Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1344761, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487529

RESUMO

Background: The importance of CD11b/CD18 expression in neutrophil effector functions is well known. Beyond KINDLIN3 and TALIN1, which are involved in the induction of the high-affinity binding CD11b/CD18 conformation, the signaling pathways that orchestrate this response remain incompletely understood. Method: We performed an unbiased screening method for protein selection by biotin identification (BioID) and investigated the KINDLIN3 interactome. We used liquid chromatography with tandem mass spectrometry as a powerful analytical tool. Generation of NB4 CD18, KINDLIN3, or SKAP2 knockout neutrophils was achieved using CRISPR-Cas9 technology, and the cells were examined for their effector function using flow cytometry, live cell imaging, microscopy, adhesion, or antibody-dependent cellular cytotoxicity (ADCC). Results: Among the 325 proteins significantly enriched, we identified Src kinase-associated phosphoprotein 2 (SKAP2), a protein involved in actin polymerization and integrin-mediated outside-in signaling. CD18 immunoprecipitation in primary or NB4 neutrophils demonstrated the presence of SKAP2 in the CD11b/CD18 complex at a steady state. Under this condition, adhesion to plastic, ICAM-1, or fibronectin was observed in the absence of SKAP2, which could be abrogated by blocking the actin rearrangements with latrunculin B. Upon stimulation of NB4 SKAP2-deficient neutrophils, adhesion to fibronectin was enhanced whereas CD18 clustering was strongly reduced. This response corresponded with significantly impaired CD11b/CD18-dependent NADPH oxidase activity, phagocytosis, and cytotoxicity against tumor cells. Conclusion: Our results suggest that SKAP2 has a dual role. It may restrict CD11b/CD18-mediated adhesion only under resting conditions, but its major contribution lies in the regulation of dynamic CD11b/CD18-mediated actin rearrangements and clustering as required for cellular effector functions of human neutrophils.


Assuntos
Neutrófilos , Quinases da Família src , Humanos , Neutrófilos/metabolismo , Quinases da Família src/metabolismo , Fibronectinas/metabolismo , Antígenos CD18/metabolismo , Adesão Celular , Actinas/metabolismo , Fosfoproteínas/metabolismo , Antígeno de Macrófago 1/metabolismo
2.
Blood Cancer J ; 13(1): 125, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37591861

RESUMO

MYD88 is the key signaling adaptor-protein for Toll-like and interleukin-1 receptors. A somatic L265P mutation within the Toll/interleukin-1 receptor (TIR) domain of MYD88 is found in 90% of Waldenström macroglobulinemia cases and in a significant subset of diffuse large B-cell lymphomas. MYD88-L265P strongly promotes NF-κB pathway activation, JAK-STAT signaling and lymphoma cell survival. Previous studies have identified other residues of the TIR-domain crucially involved in NF-κB activation, including serine 257 (S257), indicating a potentially important physiological role in the regulation of MYD88 activation. Here, we demonstrate that MYD88 S257 is phosphorylated in B-cell lymphoma cells and that this phosphorylation is required for optimal TLR-induced NF-κB activation. Furthermore, we demonstrate that a phosphomimetic MYD88-S257D mutant promotes MYD88 aggregation, IRAK1 phosphorylation, NF-κB activation and cell growth to a similar extent as the oncogenic L265P mutant. Lastly, we show that expression of MYD88-S257D can rescue cell growth upon silencing of endogenous MYD88-L265P expression in lymphoma cells addicted to oncogenic MYD88 signaling. Our data suggest that the L265P mutation promotes TIR domain homodimerization and NF-κB activation by copying the effect of MY88 phosphorylation at S257, thus providing novel insights into the molecular mechanism underlying the oncogenic activity of MYD88-L265P in B-cell malignancies.


Assuntos
Linfoma Difuso de Grandes Células B , Fator 88 de Diferenciação Mieloide , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Fator 88 de Diferenciação Mieloide/genética , NF-kappa B , Fosforilação
3.
Commun Biol ; 6(1): 525, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188730

RESUMO

Vascular endothelial cells (ECs) form a dynamic interface between blood and tissue and play a crucial role in the progression of vascular inflammation. Here, we aim to dissect the system-wide molecular mechanisms of inflammatory endothelial-cytokine responses. Applying an unbiased cytokine library, we determined that TNFα and IFNγ induced the largest EC response resulting in distinct proteomic inflammatory signatures. Notably, combined TNFα + IFNγ stimulation induced an additional synergetic inflammatory signature. We employed a multi-omics approach to dissect these inflammatory states, combining (phospho-) proteome, transcriptome and secretome and found, depending on the stimulus, a wide-array of altered immune-modulating processes, including complement proteins, MHC complexes and distinct secretory cytokines. Synergy resulted in cooperative activation of transcript induction. This resource describes the intricate molecular mechanisms that are at the basis of endothelial inflammation and supports the adaptive immunomodulatory role of the endothelium in host defense and vascular inflammation.


Assuntos
Citocinas , Fator de Necrose Tumoral alfa , Humanos , Citocinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Células Endoteliais/metabolismo , Proteômica , Multiômica , Inflamação/metabolismo , Endotélio Vascular
4.
Cell Rep ; 42(5): 112419, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37074914

RESUMO

Potent T cell responses against infections and malignancies require a rapid yet tightly regulated production of toxic effector molecules. Their production level is defined by post-transcriptional events at 3' untranslated regions (3' UTRs). RNA binding proteins (RBPs) are key regulators in this process. With an RNA aptamer-based capture assay, we identify >130 RBPs interacting with IFNG, TNF, and IL2 3' UTRs in human T cells. RBP-RNA interactions show plasticity upon T cell activation. Furthermore, we uncover the intricate and time-dependent regulation of cytokine production by RBPs: whereas HuR supports early cytokine production, ZFP36L1, ATXN2L, and ZC3HAV1 dampen and shorten the production duration, each at different time points. Strikingly, even though ZFP36L1 deletion does not rescue the dysfunctional phenotype, tumor-infiltrating T cells produce more cytokines and cytotoxic molecules, resulting in superior anti-tumoral T cell responses. Our findings thus show that identifying RBP-RNA interactions reveals key modulators of T cell responses in health and disease.


Assuntos
Citocinas , Linfócitos T , Humanos , Linfócitos T/metabolismo , Regiões 3' não Traduzidas , Citocinas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator 1 de Resposta a Butirato/genética , Fator 1 de Resposta a Butirato/metabolismo
5.
Eur J Immunol ; 53(2): e2249918, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36482267

RESUMO

Memory CD8+ T cells are indispensable for maintaining long-term immunity against intracellular pathogens and tumors. Despite their presence at oxygen-deprived infected tissue sites or in tumors, the impact of local oxygen pressure on memory CD8+ T cells remains largely unclear. We sought to elucidate how oxygen pressure impacts memory CD8+ T cells arising after infection with Listeria monocytogenes-OVA. Our data revealed that reduced oxygen pressure during in vitro culture switched CD8+ T cell metabolism from oxidative phosphorylation to a glycolytic phenotype. Quantitative proteomic analysis showed that limiting oxygen conditions increased the expression of glucose transporters and components of the glycolytic pathway, while decreasing TCA cycle and mitochondrial respiratory chain proteins. The altered CD8+ T cell metabolism did not affect the expansion potential, but enhanced the granzyme B and IFN-γ production capacity. In vivo, memory CD8+ T cells cultured under low oxygen pressure provided protection against bacterial rechallenge. Taken together, our study indicates that strategies of cellular immune therapy may benefit from reducing oxygen during culture to develop memory CD8+ T cells with superior effector functions.


Assuntos
Listeria monocytogenes , Listeriose , Neoplasias , Animais , Camundongos , Linfócitos T CD8-Positivos , Proteômica , Neoplasias/patologia , Oxigênio/metabolismo , Glicólise , Memória Imunológica , Camundongos Endogâmicos C57BL
6.
Cells ; 11(7)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35406648

RESUMO

Hypoxia is associated with increased erythropoietin (EPO) release to drive erythropoiesis. At high altitude, EPO levels first increase and then decrease, although erythropoiesis remains elevated at a stable level. The roles of hypoxia and related EPO adjustments are not fully understood, which has contributed to the formulation of the theory of neocytolysis. We aimed to evaluate the role of oxygen exclusively on erythropoiesis, comparing in vitro erythroid differentiation performed at atmospheric oxygen, a lower oxygen concentration (three percent oxygen) and with cultures of erythroid precursors isolated from peripheral blood after a 19-day sojourn at high altitude (3450 m). Results highlight an accelerated erythroid maturation at low oxygen and more concave morphology of reticulocytes. No differences in deformability were observed in the formed reticulocytes in the tested conditions. Moreover, hematopoietic stem and progenitor cells isolated from blood affected by hypoxia at high altitude did not result in different erythroid development, suggesting no retention of a high-altitude signature but rather an immediate adaptation to oxygen concentration. This adaptation was observed during in vitro erythropoiesis at three percent oxygen by a significantly increased glycolytic metabolic profile. These hypoxia-induced effects on in vitro erythropoiesis fail to provide an intrinsic explanation of the concept of neocytolysis.


Assuntos
Eritropoese , Eritropoetina , Aclimatação , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Humanos , Hipóxia , Oxigênio/metabolismo
7.
Front Bioeng Biotechnol ; 9: 640419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718342

RESUMO

Recently, we and others have illustrated that extracellular vesicles (EVs) have the potential to support hematopoietic stem and progenitor cell (HSPC) expansion; however, the mechanism and processes responsible for the intercellular communication by EVs are still unknown. In the current study, we investigate whether primary human bone marrow derived mesenchymal stromal cells (BMSC) EVs isolated from two different origins, fetal (fEV) and adult (aEV) tissue, can increase the relative low number of HSPCs found in umbilical cord blood (UCB) and which EV-derived components are responsible for ex vivo HSPC expansion. Interestingly, aEVs and to a lesser extent fEVs, showed supportive ex vivo expansion capacity of UCB-HSPCs. Taking advantage of the two BMSC sources with different supportive effects, we analyzed the EV cargo and investigated how gene expression is modulated in HSPCs after incubation with aEVs and fEVs. Proteomics analyses of the protein cargo composition of the supportive aEV vs. the less-supportive fEV identified 90% of the Top100 exosome proteins present in the ExoCarta database. Gene Ontology (GO) analyses illustrated that the proteins overrepresented in aEVs were annotated to oxidation-reduction process, mitochondrial ATP synthesis coupled proton transport, or protein folding. In contrast, the proteins overrepresented in fEVs were annotated to extracellular matrix organization positive regulation of cell migration or transforming growth factor beta receptor (TGFBR) signaling pathway. Small RNA sequencing identified different molecular signatures between aEVs and fEVs. Interestingly, the microRNA cluster miR-99b/let-7e/miR-125a, previously identified to increase the number of HSPCs by targeting multiple pro-apoptotic genes, was highly and significantly enriched in aEVs. Although we identified significant differences in the supportive effects of aEVs and fEVs, RNAseq analyses of the 24 h treated HSPCs indicated that a limited set of genes was differentially regulated when compared to cells that were treated with cytokines only. Together, our study provides novel insights into the complex biological role of EVs and illustrates that aEVs and fEVs differentially support ex vivo expansion capacity of UCB-HSPCs. Together opening new means for the application of EVs in the discovery of therapeutics for more efficient ex vivo HSPC expansion.

8.
Mol Cell Proteomics ; 19(7): 1179-1192, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32332107

RESUMO

The vessel wall is continuously exposed to hemodynamic forces generated by blood flow. Endothelial mechanosensors perceive and translate mechanical signals via cellular signaling pathways into biological processes that control endothelial development, phenotype and function. To assess the hemodynamic effects on the endothelium on a system-wide level, we applied a quantitative mass spectrometry approach combined with cell surface chemical footprinting. SILAC-labeled endothelial cells were subjected to flow-induced shear stress for 0, 24 or 48 h, followed by chemical labeling of surface proteins using a non-membrane permeable biotin label, and analysis of the whole proteome and the cell surface proteome by LC-MS/MS analysis. These studies revealed that of the >5000 quantified proteins 104 were altered, which were highly enriched for extracellular matrix proteins and proteins involved in cell-matrix adhesion. Cell surface proteomics indicated that LAMA4 was proteolytically processed upon flow-exposure, which corresponded to the decreased LAMA4 mass observed on immunoblot. Immunofluorescence microscopy studies highlighted that the endothelial basement membrane was drastically remodeled upon flow exposure. We observed a network-like pattern of LAMA4 and LAMA5, which corresponded to the localization of laminin-adhesion molecules ITGA6 and ITGB4. Furthermore, the adaptation to flow-exposure did not affect the inflammatory response to tumor necrosis factor α, indicating that inflammation and flow trigger fundamentally distinct endothelial signaling pathways with limited reciprocity and synergy. Taken together, this study uncovers the blood flow-induced remodeling of the basement membrane and stresses the importance of the subendothelial basement membrane in vascular homeostasis.


Assuntos
Membrana Basal/metabolismo , Circulação Sanguínea , Células Endoteliais/metabolismo , Integrinas/metabolismo , Laminina/metabolismo , Circulação Sanguínea/fisiologia , Células Cultivadas , Cromatografia Líquida , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Ontologia Genética , Hemodinâmica , Humanos , Cadeias alfa de Integrinas/metabolismo , Integrina alfa6/metabolismo , Cadeias beta de Integrinas/metabolismo , Integrina beta4/metabolismo , Mapas de Interação de Proteínas/fisiologia , Proteômica , Espectrometria de Massas em Tandem , Fator de Necrose Tumoral alfa/farmacologia
9.
Proc Natl Acad Sci U S A ; 117(12): 6686-6696, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32161126

RESUMO

Cytotoxic CD8+ T cells can effectively kill target cells by producing cytokines, chemokines, and granzymes. Expression of these effector molecules is however highly divergent, and tools that identify and preselect CD8+ T cells with a cytotoxic expression profile are lacking. Human CD8+ T cells can be divided into IFN-γ- and IL-2-producing cells. Unbiased transcriptomics and proteomics analysis on cytokine-producing fixed CD8+ T cells revealed that IL-2+ cells produce helper cytokines, and that IFN-γ+ cells produce cytotoxic molecules. IFN-γ+ T cells expressed the surface marker CD29 already prior to stimulation. CD29 also marked T cells with cytotoxic gene expression from different tissues in single-cell RNA-sequencing data. Notably, CD29+ T cells maintained the cytotoxic phenotype during cell culture, suggesting a stable phenotype. Preselecting CD29-expressing MART1 TCR-engineered T cells potentiated the killing of target cells. We therefore propose that CD29 expression can help evaluate and select for potent therapeutic T cell products.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Integrina beta1/metabolismo , Interferon gama/metabolismo , Interleucina-2/metabolismo , Melanoma/patologia , Linfócitos T Citotóxicos/imunologia , Perfilação da Expressão Gênica , Humanos , Melanoma/imunologia , Melanoma/metabolismo , Prognóstico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Taxa de Sobrevida
10.
Int J Mol Sci ; 21(3)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32024018

RESUMO

Megakaryopoiesis is the process during which megakaryoblasts differentiate to polyploid megakaryocytes that can subsequently shed thousands of platelets in the circulation. Megakaryocytes accumulate mRNA during their maturation, which is required for the correct spatio-temporal production of cytoskeletal proteins, membranes and platelet-specific granules, and for the subsequent shedding of thousands of platelets per cell. Gene expression profiling identified the RNA binding protein ATAXIN2 (ATXN2) as a putative novel regulator of megakaryopoiesis. ATXN2 expression is high in CD34+/CD41+ megakaryoblasts and sharply decreases upon maturation to megakaryocytes. ATXN2 associates with DDX6 suggesting that it may mediate repression of mRNA translation during early megakaryopoiesis. Comparative transcriptome and proteome analysis on megakaryoid cells (MEG-01) with differential ATXN2 expression identified ATXN2 dependent gene expression of mRNA and protein involved in processes linked to hemostasis. Mice deficient for Atxn2 did not display differences in bleeding times, but the expression of key surface receptors on platelets, such as ITGB3 (carries the CD61 antigen) and CD31 (PECAM1), was deregulated and platelet aggregation upon specific triggers was reduced.


Assuntos
Ataxina-2/genética , Perfilação da Expressão Gênica/métodos , Células Progenitoras de Megacariócitos/citologia , Animais , Antígenos CD34/genética , Ataxina-2/metabolismo , Diferenciação Celular , Linhagem Celular , RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Glicoproteína IIb da Membrana de Plaquetas/genética , Proteínas Proto-Oncogênicas/genética
12.
Cell Syst ; 9(4): 366-374.e5, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31521607

RESUMO

Aberrant kinase activity has been linked to a variety of disorders; however, methods to probe kinase activation states in cells have been lacking. Until now, kinase activity has mainly been deduced from either protein expression or substrate phosphorylation levels. Here, we describe a strategy to directly infer kinase activation through targeted quantification of T-loop phosphorylation, which serves as a critical activation switch in a majority of protein kinases. Combining selective phosphopeptide enrichment with robust targeted mass spectrometry, we provide highly specific assays for 248 peptides, covering 221 phosphosites in the T-loop region of 178 human kinases. Using these assays, we monitored the activation of 63 kinases through 73 T-loop phosphosites across different cell types, primary cells, and patient-derived tissue material. The sensitivity of our assays is highlighted by the reproducible detection of TNF-α-induced RIPK1 activation and the detection of 46 T-loop phosphorylation sites from a breast tumor needle biopsy.


Assuntos
Neoplasias da Mama/diagnóstico , Ensaios de Triagem em Larga Escala/métodos , Peptídeos/metabolismo , Proteômica/métodos , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Biópsia por Agulha , Ativação Enzimática , Feminino , Humanos , Células Jurkat , Espectrometria de Massas , Fosforilação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Fator de Necrose Tumoral alfa/metabolismo
13.
J Proteomics ; 192: 89-101, 2019 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-30153514

RESUMO

The vascular endothelium provides a unique interaction plane for plasma proteins and leukocytes in inflammation. The pro-inflammatory cytokines Tumor Necrosis Factor α (TNFα) and interleukin 1ß (IL-1ß) have a profound effect on endothelial cells, which includes increased levels of adhesion molecules and a disrupted barrier function. To assess the endothelial response to these cytokines at the protein level, we evaluated changes in the whole proteome, cell surface proteome and phosphoproteome after 24 h of cytokine treatment. The effects of TNFα and IL-1ß on endothelial cells were strikingly similar and included changes in proteins not previously associated with endothelial inflammation. Temporal profiling revealed time-dependent proteomic changes, including a limited number of early responsive proteins such as adhesion receptors ICAM1 and SELE. In addition, this approach uncovered a greater number of late responsive proteins, including proteins related to self-antigen peptide presentation, and a transient increase in ferritin. Peptide-based cell surface proteomics revealed extensive changes at the cell surface, which were in agreement with the whole proteome. In addition, site-specific changes within ITGA5 and ICAM1 were detected. Combined, our integrated proteomic data provide detailed information on endothelial inflammation, emphasize the role of the extracellular matrix therein, and include potential targets for therapeutic intervention. SIGNIFICANCE: Pro-inflammatory cytokines induce the expression of cell adhesion molecules in vascular endothelial cells. These molecules mediate the adhesion and migration of immune cells across the vessel wall, which is a key process to resolve infections in the underlying tissue. Dysregulation of endothelial inflammation can contribute to vascular diseases and the vascular endothelium is therefore an attractive target to control inflammation. Current strategies targeting endothelial adhesion molecules, including PECAM, CD99, ICAM1 and VCAM1 do not completely prevent transmigration. To identify additional therapeutic targets, we mapped the endothelial proteome after pro-inflammatory cytokine treatment. In addition to the whole proteome, we assessed the surface proteome to focus on cell adhesion molecules, and the phosphoproteome to uncover protein activation states. Here, we present an integrated overview of affected processes which further improves our understanding of endothelial inflammation and may eventually aid in therapeutic intervention of imbalanced inflammation.


Assuntos
Moléculas de Adesão Celular/biossíntese , Células Endoteliais/metabolismo , Interleucina-1beta/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Células Cultivadas , Células Endoteliais/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Proteômica
14.
Front Immunol ; 9: 2830, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30559745

RESUMO

The adhesion family of G protein-coupled receptors (aGPCRs) comprises 33 members in human, several of which are distinctly expressed and functionally involved in polymorphonuclear cells (PMNs). As former work indicated the possible presence of the aGPCR GPR97 in granulocytes, we studied its cellular distribution, molecular structure, signal transduction, and biological function in PMNs. RNA sequencing and mass-spectrometry revealed abundant RNA and protein expression of ADGRG3/GPR97 in granulocyte precursors and terminally differentiated neutrophilic, eosinophilic, and basophilic granulocytes. Using a newly generated GPR97-specific monoclonal antibody, we confirmed that endogenous GPR97 is a proteolytically processed, dichotomous, N-glycosylated receptor. GPR97 was detected in tissue-infiltrating PMNs and upregulated during systemic inflammation. Antibody ligation of GPR97 increased neutrophil reactive oxygen species production and proteolytic enzyme activity, which is accompanied by an increase in mitogen-activated protein kinases and IκBα phosphorylation. In-depth analysis of the GPR97 signaling cascade revealed a possible switch from basal Gαs/cAMP-mediated signal transduction to a Gαi-induced reduction in cAMP levels upon mutation-induced activation of the receptor, in combination with an increase in downstream effectors of Gßγ, such as SRE and NF-κB. Finally, ligation of GPR97 increased the bacteria uptake and killing activity of neutrophils. We conclude that the specific presence of GPR97 regulates antimicrobial activity in human granulocytes.


Assuntos
Anti-Infecciosos/metabolismo , Granulócitos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Anticorpos Monoclonais/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Eosinófilos/metabolismo , Humanos , Inflamação/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Fosforilação/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
15.
Arterioscler Thromb Vasc Biol ; 38(7): 1549-1561, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880488

RESUMO

OBJECTIVE: Endothelial cells store VWF (von Willebrand factor) in rod-shaped secretory organelles, called Weibel-Palade bodies (WPBs). WPB exocytosis is coordinated by a complex network of Rab GTPases, Rab effectors, and SNARE (soluble NSF attachment protein receptor) proteins. We have previously identified STXBP1 as the link between the Rab27A-Slp4-a complex on WPBs and the SNARE proteins syntaxin-2 and -3. In this study, we investigate the function of syntaxin-3 in VWF secretion. APPROACH AND RESULTS: In human umbilical vein endothelial cells and in blood outgrowth endothelial cells (BOECs) from healthy controls, endogenous syntaxin-3 immunolocalized to WPBs. A detailed analysis of BOECs isolated from a patient with variant microvillus inclusion disease, carrying a homozygous mutation in STX3(STX3-/-), showed a loss of syntaxin-3 protein and absence of WPB-associated syntaxin-3 immunoreactivity. Ultrastructural analysis revealed no detectable differences in morphology or prevalence of immature or mature WPBs in control versus STX3-/- BOECs. VWF multimer analysis showed normal patterns in plasma of the microvillus inclusion disease patient, and media from STX3-/- BOECs, together indicating WPB formation and maturation are unaffected by absence of syntaxin-3. However, a defect in basal as well as Ca2+- and cAMP-mediated VWF secretion was found in the STX3-/- BOECs. We also show that syntaxin-3 interacts with the WPB-associated SNARE protein VAMP8 (vesicle-associated membrane protein-8). CONCLUSIONS: Our data reveal syntaxin-3 as a novel WPB-associated SNARE protein that controls WPB exocytosis.


Assuntos
Células Endoteliais/metabolismo , Exocitose , Síndromes de Malabsorção/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Proteínas Qa-SNARE/metabolismo , Corpos de Weibel-Palade/metabolismo , Fator de von Willebrand/metabolismo , Cálcio/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Células Endoteliais/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/diagnóstico , Mucolipidoses/genética , Mutação , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/metabolismo , Via Secretória , Transdução de Sinais , Corpos de Weibel-Palade/ultraestrutura
16.
Haematologica ; 103(3): 395-405, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29284682

RESUMO

The classical central macrophage found in erythroblastic islands plays an important role in erythroblast differentiation, proliferation and enucleation in the bone marrow. Convenient human in vitro models to facilitate the study of erythroid-macrophage interactions are desired. Recently, we demonstrated that cultured monocytes/macrophages enhance in vitro erythropoiesis by supporting hematopoietic stem and progenitor cell survival. Herein, we describe that these specific macrophages also support erythropoiesis. Human monocytes cultured in serum-free media supplemented with stem cell factor, erythropoietin, lipids and dexamethasone differentiate towards macrophages expressing CD16, CD163, CD169, CD206, CXCR4 and the phagocytic TAM-receptor family. Phenotypically, they resemble both human bone marrow and fetal liver resident macrophages. This differentiation is dependent on glucocorticoid receptor activation. Proteomic studies confirm that glucocorticoid receptor activation differentiates monocytes to anti-inflammatory tissue macrophages with a M2 phenotype, termed GC-macrophages. Proteins involved in migration, tissue residence and signal transduction/receptor activity are upregulated whilst lysosome and hydrolase activity GO-categories are downregulated. Functionally, we demonstrate that GC-macrophages are highly mobile and can interact to form clusters with erythroid cells of all differentiation stages and phagocytose the expelled nuclei, recapitulating aspects of erythroblastic islands. In conclusion, glucocorticoid-directed monocyte differentiation to macrophages represents a convenient model system to study erythroid-macrophage interactions.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Macrófagos/citologia , Monócitos/citologia , Comunicação Celular , Células Cultivadas , Células Eritroides/citologia , Eritropoese , Humanos , Monócitos/efeitos dos fármacos , Proteômica
17.
Nat Commun ; 8: 14206, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198360

RESUMO

The secretome of cancer and stromal cells generates a microenvironment that contributes to tumour cell invasion and angiogenesis. Here we compare the secretome of human mammary normal and cancer-associated fibroblasts (CAFs). We discover that the chloride intracellular channel protein 3 (CLIC3) is an abundant component of the CAF secretome. Secreted CLIC3 promotes invasive behaviour of endothelial cells to drive angiogenesis and increases invasiveness of cancer cells both in vivo and in 3D cell culture models, and this requires active transglutaminase-2 (TGM2). CLIC3 acts as a glutathione-dependent oxidoreductase that reduces TGM2 and regulates TGM2 binding to its cofactors. Finally, CLIC3 is also secreted by cancer cells, is abundant in the stromal and tumour compartments of aggressive ovarian cancers and its levels correlate with poor clinical outcome. This work reveals a previously undescribed invasive mechanism whereby the secretion of a glutathione-dependent oxidoreductase drives angiogenesis and cancer progression by promoting TGM2-dependent invasion.


Assuntos
Canais de Cloreto/metabolismo , Progressão da Doença , Glutationa/metabolismo , Animais , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Feminino , Proteínas de Ligação ao GTP/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Nus , Modelos Biológicos , Invasividade Neoplásica , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Oxirredutases/metabolismo , Ligação Proteica , Proteína 2 Glutamina gama-Glutamiltransferase , Proteoma/metabolismo , Proteômica , Análise de Sobrevida , Transglutaminases/metabolismo , Resultado do Tratamento
18.
J Biol Chem ; 292(3): 912-924, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27956551

RESUMO

LDL receptor-related protein 1 (LRP1) is a highly modular protein and the largest known mammalian endocytic receptor. LRP1 binds and internalizes many plasma components, playing multiple crucial roles as a scavenger and signaling molecule. One major challenge to studying LRP1 has been that it is difficult to express such a large, highly glycosylated, and cysteine-rich protein, limiting structural studies to LRP1 fragments. Here, we report the first recombinant expression of the complete 61 domains of the full-length LRP1 ectodomain. This advance was achieved with a multistep cloning approach and by using DNA dilutions to improve protein yields. We investigated the binding properties of LRP1 using receptor-associated protein (RAP) as a model ligand due to its tight binding interaction. The LRP1 conformation was studied in its bound and unbound state using mass spectrometry, small-angle X-ray scattering, and negative-stain electron microscopy at neutral and acidic pH. Our findings revealed a pH-dependent release of the ligand associated with a conformational change of the receptor. In summary, this investigation of the complete LRP1 ectodomain significantly advances our understanding of this important receptor and provides the basis for further elucidating the mechanism of action of LRP1 in a whole and integrated system.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/química , Glicosilação , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Difração de Raios X
19.
Haematologica ; 101(5): 587-96, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26802050

RESUMO

Granulocyte transfusions are used to treat neutropenic patients with life-threatening bacterial or fungal infections that do not respond to anti-microbial drugs. Donor neutrophils that have been mobilized with granulocyte-colony stimulating factor (G-CSF) and dexamethasone are functional in terms of antibacterial activity, but less is known about their fungal killing capacity. We investigated the neutrophil-mediated cytotoxic response against C. albicans and A. fumigatus in detail. Whereas G-CSF/dexamethasone-mobilized neutrophils appeared less mature as compared to neutrophils from untreated controls, these cells exhibited normal ROS production by the NADPH oxidase system and an unaltered granule mobilization capacity upon stimulation. G-CSF/dexamethasone-mobilized neutrophils efficiently inhibited A. fumigatus germination and killed Aspergillus and Candida hyphae, but the killing of C. albicans yeasts was distinctly impaired. Following normal Candida phagocytosis, analysis by mass spectrometry of purified phagosomes after fusion with granules demonstrated that major constituents of the antimicrobial granule components, including major basic protein (MBP), were reduced. Purified MBP showed candidacidal activity, and neutrophil-like Crisp-Cas9 NB4-KO-MBP differentiated into phagocytes were impaired in Candida killing. Together, these findings indicate that G-CSF/dexamethasone-mobilized neutrophils for transfusion purposes have a selectively impaired capacity to kill Candida yeasts, as a consequence of an altered neutrophil granular content.


Assuntos
Candida albicans/imunologia , Citotoxicidade Imunológica , Granulócitos/imunologia , Transfusão de Leucócitos , Viabilidade Microbiana/imunologia , Biomarcadores , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/imunologia , Grânulos Citoplasmáticos/imunologia , Grânulos Citoplasmáticos/metabolismo , Dexametasona/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Granulócitos/efeitos dos fármacos , Granulócitos/metabolismo , Granulócitos/microbiologia , Humanos , Imunofenotipagem , NADPH Oxidases/metabolismo , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Fagocitose/efeitos dos fármacos , Fagocitose/imunologia , Fagossomos/imunologia , Fagossomos/microbiologia
20.
Blood ; 119(22): 5294-300, 2012 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-22498747

RESUMO

Development of neutralizing Abs to blood coagulation factor VIII (FVIII) provides a major complication in hemophilia care. In this study we explored whether modulation of the uptake of FVIII by APCs can reduce its intrinsic immunogenicity. Endocytosis of FVIII by professional APCs is significantly blocked by mAb KM33, directed toward the C1 domain of FVIII. We created a C1 domain variant (FVIII-R2090A/K2092A/F2093A), which showed only minimal binding to KM33 and retained its activity as measured by chromogenic assay. FVIII-R2090A/K2092A/F2093A displayed a strongly reduced internalization by human monocyte-derived dendritic cells and macrophages, as well as murine BM-derived dendritic cells. We subsequently investigated the ability of this variant to induce an immune response in FVIII-deficient mice. We show that mice treated with FVIII-R2090A/K2092A/F2093A have significantly lower anti-FVIII Ab titers and FVIII-specific CD4(+) T-cell responses compared with mice treated with wild-type FVIII. These data show that alanine substitutions at positions 2090, 2092, and 2093 reduce the immunogenicity of FVIII. According to our findings we hypothesize that FVIII variants displaying a reduced uptake by APCs provide a novel therapeutic approach to reduce inhibitor development in hemophilia A.


Assuntos
Anticorpos Neutralizantes/imunologia , Autoanticorpos/imunologia , Inibidores dos Fatores de Coagulação Sanguínea/imunologia , Células Dendríticas/imunologia , Fator VIII/imunologia , Hemofilia A/imunologia , Macrófagos/imunologia , Monócitos/imunologia , Substituição de Aminoácidos , Animais , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Fator VIII/genética , Fator VIII/farmacologia , Hemofilia A/tratamento farmacológico , Humanos , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA