Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(51): 28296-28306, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38090812

RESUMO

Atherosclerosis (AS) is the formation of plaques in blood vessels, which leads to serious cardiovascular diseases. Current research has disclosed that the formation of AS plaques is highly related to the foaming of macrophages. However, there is a lack of detailed molecular biological mechanisms. We proposed a "live sensor" by grafting a tetrazine-based ratiometric NO probe within macrophages through metabolic and bio-orthogonal labeling. This "live sensor" was proved to target the AS plaques with a diameter of only tens of micrometers specifically and visualized endogenous NO at two lesion stages in the AS mouse model. The ratiometric signals from the probe confirmed the participation of NO during AS and indicated that the generation of endogenous NO increased significantly as the lesion progressed. Our proposal of this "live sensor" provided a native and smart strategy to target and deliver small molecular probes to the AS plaques at the in vivo level, which can be used as universal platforms for the detection of reactive molecules or microenvironmental factors in AS.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Óxido Nítrico/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Macrófagos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Sondas Moleculares/metabolismo
2.
Nat Commun ; 14(1): 7251, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945555

RESUMO

Multidrug-resistant (MDR) bacteria cause severe clinical infections and a high mortality rate of over 40% in patients with immunodeficiencies. Therefore, more effective, broad-spectrum, and accurate treatment for severe cases of infection is urgently needed. Here, we present an adoptive transfer of macrophages loaded with a near-infrared photosensitizer (Lyso700D) in lysosomes to boost innate immunity and capture and eliminate bacteria through a photodynamic effect. In this design, the macrophages can track and capture bacteria into the lysosomes through innate immunity, thereby delivering the photosensitizer to the bacteria within a single lysosome, maximizing the photodynamic effect and minimizing the side effects. Our results demonstrate that this therapeutic strategy eliminated MDR Staphylococcus aureus (MRSA) and Acinetobacter baumannii (AB) efficiently and cured infected mice in both two models with 100% survival compared to 10% in the control groups. Promisingly, in a rat model of central nervous system bacterial infection, we performed the therapy using bone marrow-divided macrophages and implanted glass fiber to conduct light irradiation through the lumbar cistern. 100% of infected rats survived while none of the control group survived. Our work proposes an efaficient and safe strategy to cure MDR bacterial infections, which may benefit the future clinical treatment of infection.


Assuntos
Acinetobacter baumannii , Staphylococcus aureus Resistente à Meticilina , Fotoquimioterapia , Infecções Estafilocócicas , Humanos , Ratos , Camundongos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus , Bactérias , Macrófagos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla
3.
BMC Plant Biol ; 23(1): 285, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248487

RESUMO

BACKGROUND: Taxaceae, is a class of dioecious and evergreen plant with substantial economic and ecology value. At present many phytochemical analyses have been performed in Taxus plants. And various biological constituents have been isolated from various Taxus species. However, the difference of compounds and antioxidant capacity of different tissues of T. media is not clear. RESULTS: In the present study, we investigated the metabolites and antioxidant activity of four tissues of T. media, including T. media bark (TB), T. media fresh leaves (TFL), T. media seeds (TS), T. media aril (TA). In total, 808 compounds, covering 11 subclasses, were identified by using UPLC-MS/MS. Paclitaxel, the most popular anticancer compound, was found to accumulate most in TS, followed by TB, TFL and TA in order. Further analysis found that 70 key differential metabolites with VIP > 1.0 and p < 0.05, covering 8 subclasses, were screened as the key differential metabolites in four tissues. The characteristic compounds of TFL mainly included flavonoids and tanninsis. Alkaloids and phenolic acids were major characteristic compounds of TS and TB respectively. Amino acids and derivatives, organic acids, saccharides and lipids were the major characteristic compounds of TA. Additionally, based on FRAP and ABTS method, TS and TFL exhibited higher antioxidant activity than TB and TA. CONCLUSION: There was significant difference in metabolite content among different tissues of T. media. TFL and TS had higher metabolites and antioxidant capacity than other tissues, indicating that TFL and TS were more suitable for the development and utilization of T. media in foods and drinks.


Assuntos
Antioxidantes , Taxus , Antioxidantes/metabolismo , Taxus/metabolismo , Extratos Vegetais/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem , Metabolômica/métodos , Flavonoides/metabolismo
4.
Front Nutr ; 10: 1153983, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969824

RESUMO

Matcha has a unique aroma of seaweed-like, which is popular with Chinese consumers. In order to effectively understand and use matcha for drinks and tea products, we roundly analyzed the variation of main quality components of 11 matcha samples from different regions in the Chinese market. Most of matcha samples had lower ratio of tea polyphenols to amino acids (RTA), and the RTA of 9 samples of matcha was less than 10, which is beneficial to the formation of fresh and mellow taste of matcha. The total volatile compounds concentrations by HS-SPME were 1563.59 ~ 2754.09 mg/L, among which terpenoids, esters and alcohols were the top three volatile components. The total volatile compounds concentrations by SAFE was 1009.21 ~ 1661.98 mg/L, among which terpenoids, heterocyclic compounds and esters ranked the top three. The 147 volatile components with high concentration (>1 mg/L) and no difference between samples are the common odorants to the 11 samples of matcha. The 108 distinct odorants had differences among the matcha samples, which were important substances leading to the different aroma characteristics. Hierarchical cluster analysis (HCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) showed that 11 samples of matcha were well clustered according to different components. Japanese matcha (MT, MY, ML, MR, MJ) could be clustered into two categories. The aroma composition of Guizhou matcha (GM1, GM2) was similar to that of Japanese matcha, 45 volatile components (decanal, pyrazine, 3,5-diethyl-2-methyl-, 1-hexadecanol, etc. were its characteristic aroma components. The aroma characteristics of Shandong matcha and Japanese matcha (ML, MR, MJ) were similar, 15 volatile components (γ-terpinene, myrtenol, cis-3-hexenyl valerate, etc.) were its characteristic aroma components. While Jiangsu matcha and Zhejiang matcha have similar aroma characteristics due to 225 characteristic aroma components (coumarin, furan, 2-pentyl-, etc). In short, the difference of volatile components formed the regional flavor characteristics of matcha. This study clarified the compound basis of the flavor difference of matcha from different regions in the Chinese market, and provided a theoretical basis for the selection and application of matcha in drinks and tea products.

5.
J Agric Food Chem ; 71(5): 2377-2389, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695193

RESUMO

Salicylic acid (SA) is an important plant hormone and signal required for establishing resistance to diverse pathogens and plant diseases. The abundant polyphenols in tea plants also defend plants from biotic and abiotic stresses. However, whether exogenous SA would increase the resistance of tea plants to adversity and the relationship between SA and polyphenols are still poorly understood. Here, we carried out SA treatment on tea seedlings and performed transcriptome sequencing. SA treatment inhibited the phenylpropanoid and flavonoid metabolic pathways but promoted the lignin metabolic pathways. The increased accumulation of lignin in tea leaves after treating with SA indicated that lignin might coordinate SA, enhance, and improve plant defense and disease resistance. Simultaneously, an SA-inducible flavonoid glucosyltransferase (CsUGT0554) specifically involved in 7-OH site glycosylation was characterized in vitro. These results provided valuable information about the effects of SA on tea seedlings and the molecular basis for SA-mediated immune responses.


Assuntos
Camellia sinensis , Camellia sinensis/metabolismo , Ácido Salicílico/metabolismo , Lignina/metabolismo , Proteínas de Plantas/metabolismo , Flavonoides/metabolismo , Polifenóis/metabolismo , Folhas de Planta/metabolismo , Chá/metabolismo , Regulação da Expressão Gênica de Plantas
6.
J Am Chem Soc ; 144(49): 22562-22573, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36445324

RESUMO

Restoring innate apoptosis and simultaneously inhibiting metastasis by a molecular drug is an effective cancer therapeutic approach. Herein, a large rigid and V-shaped NIR-II dye, DUT850, is rationally designed for potential cardiolipin (CL)-targeted chemo-phototheranostic application. DUT850 displays moderate NIR-II fluorescence, excellent photodynamic therapy (PDT) and photothermal therapy (PTT) performance, and ultra-high photostability. More importantly, the unique rigid V-shaped backbone, positive charge, and lipophilicity of DUT850 afford its specific recognition and efficient binding to CL; such an interaction of DUT850-CL induced a spectrum of physiological disruptions, including translocation of cytochrome c, Ca2+ overload, reactive oxygen species burst, and ATP depletion, which not only activated cancer cell apoptosis but also inhibited tumor metastasis both in vitro and in vivo. Furthermore, the tight binding of DUT850-CL improves the phototoxicity of DUT850 toward cancer cells (IC50 as low as 90 nM) under safe 808 nm laser irradiation (330 mW cm-2). Upon encapsulation into bovine serum albumin (BSA), DUT850@BSA exerted a synergetic chemo-PDT-PTT effect on the 4T1 tumor mouse model, eventually leading to solid tumor annihilation and metastasis inhibition, which could be followed in real time with the NIR-II fluorescence of DUT850. This work contributed a promising approach for simultaneously re-engaging cancer cell apoptotic networks and activating the anti-metastasis pathway by targeting a pivotal upstream effector, which will bring a medical boon for inhibition of tumor proliferation and metastasis.


Assuntos
Avalanche , Nanopartículas , Neoplasias , Fotoquimioterapia , Camundongos , Animais , Fototerapia , Cardiolipinas , Neoplasias/tratamento farmacológico , Corantes Fluorescentes/uso terapêutico , Soroalbumina Bovina/química , Apoptose , Nanopartículas/química , Linhagem Celular Tumoral
7.
J Control Release ; 345: 306-313, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301053

RESUMO

Cytokines are important immunotherapeutics with approved drugs for the treatment of human cancers. However, systemic administration of cytokines often fails to achieve adequate concentrations to immune cells in tumors due to dose-limiting toxicity. Thus, developing localized therapy that directly delivers immune-stimulatory cytokines to tumors may improve the therapeutic efficacy. In this study, we generated novel lipid nanoparticles (LNPs) encapsulated with mRNAs encoding cytokines including IL-12, IL-27 and GM-CSF, and tested their anti-tumor activity. We first synthesized ionizable lipid materials containing di-amino groups with various head groups (DALs). The novel DAL4-LNP effectively delivered different mRNAs in vitro to tumor cells and in vivo to tumors. Intratumoral injection of DAL4-LNP loaded with IL-12 mRNA was most potent in inhibiting B16F10 melanoma tumor growth compared to IL-27 or GM-CSF mRNAs in monotherapy. Furthermore, intratumoral injection of dual DAL4-LNP-IL-12 mRNA and IL-27 mRNA showed a synergistic effect in suppressing tumor growth without causing systematic toxicity. Most importantly, intratumoral delivery of IL-12 and IL-27 mRNAs induced robust infiltration of immune effector cells, including IFN-γ and TNF-α producing NK and CD8+ T cells into tumors. Thus, intratumoral administration of DAL-LNP loaded with IL-12 and IL-27 mRNA provides a new treatment strategy for cancer.


Assuntos
Interleucina-27 , Nanopartículas , Neoplasias , Linfócitos T CD8-Positivos , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Humanos , Imunoterapia , Interleucina-12/genética , Lipossomos , Neoplasias/tratamento farmacológico , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico
8.
Nat Commun ; 12(1): 7264, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907171

RESUMO

Antibodies targeting costimulatory receptors of T cells have been developed for the activation of T cell immunity in cancer immunotherapy. However, costimulatory molecule expression is often lacking in tumor-infiltrating immune cells, which can impede antibody-mediated immunotherapy. Here, we hypothesize that delivery of costimulatory receptor mRNA to tumor-infiltrating T cells will enhance the antitumor effects of antibodies. We first design a library of biomimetic nanoparticles and find that phospholipid nanoparticles (PL1) effectively deliver costimulatory receptor mRNA (CD137 or OX40) to T cells. Then, we demonstrate that the combination of PL1-OX40 mRNA and anti-OX40 antibody exhibits significantly improved antitumor activity compared to anti-OX40 antibody alone in multiple tumor models. This treatment regimen results in a 60% complete response rate in the A20 tumor model, with these mice being resistant to rechallenge by A20 tumor cells. Additionally, the combination of PL1-OX40 mRNA and anti-OX40 antibody significantly boosts the antitumor immune response to anti-PD-1 + anti-CTLA-4 antibodies in the B16F10 tumor model. This study supports the concept of delivering mRNA encoding costimulatory receptors in combination with the corresponding agonistic antibody as a strategy to enhance cancer immunotherapy.


Assuntos
Materiais Biomiméticos/administração & dosagem , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Nanopartículas/administração & dosagem , RNA Mensageiro/administração & dosagem , Linfócitos T/imunologia , Animais , Materiais Biomiméticos/química , Sistemas de Liberação de Medicamentos , Glicolipídeos/administração & dosagem , Glicolipídeos/química , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Nanopartículas/química , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/terapia , Fosfolipídeos/administração & dosagem , Fosfolipídeos/química , RNA Mensageiro/química , Receptores OX40/antagonistas & inibidores , Receptores OX40/genética , Receptores OX40/imunologia , Receptores OX40/metabolismo , Linfócitos T/metabolismo , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
9.
Small ; 17(21): e2100398, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33885221

RESUMO

Small molecular dye that simultaneously exerts dual PDT/PTT effects as well as florescence imaging triggered by a single NIR-II light has never been reported to date. Apart from the huge challenge in pushing absorption profile into NIR-II region, fine-tuning dyes' excited state via rational structure design to meet all three functions, especially oxygen photosensitization, remains the most prominent throttle. Herein, five novel NIR-II dyes (BHs) are productively developed by strategically conjugating dyad innovative xanthonium with sequentially extended polymethine bridges, enabling intense absorption from 890 to 1206 nm, significantly 400 nm longer than conventional cyanine dyes with same polymethines. More importantly, owning to high resonance and favorable excited state energy population induced by greater rigidity via ring-fused amino, BH 1024 exhibits best singlet oxygen generation capability, moderate photothermal heating, and considerable fluorescence under 1064 nm laser irradiation. Furthermore, BH 1024 is encapsulated into folate-functionalized polymer, which demonstrated a synergetic PDT/PTT effect in vitro and in vivo, eventually achieving solid tumors elimination under NIR-II fluorescence guide. As far as it is known, this is the first time small molecular dyes for NIR-II PDT or NIR-II PDT/PTT are explored and designed.


Assuntos
Neoplasias , Fotoquimioterapia , Corantes/uso terapêutico , Humanos , Indóis , Lasers , Neoplasias/tratamento farmacológico
10.
Nat Prod Res ; 35(16): 2730-2733, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31441665

RESUMO

Triterpenoid saponins are the main active ingredients extracted from Camellia oleifera Abel. In this study, crude saponins (Tc) was extracted from tea seed pomace and purified to obtain total saponins (T0). We used a COSMOSIL C18-OPN to separate T0 into three fractions-highly polar saponins (T1), moderately polar saponins (T2), and weakly polar saponins (T3). HPLC-ESI-MS analysis revealed that T2 were mainly composed of components with m/z ([M-H]-) of 1201.5617, 1187.5822, 1245.5862, and 1215.5779. Cell cycle analysis showed that both T0 and T2 inhibited proliferation and induced S phase arrest of MCF-7 cells. Further cell invasion assays demonstrated T0 and T2 also significantly reduced the invasive potential of MCF-7 cells. So T2 extracted from tea seed pomace (Camellia oleifera) may have effective antitumor activity.


Assuntos
Antineoplásicos Fitogênicos , Camellia , Saponinas , Triterpenos , Antineoplásicos Fitogênicos/isolamento & purificação , Antineoplásicos Fitogênicos/farmacologia , Humanos , Células MCF-7 , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Saponinas/isolamento & purificação , Saponinas/farmacologia , Sementes/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
11.
J Agric Food Chem ; 68(51): 15142-15153, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33307696

RESUMO

Anthocyanins and PAs are the two most common flavonoids, which are widely present among diverse species. Great progress has been made in their synthesis and regulation. In this study, we analyzed the metabolic fluxes from their synthetic precursor leucoanthocyanins, which were obtained by overexpression of dihydroflavonol 4-reductase (DFR) in vitro and in vivo. The unstable product leucocyanidin generated in the CsDFRa enzymatic reaction was easily converted into C-type carbocations under weak acidic conditions, which could be further involved in the synthesis of C-type PAs in vitro. Additionally, the metabolites in tobacco overexpressing CsDFRa and Arabidopsis thaliana DFR and anthocyanidin synthase (ANS) mutants were investigated. In CsDFRa transgenic tobacco, the content of anthocyanins in the petals was greatly increased, but no catechin or PA was detected. In A. thaliana, EC-type carbocation was mainly accumulated in the wild type (WT), and the C-type carbocation was only detected in the ans mutant. In tea plant, the accumulation of C-type PAs is strong positively correlated with the expression of CsDFRa. In summary, leucocyanidin is not only involved in the synthesis of downstream anthocyanin and epicatechin but also can be converted into C-type carbocation to participate in the synthesis of C-type PAs. Hence, from leucocyanidin, three metabolic fluxes were formed toward catechin, cyanidin, and C-type carbocation. These results enriched the metabolic fluxes of leucoanthocyanins and further elaborated the roles of DFR in the process of C-type PA formation.


Assuntos
Antocianinas/biossíntese , Flavonoides/metabolismo , Nicotiana/metabolismo , Proantocianidinas/biossíntese , Antocianinas/química , Arabidopsis/genética , Arabidopsis/metabolismo , Flavonoides/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proantocianidinas/química , Nicotiana/genética
12.
Nat Nanotechnol ; 15(1): 41-46, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31907443

RESUMO

Sepsis, a condition caused by severe infections, affects more than 30 million people worldwide every year and remains the leading cause of death in hospitals1,2. Moreover, antimicrobial resistance has become an additional challenge in the treatment of sepsis3, and thus, alternative therapeutic approaches are urgently needed2,3. Here, we show that adoptive transfer of macrophages containing antimicrobial peptides linked to cathepsin B in the lysosomes (MACs) can be applied for the treatment of multidrug-resistant bacteria-induced sepsis in mice with immunosuppression. The MACs are constructed by transfection of vitamin C lipid nanoparticles that deliver antimicrobial peptide and cathepsin B (AMP-CatB) mRNA. The vitamin C lipid nanoparticles allow the specific accumulation of AMP-CatB in macrophage lysosomes, which is the key location for bactericidal activities. Our results demonstrate that adoptive MAC transfer leads to the elimination of multidrug-resistant bacteria, including Staphylococcus aureus and Escherichia coli, leading to the complete recovery of immunocompromised septic mice. Our work provides an alternative strategy for overcoming multidrug-resistant bacteria-induced sepsis and opens up possibilities for the development of nanoparticle-enabled cell therapy for infectious diseases.


Assuntos
Transferência Adotiva , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Ácido Ascórbico/uso terapêutico , Macrófagos/transplante , Sepse/terapia , Animais , Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Ácido Ascórbico/administração & dosagem , Catepsina B/genética , Portadores de Fármacos/química , Farmacorresistência Bacteriana Múltipla , Lipídeos/química , Lipossomos , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Células RAW 264.7 , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Sepse/genética , Vitaminas/administração & dosagem , Vitaminas/uso terapêutico
13.
Nat Cancer ; 1(9): 882-893, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-34447945

RESUMO

Therapies that synergistically stimulate immunogenic cancer cell death (ICD), inflammation, and immune priming are of great interest for cancer immunotherapy. However, even multi-agent therapies often fail to trigger all of the steps necessary for self-sustaining anti-tumor immunity. Here we describe self-replicating RNAs encapsulated in lipid nanoparticles (LNP-replicons), which combine three key elements: (1) an LNP composition that potently promotes ICD, (2) RNA that stimulates danger sensors in transfected cells, and (3) RNA-encoded IL-12 for modulation of immune cells. Intratumoral administration of LNP-replicons led to high-level expression of IL-12, stimulation of a type I interferon response, and cancer cell ICD, resulting in a highly inflamed tumor microenvironment and priming of systemic anti-tumor immunity. In several mouse models of cancer, a single intratumoral injection of replicon-LNPs eradicated large established tumors, induced protective immune memory, and enabled regression of distal uninjected tumors. LNP-replicons are thus a promising multifunctional single-agent immunotherapeutic.


Assuntos
Nanopartículas , Neoplasias , Animais , Imunoterapia/métodos , Interleucina-12/genética , Lipossomos , Camundongos , Neoplasias/genética , RNA , Microambiente Tumoral
14.
Molecules ; 24(23)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783586

RESUMO

A disorder in pears that is known as 'hard-end' fruit affects the appearance, edible quality, and market value of pear fruit. RNA-Seq was carried out on the calyx end of 'Whangkeumbae' pear fruit with and without the hard-end symptom to explore the mechanism underlying the formation of hard-end. The results indicated that the genes in the phenylpropanoid pathway affecting lignification were up-regulated in hard-end fruit. An analysis of differentially expressed genes (DEGs) identified three NAC transcription factors, and RT-qPCR analysis of PpNAC138, PpNAC186, and PpNAC187 confirmed that PpNAC187 gene expression was correlated with the hard-end disorder in pear fruit. A transient increase in PpNAC187 was observed in the calyx end of 'Whangkeumbae' fruit when they began to exhibit hard-end symptom. Concomitantly, the higher level of PpCCR and PpCOMT transcripts was observed, which are the key genes in lignin biosynthesis. Notably, lignin content in the stem and leaf tissues of transgenic tobacco overexpressing PpNAC187 was significantly higher than in the control plants that were transformed with an empty vector. Furthermore, transgenic tobacco overexpressing PpNAC187 had a larger number of xylem vessel elements. The results of this study confirmed that PpNAC187 functions in inducing lignification in pear fruit during the development of the hard-end disorder.


Assuntos
Frutas/metabolismo , Lignina/biossíntese , Doenças das Plantas , Proteínas de Plantas/metabolismo , Pyrus/genética , Fatores de Transcrição/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dureza/fisiologia , Filogenia , Doenças das Plantas/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/citologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Pyrus/metabolismo , RNA-Seq , Metabolismo Secundário , Nicotiana/genética , Nicotiana/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/genética
15.
Nano Res ; 12(4): 855-861, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31737223

RESUMO

Triple-negative breast cancer (TNBC) is one type of the most aggressive breast cancers with poor prognosis. It is of great urgency to develop new therapeutics for treating TNBC. Based on current treatment guideline and genetic information of TNBC, a combinational therapy platform integrating chemotherapy drugs and mRNA encoding tumor suppressor proteins may become an efficacious strategy. In this study, we developed paclitaxel amino lipid (PAL) derived nanoparticles (NPs) to incorporate both chemotherapy drugs and P53 mRNA. The PAL P53 mRNA NPs showed superior properties compared to Abraxane® and Lipusu® used in the clinic including high paclitaxel loading capacity (24 wt.%, calculated by paclitaxel in PAL), PAL encapsulation efficiency (94.7% ± 6.8%) and mRNA encapsulation efficiency (88.7% ± 0.7%). Meanwhile, these NPs displayed synergetic cytotoxicity of paclitaxel and P53 mRNA in cultured TNBC cells. More importantly, we demonstrated in vivo anti-tumor efficacy of PAL P53 mRNA NPs in an orthotopic TNBC mouse model. Overall, these chemotherapy drugs derived mRNA NPs provide a new platform to integrate chemotherapy and personalized medicine using tumor genetic information, and therefore represent a promising approach for TNBC treatment.

16.
Anal Chem ; 91(23): 15308-15316, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31691562

RESUMO

Exosomes are cell-secreted membrane-coated vesicles with their sizes variable from 30 to 150 nm. So far, there is no simple, fast, and economical way to evaluate the sizes of exosomes in living systems. Here, we put forward a hypothesis in which the sphere sizes (resulting in different curvature) may affect the local mobility/viscosity of exosome membranes. Based on this hypothesis, we propose a novel method to evaluate the exosome sizes by quantifying the membrane viscosity. For this sake, we design a membrane-targeting molecular rotor with its fluorescence lifetime sensitive to viscosity and use it under a fluorescence lifetime imaging microscope (FLIM). Through a multiple-step ultrafiltration technique, we isolate three individual size distributions (10-50, 50-100, and 100-220 nm) with exosomes from HeLa and MCF-7 cell culture media and then perform the FLIM assay on the above two groups. In both cases, we indeed find a regular pattern in which the membrane viscosity reflected by lifetime decreases with exosome sizes. We then perform the assay on exosomes from cancer cells, corresponding normal tissue cells, and serum of breast cancer patients. We find that exosomes from cancer cells have a fluorescence lifetime (larger viscosity) longer than that of normal tissue cells. The average fluorescence lifetime of exosomes from a triple-negative breast cancer patient is longer (or the viscosity is larger) than that of a HER2 positive one. Therefore, our new and simple method may hold application prospects in future cancer diagnosis.


Assuntos
Membrana Celular/química , Exossomos/química , Imagem Óptica , Humanos , Microscopia de Fluorescência , Tamanho da Partícula , Propriedades de Superfície , Células Tumorais Cultivadas , Viscosidade
17.
Bioorg Med Chem ; 27(11): 2187-2191, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31005367

RESUMO

Targeted drug delivery platforms can increase the concentration of drugs in specific cell populations, reduce adverse effects, and hence improve the therapeutic effect of drugs. Herein, we designed two conjugates by installing the targeting ligand GalNAc (N-acetylgalactosamine) onto atorvastatin (AT). Compared to the parent drug, these two conjugates, termed G2-AT and G2-K-AT, showed increased hepatic cellular uptake. Moreover, both conjugates were able to release atorvastatin, and consequently showed dramatic inhibition of ß-hydroxy-ß-methylglutaryl-CoA (HMG-CoA) reductase and increased LDL receptors on cell surface.


Assuntos
Acetilgalactosamina/análogos & derivados , Acetilgalactosamina/farmacologia , Receptor de Asialoglicoproteína/metabolismo , Atorvastatina/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Acetilgalactosamina/metabolismo , Animais , Atorvastatina/síntese química , Atorvastatina/metabolismo , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Humanos , Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/síntese química , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Ligantes , Receptores de LDL/metabolismo , Suínos
18.
Chem Commun (Camb) ; 55(13): 1951-1954, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30681076

RESUMO

HoeSR, a nucleus specific probe for dSTORM super-resolution imaging of nucleus DNA in live cells, was designed by conjugating a rhodamine fluorophore and a Hoechst tag. HoeSR labels the cell nucleus in a wash-free way and emits intensive fluorescence exclusively in the nucleus. With the aid of HoeSR, nucleus nanostructures at different mitosis stages were observed through super-resolution imaging.


Assuntos
Núcleo Celular/química , Sobrevivência Celular , DNA de Neoplasias/análise , Corantes Fluorescentes/química , Imagem Óptica , Células HeLa , Humanos , Células MCF-7 , Microscopia de Fluorescência , Estrutura Molecular
19.
Bioorg Med Chem ; 27(3): 479-482, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594452

RESUMO

Daratumumab, an FDA approved antibody drug, displays specific targeting ability to abnormal white blood cells overexpressing CD38 and provides efficacious therapy for multiple myeloma. Here, in order to achieve enhanced remission of multiple myeloma, we designed Dara-DM4, antibody drug conjugates (ADCs) by conjugating Daratumumab and DM4 via a disulfide linker. Dara-DM4 showed significantly higher cellular uptake and inhibitory efficacy on MM1S cells that overexpressing CD38 with an IC50 of 0.88 µg/mL post 72 hr treatment. These results support a promising ADCs strategy for multiple myeloma treatment.


Assuntos
Anticorpos Monoclonais/metabolismo , Desenho de Fármacos , Imunoconjugados/farmacologia , Maitansina/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Imunoconjugados/química , Maitansina/química , Estrutura Molecular , Relação Estrutura-Atividade
20.
Artigo em Inglês | MEDLINE | ID: mdl-29726120

RESUMO

Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.


Assuntos
Técnicas de Transferência de Genes , Nanopartículas/química , Nanotecnologia/métodos , RNA Mensageiro/administração & dosagem , Animais , Humanos , Lipídeos/química , Proteínas/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA