, including type 2 diabetes (T2D). Here, we found that Kcnh6 attenuated glucose metabolism disorders by decreasing PEPCK and G6pase abundance and induced Glut2 and IRS2 expression. Overexpression of Kcnh6 increased hepatic glucose uptake and glycogen synthesis. Kcnh6 attenuated intracellular and mitochondrial calcium levels in primary hepatocytes and reduced intracellular ROS and mitochondrial superoxide production. Kcnh6 suppressed oxidative stress by inhibiting mitochondrial pathway activation and NADPH oxidase expression. Experiments demonstrated that Kcnh6 expression improved hepatic glucose metabolism disorder through the c-Jun N-terminal kinase and p38MAPK signaling pathways. These results were confirmed by experiments evaluating the extent to which forced Kcnh6 expression rescued metabolic disorder in KO mice. In conclusion, KCNH6 enhanced hepatic glucose metabolism by regulating mitochondrial Ca2+ levels and inhibiting oxidative stress. As liver glucose metabolism is key to T2D, understanding KCNH6 functions may provide new insights into the causes of diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Canais de Potássio Éter-A-Go-Go , Glucose , Mitocôndrias , Estresse Oxidativo , Animais , Cálcio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Canais de Potássio Éter-A-Go-Go/metabolismo , Glucose/metabolismo , Glicogênio/metabolismo , Humanos , Insulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo
7.
Endocrine ; 78(1): 47-56, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35921062

RESUMO

PURPOSE: Early-onset, multigenerational diabetes is a heterogeneous disease, which is often simplistically classified as type 1 diabetes (T1D) or type 2 diabetes(T2D). However, its clinical and genetic characteristics have not been clearly elucidated. The aim of our study is to investigate the clinical features of early-onset diabetes involving three consecutive generations (eDia3) in a Chinese diabetes cohort. METHODS: Of 6470 type 2 diabetic patients, 105 were identified as eDia3 (1.6%). After a case-control match on age, we compared the clinical characteristics of 89 eDia3 patients with 89 early-onset T2D patients without a family history of diabetes (eDia0). WES was carried out in 89 patients with eDia3. We primarily focused on 14 known maturity-onset diabetes of the young (MODY) genes. Variants were predicted by ten tools (SIFT, PolyPhen2_HDIV, PolyPhen2_HVAR, LRT, Mutation Assessor, Mutation Taster, FATHMM, GERP++, PhyloP, and PhastCons). All suspected variants were then validated by Sanger sequencing and further investigated in the proband families. RESULTS: Compared to age-matched eDia0, eDia3 patients had a younger age at diagnosis (26.5 ± 5.8 vs. 29.4 ± 5.3 years, P = 0.001), lower body mass index (25.5 ± 3.9 vs. 27.4 ± 4.6 kg/m2, P = 0.003), lower systolic blood pressure (120 ± 15 vs. 128 ± 18 mmHg, P = 0.003), and better metabolic profiles (including glucose and lipids). Of the 89 eDia3 patients, 10 (11.2%) carried likely pathogenic variants in genes (KLF11, GCK, ABCC8, PAX4, BLK and HNF1A) of MODY. CONCLUSIONS: eDia3 patients had unique clinical features. Known MODY genes were not common causes in these patients.


Assuntos
Diabetes Mellitus Tipo 2 , Povo Asiático , China/epidemiologia , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Humanos , Mutação
8.
Comput Struct Biotechnol J ; 20: 2442-2454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602976

RESUMO

Cathepsin L (CTSL), a cysteine protease that can cleave and activate the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein, could be a promising therapeutic target for coronavirus disease 2019 (COVID-19). However, there is still no clinically available CTSL inhibitor that can be used. Here, we applied Chemprop, a newly trained directed-message passing deep neural network approach, to identify small molecules and FDA-approved drugs that can block CTSL activity to expand the discovery of CTSL inhibitors for drug development and repurposing for COVID-19. We found 5 molecules (Mg-132, Z-FA-FMK, leupeptin hemisulfate, Mg-101 and calpeptin) that were able to significantly inhibit the activity of CTSL in the nanomolar range and inhibit the infection of both pseudotype and live SARS-CoV-2. Notably, we discovered that daptomycin, an FDA-approved antibiotic, has a prominent CTSL inhibitory effect and can inhibit SARS-CoV-2 pseudovirus infection. Further, molecular docking calculation showed stable and robust binding of these compounds with CTSL. In conclusion, this study suggested for the first time that Chemprop is ideally suited to predict additional inhibitors of enzymes and revealed the noteworthy strategy for screening novel molecules and drugs for the treatment of COVID-19 and other diseases with unmet needs.

9.
Nat Metab ; 4(5): 608-626, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551509

RESUMO

Impaired glucose-stimulated insulin secretion (GSIS) is a hallmark of type-2 diabetes. However, cellular signaling machineries that control GSIS remain incompletely understood. Here, we report that ß-klotho (KLB), a single-pass transmembrane protein known as a co-receptor for fibroblast growth factor 21 (FGF21), fine tunes GSIS via modulation of glycolysis in pancreatic ß-cells independent of the actions of FGF21. ß-cell-specific deletion of Klb but not Fgf21 deletion causes defective GSIS and glucose intolerance in mice and defective GSIS in islets of type-2 diabetic mice is mitigated by adenovirus-mediated restoration of KLB. Mechanistically, KLB interacts with and stabilizes the cytokine receptor subunit GP130 by blockage of ubiquitin-dependent lysosomal degradation, thereby facilitating interleukin-6-evoked STAT3-HIF1α signaling, which in turn transactivates a cluster of glycolytic genes for adenosine triphosphate production and GSIS. The defective glycolysis and GSIS in Klb-deficient islets are rescued by adenovirus-mediated replenishment of STAT3 or HIF1α. Thus, KLB functions as a key cell-surface regulator of GSIS by coupling the GP130 receptor signaling to glucose catabolism in ß-cells and represents a promising therapeutic target for diabetes.


Assuntos
Diabetes Mellitus Experimental , Glucose , Animais , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Glucose/metabolismo , Glicólise , Secreção de Insulina , Camundongos
10.
Diabetes Metab Syndr Obes ; 15: 1101-1110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431563

RESUMO

Purpose: To establish and validate the nomogram model for predicting diabetic nephropathy (DN) in type 2 diabetes mellitus (T2DM) patients with proteinuria. Methods: A total of 102 patients with T2DM and proteinuria who underwent renal biopsy were included in this study. According to pathological classification of the kidney, the patients were divided into two groups, namely, a DN group (52 cases) and a non-diabetic renal disease (NDRD) group (50 cases). The clinical data were collected, and the factors associated with diabetic nephropathy (DN) were analyzed with multivariate logistic regression. A nomogram model for predicting DN risk was constructed by using R4.1 software. Receiver operator characteristic (ROC) curves were generated, and the K-fold cross-validation method was used for validation. A consistency test was performed by generating the correction curve. Results: Systolic blood pressure (SBP), diabetic retinopathy (DR), hemoglobin (Hb), fasting plasma glucose (FPG) and triglyceride/cystatin C (TG/Cys-C) ratio were independent factors for DN in T2DM patients with proteinuria (P<0.05). The nomogram model had good prediction efficiency. If the total score of the nomogram exceeds 200, the probability of DN is as high as 95%. The area under the ROC curve was 0.9412 (95% confidence interval (CI) = 0.8981-0.9842). The 10-fold cross-validation showed that the prediction accuracy of the model was 0.8427. The Hosmer-Lemeshow (H-L) test showed that there was no significant difference between the predicted value and the actual observed value (X 2 = 6.725, P = 0.567). The calibration curve showed that the fitting degree of the DN nomogram prediction model was good. Conclusion: The nomogram model constructed in the present study improves the diagnostic efficiency of DN in T2DM patients with proteinuria, and it has a high clinical value.

11.
Biochem Biophys Res Commun ; 589: 165-172, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34922198

RESUMO

Low serum bicarbonate is closely related to type 2 diabetes mellitus. However, the precise role of bicarbonate on glucose homeostasis and insulin secretion remains unknown. In this study, we investigated the effects of bicarbonate concentration on pancreatic ß-cells. It was observed that the high bicarbonate concentration of the cell culture medium significantly increased the glucose-induced insulin secretion (GSIS) levels in mouse islets, MIN6, and the INS-1E ß cells. MIN6 cells presented an impaired GSIS; the cells produced a lower bicarbonate concentration when co-cultured with Capan-1 than when with CFPAC-1. NBCe1, a major bicarbonate transporter was observed to block the increasing insulin secretions, which were promoted by a high concentration of bicarbonate. In addition, higher extracellular bicarbonate concentration significantly increased the intracellular cAMP level, pHi, and calcium concentration with a 16.7 mM of glucose stimulation. Further study demonstrated that a low concentration of extracellular bicarbonate significantly impaired the functioning of pancreatic ß cells by reducing coupling Ca2+ influx, whose process may be modulated by NBCe1. Taken together, our results conclude that bicarbonate may serve as a novel target in diabetes prevention-related research.


Assuntos
Bicarbonatos/farmacologia , Glucose/farmacologia , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , AMP Cíclico/metabolismo , Concentração de Íons de Hidrogênio , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Camundongos , Simportadores de Sódio-Bicarbonato/metabolismo
12.
Nat Commun ; 12(1): 5616, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556670

RESUMO

Coptis chinensis is an ancient Chinese herb treating diabetes in China for thousands of years. However, its underlying mechanism remains poorly understood. Here, we report the effects of its main active component, berberine (BBR), on stimulating insulin secretion. In mice with hyperglycemia induced by a high-fat diet, BBR significantly increases insulin secretion and reduced blood glucose levels. However, in mice with hyperglycemia induced by global or pancreatic islet ß-cell-specific Kcnh6 knockout, BBR does not exert beneficial effects. BBR directly binds KCNH6 potassium channels, significantly accelerates channel closure, and subsequently reduces KCNH6 currents. Consequently, blocking KCNH6 currents prolongs high glucose-dependent cell membrane depolarization and increases insulin secretion. Finally, to assess the effect of BBR on insulin secretion in humans, a randomized, double-blind, placebo-controlled, two-period crossover, single-dose, phase 1 clinical trial (NCT03972215) including 15 healthy men receiving a 160-min hyperglycemic clamp experiment is performed. The pre-specified primary outcomes are assessment of the differences of serum insulin and C-peptide levels between BBR and placebo treatment groups during the hyperglycemic clamp study. BBR significantly promotes insulin secretion under hyperglycemic state comparing with placebo treatment, while does not affect basal insulin secretion in humans. All subjects tolerate BBR well, and we observe no side effects in the 14-day follow up period. In this study, we identify BBR as a glucose-dependent insulin secretagogue for treating diabetes without causing hypoglycemia that targets KCNH6 channels.


Assuntos
Berberina/farmacologia , Canais de Potássio Éter-A-Go-Go/metabolismo , Hiperglicemia/metabolismo , Secreção de Insulina/efeitos dos fármacos , Secretagogos/farmacologia , Adolescente , Adulto , Animais , Linhagem Celular Tumoral , Estudos Cross-Over , Dieta Hiperlipídica/efeitos adversos , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Hiperglicemia/etiologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Adulto Jovem
13.
Signal Transduct Target Ther ; 6(1): 134, 2021 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-33774649

RESUMO

To discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


Assuntos
Antivirais/farmacologia , COVID-19/metabolismo , Catepsina L , Inibidores de Cisteína Proteinase/farmacologia , Desenvolvimento de Medicamentos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus/efeitos dos fármacos , Adolescente , Adulto , Idoso , Animais , COVID-19/genética , Catepsina L/antagonistas & inibidores , Catepsina L/genética , Catepsina L/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Tratamento Farmacológico da COVID-19
14.
FASEB J ; 34(12): 16291-16306, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078906

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most general liver disease characterized by a continuum of liver abnormalities ranging from simple fatty liver to advanced stage of nonalcoholic steatohepatitis, cirrhosis, and even hepatocellular carcinoma. The pathological drivers of NAFLD are complex and largely undefined. It is increasingly identified that the imbalance between renin-angiotensin system and ACE2/Ang-(1-7)/Mas axis, as well as mitochondrial dysfunction associated with NAFLD. However, no known empirical research has focused on exploring the effect of the regulation of mitochondrial respiration chain activity by Ang-(1-7)/Mas on the prevention of NAFLD. Here, we evaluated the interaction and relevance of hepatic Ang-(1-7)/Mas-axis challenge with glucolipid metabolism and mitochondrial condition in vivo and in vitro. In this context, we found that Mas deletion in mice contributed to the severe glucose intolerance, insulin resistance, and hepatic steatosis which accompanied by elevated levels of serum/ hepatic alanine aminotransferase, aspartate aminotransferase, and triglycerides, as well as the mitochondrial dysfunction. Whereas forced upregulation of Mas or Ang-(1-7) administration could significantly attenuate these consequences by downregulating the expression of hepatic lipogenic proteins and enzymes for gluconeogenesis. Furthermore, activation of Ang-(1-7)/Mas arm could improve the IRS-1/Akt/AMPK pathway and enhance the mitochondrial energy utilization. Considered together, it is becoming extremely hopeful to provide a new perspective for Ang-(1-7)/Mas axis for the therapeutics of NAFLD.


Assuntos
Angiotensina I/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Glicolipídeos/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo/fisiologia , Células Hep G2 , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proto-Oncogene Mas , Transdução de Sinais/fisiologia
15.
FASEB J ; 34(11): 15015-15028, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32918525

RESUMO

Adult patients with dysfunction in human ether-a-go-go 2 (hERG2) protein, encoded by KCNH6, present with hypoinsulinemia and hyperglycemia. However, the mechanism of KCNH6 action in glucose disorders has not been clearly defined. Previous studies identified that sustained endoplasmic reticulum (ER) stress-mediated apoptosis of pancreatic ß-cells and directly contributed to diabetes. In the present study, we showed that Kcnh6 knockout (KO) mice had impaired glucose tolerance mediated by high ER stress levels, and showed increased apoptosis and elevated intracellular calcium levels in pancreatic ß-cells. In contrast, KCNH6 overexpression in islets isolated from C57BL/6J mice attenuated ER stress induced by thapsigargin or palmitic acid. This effect contributed to better preservation of ß-cells, as reflected in increased ß cell survival and enhanced glucose-stimulated insulin secretion. These results were further corroborated by studies evaluating KCNH6 overexpression in KO islets. Similarly, induction of Kcnh6 in KO mice by lentivirus injection improved glucose tolerance by reducing pancreatic ER stress and apoptosis. Our data provide new insights into how Kcnh6 deficiency causes ER calcium depletion and ß cell dysfunction.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Canais de Potássio Éter-A-Go-Go/fisiologia , Células Secretoras de Insulina/citologia , Substâncias Protetoras/farmacologia , Tapsigargina/farmacologia , Animais , Cálcio/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Glucose/farmacologia , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Palmítico/farmacologia
16.
Horm Metab Res ; 52(9): 669-675, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32750722

RESUMO

Adult patients with a dysfunctional ether-a-go-go 2 (hERG2) protein, which is encoded by the KCNH6 gene, present with hyperinsulinemia and hyperglycemia. However, the mechanism of KCNH6 in glucose metabolism disorders has not been clearly defined. It has been proposed that sustained endoplasmic reticulum (ER) stress is closely concerned with hepatic insulin resistance and inflammation. Here, we demonstrate that Kcnh6 knockout (KO) mice had impaired glucose tolerance and increased levels of hepatic apoptosis, in addition to displaying an increased insulin resistance that was mediated by high ER stress levels. By contrast, overexpression of KCNH6 in primary hepatocytes led to a decrease in ER stress and apoptosis induced by thapsigargin. Similarly, induction of Kcnh6 by tail vein injection into KO mice improved glucose tolerance by reducing ER stress and apoptosis. Furthermore, we show that KCNH6 alleviated hepatic ER stress, apoptosis, and inflammation via the NFκB-IκB kinase (IKK) pathway both in vitro and in vivo. In summary, our study provides new insights into the causes of ER stress and subsequent induction of primary hepatocytes apoptosis.


Assuntos
Estresse do Retículo Endoplasmático , Canais de Potássio Éter-A-Go-Go/fisiologia , Intolerância à Glucose/patologia , Glucose/metabolismo , Resistência à Insulina , Hepatopatias/patologia , Animais , Apoptose , Intolerância à Glucose/etiologia , Intolerância à Glucose/metabolismo , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
17.
Lipids Health Dis ; 18(1): 207, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775868

RESUMO

OBJECTIVE: Endoplasmic reticulum (ER) stress and mitochondrial function affected intramuscular fat accumulation. However, there is no clear evident on the effect of the regulation of ER stress and mitochondrial function by Angiotensin-converting enzyme 2 (ACE2) on the prevention of intramuscular fat metabolism. We investigated the effects of ACE2 on ER stress and mitochondrial function in skeletal muscle lipid metabolism. METHODS: The triglyceride (TG) content in skeletal muscle of ACE2 knockout mice and Ad-ACE2-treated db/db mice were detected by assay kits. Meanwhile, the expression of lipogenic genes (ACCα, SREBP-1c, LXRα, CPT-1α, PGC-1α and PPARα), ER stress and mitochondrial function related genes (GRP78, eIF2α, ATF4, BCL-2, and SDH6) were analyzed by RT-PCR. Lipid metabolism, ER stress and mitochondrial function related genes were analyzed by RT-PCR in ACE2-overexpression C2C12 cell. Moreover, the IKKß/NFκB/IRS-1 pathway was determined using lysate sample from skeletal muscle of ACE2 knockout mice. RESULTS: ACE2 deficiency in vivo is associated with increased lipid accumulation in skeletal muscle. The ACE2 knockout mice displayed an elevated level of ER stress and mitochondrial dysfunctions in skeletal muscle. In contrast, activation of ACE2 can ameliorate ER stress and mitochondrial function, which slightly accompanied by reduced TG content and down-regulated the expression of skeletal muscle lipogenic proteins in the db/db mice. Additionally, ACE2 improved skeletal muscle lipid metabolism and ER stress genes in the C2C12 cells. Mechanistically, endogenous ACE2 improved lipid metabolism through the IKKß/NFκB/IRS-1 pathway in skeletal muscle. CONCLUSIONS: ACE2 was first reported to play a notable role on intramuscular fat regulation by improving endoplasmic reticulum and mitochondrial function. This study may provide a strategy for treating insulin resistance in skeletal muscle.


Assuntos
Estresse do Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Metabolismo dos Lipídeos/genética , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Peptidil Dipeptidase A/genética , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Chaperona BiP do Retículo Endoplasmático , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Receptores X do Fígado/genética , Receptores X do Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Peptidil Dipeptidase A/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Triglicerídeos/metabolismo
18.
BMC Cardiovasc Disord ; 19(1): 145, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208330

RESUMO

BACKGROUND: The relationship between vitamin D levels and peripheral arterial disease (PAD) remains unclear. We assessed the association of serum 25-hydroxyvitamin D (25(OH)D) levels with the prevalence of PAD in patients with type 2 diabetes mellitus(T2DM). METHODS: A total of 1018 T2DM patients participated in this cross-sectional study. Serum 25(OH)D levels were measured and risk factors of PAD were recorded. PAD was diagnosed as an ankle-brachial index (ABI) < 0.9. RESULTS: The mean age of the diabetic patients was 58.59 ± 11.34 years. Of all the patients, only 20.1% had a 25(OH)D level ≥ 20 ng/mL. Compared to patients without PAD, serum 25(OH)D levels were significantly lower in those with PAD (14.81 ± 8.43 vs. 11.55 ± 5.65 ng/mL, P < 0.001). The overall prevalence of PAD was 7.7%. From the highest level (≥ 20 ng/mL) to the lowest level (< 10 ng/mL) of serum 25(OH)D, the prevalence of PAD was 2.8, 7.5 and 10.7% respectively. After adjustment for age, sex, body mass index (BMI), smoking status and season, compared to patients with serum 25(OH)D levels ≥20 ng/mL, the odds ratios of PAD in patients with a level of 10 to < 20 ng/mL and < 10 ng/mL was 3.587(95% CI: 1.314-9.790) and 5.540(95% CI: 2.004-15.320), respectively. When further considering the influence of coronary heart disease (CHD), hypertension and cerebral infarction, the ratios changed to 3.824(95% CI: 1.378-10.615) and 5.729(95% CI: 2.028-16.187), respectively. And after further adjustment for the duration of diabetes, glycated hemoglobin (HbA1c) and glomerular filtration rate (GFR), the ratios changed to 3.489(95% CI: 1.100-11.062) and 3.872(95% CI: 1.168-12.841), respectively. CONCLUSIONS: Reduced serum vitamin D levels were associated with an increased risk of PAD in T2DM patients. Randomized interventive clinical studies are required to verify the effects of vitamin D supplementation on PAD.


Assuntos
Diabetes Mellitus Tipo 2/epidemiologia , Angiopatias Diabéticas/epidemiologia , Doença Arterial Periférica/epidemiologia , Deficiência de Vitamina D/epidemiologia , Idoso , Biomarcadores/sangue , Glicemia/metabolismo , China/epidemiologia , Estudos Transversais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/diagnóstico , Angiopatias Diabéticas/sangue , Angiopatias Diabéticas/diagnóstico , Feminino , Hemoglobinas Glicadas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Doença Arterial Periférica/sangue , Doença Arterial Periférica/diagnóstico , Prevalência , Medição de Risco , Fatores de Risco , Vitamina D/análogos & derivados , Vitamina D/sangue , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/diagnóstico
19.
Nutr Metab (Lond) ; 16: 37, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31160916

RESUMO

BACKGROUND: Proliferative diabetic retinopathy (PDR), a sight-threatening retinopathy, is the leading cause of irreversible blindness in adults. Despite strict control of systemic risk factors, a fraction of patients with diabetes develop PDR, suggesting the existence of other potential pathogenic factors underlying PDR. This study aimed to investigate the plasma metabotype of patients with PDR and to identify novel metabolite markers for PDR. Biomarkers identified from this study will provide scientific insight and new strategies for the early diagnosis and intervention of diabetic retinopathy. METHODS: A total of 1024 patients with type 2 diabetes were screened. To match clinical parameters between case and control subjects, patients with PDR (PDR, n = 21) or those with a duration of diabetes of ≥10 years but without diabetic retinopathy (NDR, n = 21) were assigned to the present case-control study. Distinct metabolite profiles of serum were examined using liquid chromatography-mass spectrometry (LC-MS). RESULTS: The distinct metabolites between PDR and NDR groups were significantly enriched in 9 KEGG pathways (P < 0.05, impact > 0.1), namely, alanine, aspartate and glutamate metabolism, caffeine metabolism, beta-alanine metabolism, purine metabolism, cysteine and methionine metabolism, sulfur metabolism, sphingosine metabolism, and arginine and proline metabolism. A total of 63 altered metabolites played important roles in these pathways. Finally, 4 metabolites were selected as candidate biomarkers for PDR, namely, fumaric acid, uridine, acetic acid, and cytidine. The area under the curve for these biomarkers were 0.96, 0.95, 1.0, and 0.95, respectively. CONCLUSIONS: This study suggested that impairment in the metabolism of pyrimidines, arginine and proline were identified as metabolic dysregulation associated with PDR. And fumaric acid, uridine, acetic acid, and cytidine might be potential biomarkers for PDR. Fumaric acid was firstly reported as a novel metabolite marker with no prior reports of association with diabetes or diabetic retinopathy, which might provide insights into potential new pathogenic pathways for diabetic retinopathy.

20.
Ren Fail ; 41(1): 446-454, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31162999

RESUMO

Objectives: Urine neutrophil gelatinase-associated lipocalin (NGAL) was found to increase in diabetic kidney disease (DKD). However, the clinical value of urine NGAL as diagnostic indicators in DKD remains to be clarified. Methods: Relevant studies were systematically retrieved from PubMed, Embase, Web of Science, and the Cochrane Library. Stratified analyses and regression analyses were performed. Results: Fourteen studies with 1561 individuals were included in our analysis, including 1204 cross-sectional participants and 357 cohort participants. For the cross-sectional studies, the pooled sensitivity and specificity of NGAL in the diagnosis of DKD were 0.82 (95% confidence interval (CI): 0.75-0.87) and 0.81 (95% CI: 0.68-0.90), respectively. The pooled diagnostic odds ratio was 19 (95% CI: 11-33), and the overall area under the curve was 0.88 (95% CI: 0.84-0.90). For the cohort studies, the pooled sensitivity and specificity of NGAL in the diagnosis of DKD were 0.96 (95% CI: 0.91-0.98) and 0.89 (95% CI: 0.84-0.92), respectively. The overall area under the curve was 0.98, indicating good discriminative ability of NGAL as biomarkers for DKD. Conclusions: Urine NGAL, as the early diagnostic marker of DKD, might have the high diagnostic value, especially in cohort studies.


Assuntos
Nefropatias Diabéticas/diagnóstico , Lipocalina-2/urina , Adolescente , Adulto , Idoso , Biomarcadores/urina , Criança , Estudos de Coortes , Estudos Transversais , Nefropatias Diabéticas/urina , Diagnóstico Precoce , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA