Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Int J Biol Sci ; 20(9): 3285-3301, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993559

RESUMO

Metabolic reprogramming is one of the essential features of tumors that may dramatically contribute to cancer metastasis. Employing liquid chromatography-tandem mass spectrometry-based metabolomics, we analyzed the metabolic profile from 12 pairwise serum samples of NSCLC brain metastasis patients before and after CyberKnife Stereotactic Radiotherapy. We evaluated the histopathological architecture of 144 surgically resected NSCLC brain metastases. Differential metabolites were screened and conducted for functional clustering and annotation. Metabolomic profiling identified a pathway that was enriched in the metabolism of branched-chain amino acids (BCAAs). Pathologically, adenocarcinoma with a solid growth pattern has a higher propensity for brain metastasis. Patients with high BCAT1 protein levels in lung adenocarcinoma tissues were associated with a poor prognosis. We found that brain NSCLC cells had elevated catabolism of BCAAs, which led to a depletion of α-KG. This depletion, in turn, reduced the expression and activity of the m6A demethylase ALKBH5. Thus, ALKBH5 inhibition participated in maintaining the m6A methylation of mesenchymal genes and promoted the occurrence of epithelial-mesenchymal transition (EMT) in NSCLC cells and the proliferation of NSCLC cells in the brain. BCAA catabolism plays an essential role in the metastasis of NSCLC cells.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Masculino , Feminino , Aminoácidos de Cadeia Ramificada/metabolismo , Pessoa de Meia-Idade , Linhagem Celular Tumoral , Transaminases
2.
Genes Environ ; 46(1): 14, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937856

RESUMO

BACKGROUND: Long non-coding RNA (lncRNA) is a group of RNA transcripts that contribute to tumor development by post-transcriptionally regulating cancer-related genes. Nasopharyngeal carcinoma (NPC) is an epithelial tumor that occurs in the nasopharynx and is common in North Africa and Southeast Asia. The study investigated the functions of lncRNA TMPO-AS1 in NPC cell proliferation and apoptosis as well as its related competing endogenous RNA (ceRNA) mechanism. METHODS: Candidate microRNA and genes that may regulated by TMPO-AS1 were predicted with the bioinformatic tool starBase. TMPO-AS1 expression in NPC tissue, cells, nuclear part, and cytoplasmic part was measured by RT-qPCR. MTT assay, EdU assay, and flow cytometry analysis were carried out to evaluate NPC cell viability, proliferation, and apoptosis, respectively. RNA immunoprecipitation assay and luciferase reporter assay were conducted to detect the binding between TMPO-AS1 and let-7c-5p or that between let-7c-5p and BCAT1. RESULTS: TMPO-AS1 and BCAT1 showed high expression in NPC tissue and cells, while let-7c-5p was downregulated in NPC. The silencing of TMPO-AS1 suppressed NPC cell proliferation while promoting cell apoptosis. Moreover, TMPO-AS1 interacted with let-7c-5p and negatively regulated let-7c-5p expression. BCAT1 was a target of let-7c-5p and was inversely regulated by let-7c-5p in NPC cells. The repressive impact of TMPO-AS1 knockdown on NPC cell growth was countervailed by overexpressed BCAT1. CONCLUSION: TMPO-AS1 accelerates NPC cell proliferation and represses cell apoptosis by interacting with let-7c-5p to regulate BCAT1 expression.

3.
Br J Haematol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802066

RESUMO

Effectively targeting transcription factors in therapeutic interventions remains challenging, especially in core-binding factor-acute myeloid leukaemia (CBF-AML) characterized by RUNX1::ETO and CBFß::MYH11 fusions. However, recent studies have drawn attention towards aberrant amino acid metabolisms as actionable therapeutic targets. Here, by integrating the expression profile and genetic makeup in AML cohort, we found higher BCAT1 expression in CBF-AML patients compared with other subtypes. Metabolic profiling revealed that high BCAT1 expression led to reprogrammed branch amino acid metabolism in CBF-AML and was associated with sphingolipid pathway relating to the fitness of leukaemia cells, supported by transcriptomic profiling. Mechanistically, we demonstrated in cell lines and primary patient samples that BCAT1 was directly activated by RUNX1::ETO and CBFß::MYH11 fusion proteins similarly in a RUNX1-dependent manner through rewiring chromatin conformation at the BCAT1 gene locus. Furthermore, BCAT1 inhibition resulted in blunted cell cycle, enhanced apoptosis and myeloid differentiation of CBF-AML cells in vitro, and alleviated leukaemia burden and prolonged survival in vivo. Importantly, pharmacological inhibition of BCAT1 using the specific inhibitor Gabapentin demonstrated therapeutic effects, as evidenced by delayed leukaemia progression and improved survival in vivo. In conclusion, our study uncovers BCAT1 as a genetic vulnerability and a promising targeted therapeutic opportunity for CBF-AML.

4.
Cancer Lett ; 591: 216849, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38621458

RESUMO

Branched-chain amino acid transferase 1 (BCAT1) is highly expressed in multiple cancers and is associated with poor prognosis, particularly in glioblastoma (GBM). However, the post-translational modification (PTM) mechanism of BCAT1 is unknown. Here, we investigated the cross-talk mechanisms between phosphorylation and ubiquitination modifications in regulating BCAT1 activity and stability. We found that BCAT1 is phosphorylated by branched chain ketoacid dehydrogenase kinase (BCKDK) at S5, S9, and T312, which increases its catalytic and antioxidant activity and stability. STUB1 (STIP1 homology U-box-containing protein 1), the first we found and reported E3 ubiquitin ligase of BCAT1, can also be phosphorylated by BCKDK at the S19 site, which disrupts the interaction with BCAT1 and inhibits its degradation. In addition, we demonstrate through in vivo and in vitro experiments that BCAT1 phosphorylation inhibiting its ubiquitination at multiple sites is associated with GBM proliferation and that inhibition of the BCKDK-BCAT1 axis enhances the sensitivity to temozolomide (TMZ). Overall, we identified novel mechanisms for the regulation of BCAT1 modification and elucidated the importance of the BCKDK-STUB1-BCAT1 axis in GBM progression.


Assuntos
Proliferação de Células , Glioblastoma , Ubiquitina-Proteína Ligases , Ubiquitinação , Glioblastoma/patologia , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Fosforilação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Progressão da Doença , Camundongos , Camundongos Nus , Proteólise , Temozolomida/farmacologia , Células HEK293
5.
Biomark Insights ; 19: 11772719241232870, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426070

RESUMO

Background: Colorectal cancer (CRC) has a high rate of recurrence, in particular for advanced disease, but prognosis based on staging and pathology at surgery can have limited efficacy. The presence of circulating tumor DNA (ctDNA) at diagnosis could be used to improve the prediction for disease recurrence. Objectives: To assess the impact of detecting methylated BCAT1/IKZF1 ctDNA at diagnosis in combination with demographic, lifestyle, clinical factors and tumor pathology, to assess predictive value for recurrence. Design: A retrospective cohort study. Methods: The cohort included 180 patients (36 with recurrent CRC), who had undergone complete treatment and surveillance for a minimum of 3 years. Participant clinical details and ctDNA methylated BCAT1/IKZF1 results were compared between those with and without recurrence, and cox regression analysis assessed each factor on disease-free survival. Results: Clinical factors independently associated with reduced disease-free survival included nodal involvement (HR = 3.83, 95% CI 1.56-9.43, P = .003), M1 stage (HR = 4.41, 95% CI 1.18-16.45, P = .027), a resection margin less than 2 mm (HR = 4.60, 95% CI 1.19-17.76, P = .027), perineural involvement (HR = 2.50, 95% CI 1.01-6.17, P = .047) and distal tumors (HR = 3.13, 95% CI 1.07-9.18, P = .037). Methylated BCAT1/IKZF1 was detected in 51.7% (93/180) of pre-treatment plasma samples. When a positive ctDNA finding was considered in combination with these clinical prognostic factors, there was improved predictive power of recurrence for patients with perineural involvement (HR = 4.44, 95% CI 1.92-10.26, P < .001), and it marginally improved the predictive factor for M1 stage (HR = 7.59, 95% CI 2.30-25.07, P = .001) and distal tumors (HR = 5.04, 95% CI 1.88-13.49, P = .001). Conclusions: Nodal invasion, metastatic disease, distal tumor site, low resection margins and perineural invasion were associated with disease recurrence. Pre-treatment methylated ctDNA measurement can improve the predictive value for recurrence in a subset of patients, particularly those with perineural involvement. Registration: Australian and New Zealand Clinical Trials Registry #12611000318987.

6.
Aging (Albany NY) ; 16(3): 2715-2735, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38309289

RESUMO

BACKGROUND: The relationship between clear cell renal cell carcinoma (ccRCC) and branched-chain amino acids (BCAA) metabolism has yet to be thoroughly explored. METHODS: The BCAA metabolism-related clusters were constructed using non-negative matrix factorization (NMF). The features of BCAA metabolism in ccRCC were evaluated by building a prognostic model using least absolute shrinkage and selection operator (LASSO) regression algorithm. Real-time quantitative PCR (RT-qPCR) was employed to analyze differential expression of branched-chain amino acid transaminase 1 (BCAT1) between cancer and paracancer tissues and between different cell lines. Cell counting kit-8, wound healing and Transwell chamber assays were conducted to determine changes in proliferative and metastatic abilities of A498 and 786-O cells. RESULTS: Two BCAA metabolism-related clusters with distinct prognostic and immune infiltration characteristics were identified in ccRCC. The BCAA metabolic signature (BMS) was capable of distinguishing immune features, tumor mutation burden, responses to immunotherapy, and drug sensitivity among ccRCC patients. RT-qPCR revealed overexpression of BCAT1 in ccRCC tissues and cell lines. Additionally, single-gene RNA sequencing analysis demonstrated significant enrichment of BCAT1 in macrophages and tumor cells. BCAT1 played tumor-promoting role in ccRCC and was closely associated with immunosuppressive cells and checkpoints. BCAT1 promoted ccRCC cell proliferation and metastasis. CONCLUSIONS: The BMS played a crucial role in determining the prognosis, tumor mutation burden, responses to immunotherapy and drug sensitivity of ccRCC patients, as well as the immune cell infiltration features. BCAT1 was linked to immunosuppressive microenvironments and may offer new sights into ccRCC immunotherapeutic targets.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Aminoácidos de Cadeia Ramificada , Imunossupressores , Neoplasias Renais/genética , Microambiente Tumoral/genética , Transaminases/genética
7.
J Mol Med (Berl) ; 102(3): 415-433, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38340163

RESUMO

Previous evidence has confirmed that branched-chain aminotransferase-1 (BCAT1), a key enzyme governing branched-chain amino acid (BCAA) metabolism, has a role in cancer aggression partly by restricting αKG levels and inhibiting the activities of the αKG-dependent enzyme family. The oncogenic role of BCAT1, however, was not fully elucidated in acute myeloid leukemia (AML). In this study, we investigated the clinical significance and biological insight of BCAT1 in AML. Using q-PCR, we analyzed BCAT1 mRNAs in bone marrow samples from 332 patients with newly diagnosed AML. High BCAT1 expression independently predicts poor prognosis in patients with AML. We also established BCAT1 knockout (KO)/over-expressing (OE) AML cell lines to explore the underlying mechanisms. We found that BCAT1 affects cell proliferation and modulates cell cycle, cell apoptosis, and DNA damage/repair process. Additionally, we demonstrated that BCAT1 regulates histone methylation by reducing intracellular αKG levels in AML cells. Moreover, high expression of BCAT1 enhances the sensitivity of AML cells to the Poly (ADP-ribose) polymerase (PARP) inhibitor both in vivo and in vitro. Our study has demonstrated that BCAT1 expression can serve as a reliable predictor for AML patients, and PARP inhibitor BMN673 can be used as an effective treatment strategy for patients with high BCAT1 expression. KEY MESSAGES: High expression of BCAT1 is an independent risk factor for poor prognosis in patients with CN-AML. High BCAT1 expression in AML limits intracellular αKG levels, impairs αKG-dependent histone demethylase activity, and upregulates H3K9me3 levels. H3K9me3 inhibits ATM expression and blocks cellular DNA damage repair process. Increased sensitivity of BCAT1 high expression AML to PARP inhibitors may be used as an effective treatment strategy in AML patients.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Antineoplásicos/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Reparo do DNA , Dano ao DNA , Transaminases/genética
8.
Transl Oncol ; 39: 101806, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38235619

RESUMO

BACKGROUND: This study aimed to investigate the specific roles of the long non-coding RNA (lncRNA) proteasome 20S subunit beta 8 (PSMB8)-antisense RNA 1 (AS1)/microRNA (miR)-382-3p/branched-chain amino acid transaminase 1 (BCAT1) interaction network in gliomas. METHODS: Western blotting and quantitative reverse transcription-polymerase chain reaction were performed to assess the expression levels of lncRNA PSMB8-AS1, BCAT1, and miR-382-3p. Moreover, the cell proliferation, migration, and apoptosis were assessed using the cell counting kit-8, Transwell, and caspase-3 activity assays, respectively. The biological role of lncRNA PSMB8-AS1 in glioma was investigated in vivo using a xenograft mouse model. Additionally, the associations among lncRNA PSMB8-AS1, miR-382-3p, and BCAT1 were analyzed using dual-luciferase and RNA immunoprecipitation assays and bioinformatics analyses. RESULTS: Glioma cell lines and tissues exhibited overexpression of lncRNA PSMB8-AS1 and BCAT1 and low expression of miR-382-3p. Knockdown of PSMB8-AS1 remarkably repressed the tumor growth in vivo and the migration and proliferation of glioma cells in vitro. In contrast, knockdown of lncRNA PSMB8-AS1 increased the cell apoptosis. Mechanistically, PSMB8-AS1 directly targeted miR-382-3p. By sponging miR-382-3p, lncRNA PSMB8-AS1 stimulated the migration and proliferation of glioma cells and suppressed their apoptosis. Additionally, miR-382-3p directly targeted BCAT1. Inhibition of miR-382-3p reversed the antitumor effects of BCAT1 silencing on glioma progression. CONCLUSION: Our study revealed that lncRNA PSMB8-AS1 aggravated glioma malignancy by enhancing BCAT1 expression after competitively binding to miR-382-3p. Therefore, lncRNA PSMB8-AS1 may be a potential biomarker and therapeutic target for glioma treatment.

9.
Neuroendocrinology ; 114(1): 14-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37591221

RESUMO

INTRODUCTION: Aberrant miR-320a has been reported to be involved in the tumorigenesis of several cancers. In our previous study, we identified the low expression of circulating miR-320a in patients with somatotroph pituitary neuroendocrine tumor (PitNET); however, the role of miR-320a in somatotroph PitNET proliferation is still unclear. METHODS: Cell viability and colony formation assays were used to detect the effect of miR-320a and BCAT1 on GH3 cells. TargetScan was used to identify the target genes of miR-320a. Dual-luciferase reporter gene assay was used to explore the relation between miR-320a and BCAT1. Transcriptome and proteome analyses were performed between somatotroph PitNETs and healthy controls. The expression level of miR-320a in somatotroph PitNETs were detected by RT-qPCR and Western blot. RESULTS: miR-320a mimics inhibit cell proliferation, while miR-320a inhibitors promote cell proliferation in GH3 cells. An overlap analysis using a Venn diagram revealed that BCAT1 is the only target gene of miR-320a overexpressed in somatotroph PitNETs compared to healthy controls, as revealed by both microarray and proteomics results. A dual-luciferase reporter gene assay showed that miR-320a may bind to the BCAT1-3'UTR. The transfection of miR-320a mimics downregulated the expression and miR-320a inhibitors and upregulated the expression of BCAT1 in GH3 cells. The interference of BCAT1 expression in GH3 cells downregulated cell proliferation and growth. Pan-cancer analyses demonstrated that high BCAT1 expression often indicates a poor prognosis. CONCLUSION: Our findings illustrate that miR-320a may function as a tumor suppressor and BCAT1 may promote tumor progression. miR-320a may inhibit the growth of somatotroph PitNETs by targeting BCAT1.


Assuntos
Adenoma , Adenoma Hipofisário Secretor de Hormônio do Crescimento , MicroRNAs , Tumores Neuroendócrinos , Somatotrofos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Somatotrofos/metabolismo , Tumores Neuroendócrinos/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Adenoma/genética , Luciferases/genética , Luciferases/metabolismo , Regulação Neoplásica da Expressão Gênica , Transaminases/genética , Transaminases/metabolismo
10.
J Biochem Mol Toxicol ; 38(1): e23537, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37700640

RESUMO

Increasing evidence indicated that protein arginine methyltransferase-1 (PRMT1) is an oncogene in multiple malignant tumors, including osteosarcoma (OS). The aim of this study was to investigate the underlying mechanism of PRMT1 in OS. The effects of PRMT1 or BCAT1, branched-chain amino acid transaminase 1 (BCAT1) on OS cell proliferation, invasion, autophagy, and apoptosis in vitro were examined. Moreover, molecular control of PRMT1 on c-Myc or transactivation of BCAT1 on c-Myc was assessed by chromatin immunoprecipitation and quantitative reverse transcription PCR assays. The effects of PRMT1 in vivo were examined with a xenograft tumor model. The results showed that PRMT1 was potently upregulated in OS tissues and cells. Upregulation of PRMT1 markedly increased OS cell proliferation and invasion in vitro and reduced cell apoptosis, whereas PRMT1 silencing showed the opposite effects. Cisplatin, one of the most effective chemotherapeutic drugs, improved cell survival rate by inducing the expression of PRMT1 to downregulate the cisplatin sensitivity. Meanwhile, the cisplatin-induced upregulation of PRMT1 expression caused dramatically autophagy induction and autophagy-mediated apoptosis by inactivating the mTOR signaling pathway, which could be reversed by 3-methyladenine, an autophagy inhibitor, or PRMT1 silencing. PRMT1 could activate c-Myc transcription and increase c-Myc-mediated expression of BCAT1. Furthermore, BCAT1 overexpression counteracted the effects of PRMT1 knockdown on cell proliferation, invasion, and apoptosis. Of note, deficiency of PRMT1 suppressed tumor growth in vivo. PRMT1 facilitated the proliferation and invasion of OS cells, inhibited cell apoptosis, and decreased chemotherapy sensitivity through c-Myc/BCAT1 axis, which may become potential target in treating OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação para Baixo , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Osteossarcoma/metabolismo , Apoptose , Metiltransferases/metabolismo , Neoplasias Ósseas/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/uso terapêutico , Proteínas Repressoras/metabolismo , Transaminases/genética , Transaminases/metabolismo , Transaminases/farmacologia
11.
Neuro Oncol ; 26(2): 251-265, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37769206

RESUMO

BACKGROUND: Glioblastoma is the most common malignant brain tumor in adults. Cellular plasticity and the poorly differentiated features result in a fast relapse of the tumors following treatment. Moreover, the immunosuppressive microenvironment proved to be a major obstacle to immunotherapeutic approaches. Branched-chain amino acid transaminase 1 (BCAT1) was shown to drive the growth of glioblastoma and other cancers;however, its oncogenic mechanism remains poorly understood. METHODS: Using human tumor data, cell line models and orthotopic immuno-competent and -deficient mouse models, we investigated the phenotypic and mechanistic effects of BCAT1 on glioblastoma cell state and immunomodulation. RESULTS: Here, we show that BCAT1 is crucial for maintaining the poorly differentiated state of glioblastoma cells and that its low expression correlates with a more differentiated glioblastoma phenotype. Furthermore, orthotopic tumor injection into immunocompetent mice demonstrated that the brain microenvironment is sufficient to induce differentiation of Bcat1-KO tumors in vivo. We link the transition to a differentiated cell state to the increased activity of ten-eleven translocation demethylases and the hypomethylation and activation of neuronal differentiation genes. In addition, the knockout of Bcat1 attenuated immunosuppression, allowing for an extensive infiltration of CD8+ cytotoxic T-cells and complete abrogation of tumor growth. Further analysis in immunodeficient mice revealed that both tumor cell differentiation and immunomodulation following BCAT1-KO contribute to the long-term suppression of tumor growth. CONCLUSIONS: Our study unveils BCAT1's pivotal role in promoting glioblastoma growth by inhibiting tumor cell differentiation and sustaining an immunosuppressive milieu. These findings offer a novel therapeutic avenue for targeting glioblastoma through the inhibition of BCAT1.


Assuntos
Glioblastoma , Humanos , Camundongos , Animais , Plasticidade Celular , Proliferação de Células , Terapia de Imunossupressão , Transaminases/genética , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Microambiente Tumoral
12.
Br J Haematol ; 203(2): 212-223, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37621257

RESUMO

The prognosis of acute myeloid leukaemia (AML) patients carrying NPM1 mutations is significantly worse when accompanied by FLT3-ITD mutations. However, accurate quantitative detection of FLT3-ITD mutations remains challenging. To identify a novel biomarker in NPM1+ FLT3-ITD+ AML patients for more accurate stratification, we analysed the differential gene expression between the NPM1+ FLT3-ITD+ and NPM1+ FLT3-ITD- groups in five public AML datasets and identified a biomarker by taking the intersection of differentially expressed genes. We validated this biomarker in bone marrow samples from NPM1+ AML patients at the Peking University Institute of Haematology and analysed its prognostic significance. BCAT1 expression was higher in the NPM1+ FLT3-ITD+ group than in the NPM1+ FLT3-ITD- group in all seven cohorts. BCAT1 was able to predict the prognosis of NPM1+ FLT3-ITD+ AML patients, and its predictive ability was superior to that of the FLT3-ITD allelic ratio (AR). FLT3-targeted inhibitor quizartinib reduced BCAT1 expression. BCAT1 knockdown using lentiviral vectors led to the downregulation of MYC expression. Thus, we identified BCAT1 as a novel biomarker for NPM1+ FLT3-ITD+ AML patients. The FLT3-ITD/BCAT1/MYC signalling pathway may play a biological role in promoting the occurrence and development of AML in FLT3-ITD+ cell lines.


Assuntos
Leucemia Mieloide Aguda , Proteínas Nucleares , Humanos , Prognóstico , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleofosmina , Mutação , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/diagnóstico , Biomarcadores , Tirosina Quinase 3 Semelhante a fms/genética , Transaminases/genética
13.
Cell Stem Cell ; 30(6): 818-831.e6, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267916

RESUMO

Despite the remarkable success of immune checkpoint blockade (ICB) therapy, most cancer patients still do not respond. We now find that immunotherapy can induce stem-like properties in tumors. Using mouse models of breast cancer, we observe that cancer stem cells (CSCs) show not only enhanced resistance to T cell cytotoxicity, but that interferon gamma (IFNγ) produced by activated T cells directly converts non-CSCs to CSCs. IFNγ enhances several CSC phenotypes, such as resistance to chemo- and radiotherapy and metastasis formation. We identified the branched-chain amino acid aminotransaminase 1 (BCAT1) as a downstream mediator of IFNγ-induced CSC plasticity. Targeting BCAT1 in vivo improved cancer vaccination and ICB therapy by preventing IFNγ-induced metastasis formation. Breast cancer patients treated with ICB exhibited a similar increase in CSC markers expression indicating comparable responses to immune activation in humans. Collectively, we discover an unexpected, pro-tumoral role for IFNγ that may contribute to cancer immunotherapy failure.


Assuntos
Neoplasias da Mama , Interferon gama , Camundongos , Animais , Humanos , Feminino , Imunoterapia , Linfócitos T , Modelos Animais de Doenças , Neoplasias da Mama/terapia , Transaminases
14.
Genes Cells ; 28(6): 447-456, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36965015

RESUMO

The tuberous sclerosis complex (TSC) gene products (TSC1/TSC2) negatively regulate mTORC1. Although mTORC1 inhibitors are used for the treatment of TSC, incomplete tumor elimination and the adverse effects from long-term administration are problems that need to be solved. Branched-chain amino acid (BCAA) metabolism is involved in the growth of many tumor cells via the mTORC1 pathway. However, it remains unclear how BCAA metabolism affects the growth of mTORC1-dysregulated tumors. We show here that the expression of branched-chain amino transferase1 (Bcat1) was suppressed in Tsc2-deficient murine renal tumor cells either by treatment with rapamycin or restoration of Tsc2 expression suggesting that Bcat1 is located downstream of Tsc2-mTORC1 pathway. We also found that gabapentin, a Bcat1 inhibitor suppressed the growth of Tsc2-deficient tumor cells and increased efficacy when combined with rapamycin. We investigate the functional importance of Bcat1 and the mitochondrial isoform Bcat2 by inhibiting each enzyme separately or both together by genome editing and shRNA in Tsc2-deficient cells. We found that deficiency of both enzymes, but not either alone, inhibited cell growth, indicating that BCAA-metabolic reactions support Tsc2-deficient cell proliferation. Our results indicate that inhibition of Bcat1 and Bcat2 by specific drugs should be a useful method for TSC treatment.


Assuntos
Esclerose Tuberosa , Camundongos , Animais , Esclerose Tuberosa/metabolismo , Esclerose Tuberosa/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Sirolimo/farmacologia , Transaminases
15.
Cell Stem Cell ; 30(1): 52-68.e13, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608679

RESUMO

N6-methyladenosine (m6A), the most prevalent internal modification in mammalian mRNAs, is involved in many pathological processes. METTL16 is a recently identified m6A methyltransferase. However, its role in leukemia has yet to be investigated. Here, we show that METTL16 is a highly essential gene for the survival of acute myeloid leukemia (AML) cells via CRISPR-Cas9 screening and experimental validation. METTL16 is aberrantly overexpressed in human AML cells, especially in leukemia stem cells (LSCs) and leukemia-initiating cells (LICs). Genetic depletion of METTL16 dramatically suppresses AML initiation/development and maintenance and significantly attenuates LSC/LIC self-renewal, while moderately influencing normal hematopoiesis in mice. Mechanistically, METTL16 exerts its oncogenic role by promoting expression of branched-chain amino acid (BCAA) transaminase 1 (BCAT1) and BCAT2 in an m6A-dependent manner and reprogramming BCAA metabolism in AML. Collectively, our results characterize the METTL16/m6A/BCAT1-2/BCAA axis in leukemogenesis and highlight the essential role of METTL16-mediated m6A epitranscriptome and BCAA metabolism reprograming in leukemogenesis and LSC/LIC maintenance.


Assuntos
Autorrenovação Celular , Leucemia Mieloide Aguda , Camundongos , Humanos , Animais , Leucemia Mieloide Aguda/patologia , Carcinogênese/patologia , RNA Mensageiro/metabolismo , Aminoácidos de Cadeia Ramificada/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Células-Tronco Neoplásicas/patologia , Mamíferos/metabolismo , Transaminases/genética , Transaminases/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
16.
Cancer Med ; 12(2): 1319-1329, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35822405

RESUMO

BACKGROUND: The risk of recurrence after completion of curative-intent treatment of colorectal cancer (CRC) is hard to predict. Post-treatment assaying for circulating tumor DNA (ctDNA) is an encouraging approach for stratifying patients for therapy, but the prognostic value of this approach is less explored. This study aimed to determine if detection of methylated BCAT1 and IKZF1 following completion of initial treatment identified patients with a poorer recurrence-free survival (RFS). METHODS: 142 CRC stage I-III cases with at least 2 years of follow up (unless recurrence was evident sooner) and a methylated BCAT1/IKZF1 test result between 2 weeks and 12 months after completion of initial treatment were eligible for study inclusion. The association between BCAT1/IKZF1 and RFS was assessed by the log-rank (Mantel-Cox) method. Cox proportional hazard regression analysis was used for multivariable survival analysis. RESULTS: Thirty-three (23.2%) had recurrence at a median 1.6y (interquartile range: 0.8-2.4). Methylated BCAT1/IKZF1 was detected in 19 of the 142 patients (13.4%) and was associated with a significant risk of recurrence (hazard ratio [HR] 5.7, 95%CI: 1.9-17.3, p = 0.002). Three-year RFS for patients with or without detectable methylated BCAT1/IKZF1 was 56.5% and 83.3%, respectively. Multivariable analysis showed that detection of methylated BCAT1/IKZF1 (HR = 2.6, p = 0.049) and site of the primary tumor (HR = 4.2, p = 0.002) were the only significant prognostic indicators of poor RFS. CONCLUSIONS: BCAT1/IKZF1 methylation testing after curative-intent treatment is an independent prognostic indicator for RFS and identifies a subgroup at high risk. Personalized surveillance is warranted for patients with these ctDNA biomarkers detectable after curative-intent treatment.


Assuntos
Neoplasias Colorretais , Humanos , Prognóstico , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Recidiva Local de Neoplasia/genética , Fator de Transcrição Ikaros/genética , Biomarcadores Tumorais/genética , Transaminases/genética
17.
J Mol Histol ; 54(1): 25-39, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36344754

RESUMO

More and more studies have shown that Branched chain amino acid transaminase 1 (BCAT1) is involved in the occurrence and development of a variety of tumors. However, the mechanism of its occurrence and development in hepatocellular carcinoma (HCC) remains unclear. Here, we demonstrated the relationship between BCAT1 and AKT signaling pathway, as well as EMT, and the clinical significance of BCAT1 by using BCAT1 expression in 5 cell lines and 113 liver cancer and non-liver cancer tissue samples. The results showed that the expression of AKT was positively correlated with BCAT1 in HCC tissues, and BCAT1 could promote the progression of HCC cells through the AKT signaling pathway. Clinical analysis and Bioinformatics technology analysis revealed that BCAT1 was correlated with poor prognosis, and BCAT1 expression in the HCC tissues was evidently correlated with tumor number, vascular invasion, Edmondson grade and TNM stage (P < 0.05). In vitro studies showed that BCAT1 increased the invasion and migration of in MHCC-97H cells a d Huh7 cells. By inhibiting the expression of the BCAT1 gene, we detected the corresponding changes in the expression levels of Twist, E-cadherin and Vimentin, confirming that BCAT1 may promote the invasion and migration of HCC cells through epithelial-mesenchymal transformation (EMT). Overall, BCAT1 can activate AKT signaling pathway and EMT to promote the development and metastasis of HCC cells. this study may provide new ideas and directions for cancer diagnosis and treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Prognóstico , Transição Epitelial-Mesenquimal/genética , Linhagem Celular Tumoral , Transdução de Sinais , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Transaminases/genética , Transaminases/metabolismo
18.
Cell Rep ; 41(3): 111524, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260995

RESUMO

The metabolic enzyme branched-chain amino acid transaminase 1 (BCAT1) drives cell proliferation in aggressive cancers such as glioblastoma. Here, we show that BCAT1 localizes to mitotic structures and has a non-metabolic function as a mitotic regulator. Furthermore, BCAT1 is required for chromosome segregation in cancer and induced pluripotent stem cells and tumor growth in human cerebral organoid and mouse syngraft models. Applying gene knockout and rescue strategies, we show that the BCAT1 CXXC redox motif is crucial for controlling cysteine sulfenylation specifically in mitotic cells, promoting Aurora kinase B localization to centromeres, and securing accurate chromosome segregation. These findings offer an explanation for the well-established role of BCAT1 in promoting cancer cell proliferation. In summary, our data establish BCAT1 as a component of the mitotic apparatus that safeguards mitotic fidelity through a moonlighting redox functionality.


Assuntos
Aminoácidos de Cadeia Ramificada , Cisteína , Animais , Humanos , Camundongos , Aurora Quinase B , Modelos Animais de Doenças , Oxirredução , Transaminases
19.
Biochem Biophys Res Commun ; 631: 93-101, 2022 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-36182869

RESUMO

Atherosclerosis (AS) is an inflammatory vascular disease. Branched-chain amino acid transaminase 1 (BCAT1) has been implicated in inflammatory diseases, while its role in AS is unclear yet. In ApoE-/- mice with a high fat diet (HDF), BCAT1 was highly up-regulated and more pronounced in aged than in young ApoE-/- mice, which was abundantly expressed in macrophages located in AS lesions. The function of BCAT1 in AS was explored using lentivirus-mediated BCAT1 overexpression. ApoE-/- mice fed a HFD with BCAT1 overexpression exhibited the worsening lipid deposition and pathological injury of aortic tissues, accompanied by aggravated hyperlipidemia as proved by increased serum triglyceride, total cholesterol, and low-density lipoprotein-cholesterol levels. Immunohistochemical staining of vascular cell adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1 (MCP-1), and CD68 in the aortic root plaque suggested that BCAT1 overexpression could induce monocyte-endothelial cell adhesion and macrophages infiltration, thereby contributing inflammatory response by promoting TNF-α, IL-6, and IL-1ß expression. Further, in vivo experiments, lipid accumulation, and inflammatory response induced by oxidized-LDL in RAW267.4 cells were also intensified or alleviated by BCAT1 overexpression or knockdown. Finally, BCAT1 overexpression aggravated AS development. These adverse effects of BCAT1 on hyperlipidemia, lipid accumulation, foaming cell formation, and inflammation suggested that the modulation of BCAT1 might be a potential approach to prevent AS disease.


Assuntos
Aterosclerose , Hiperlipidemias , Transaminases/metabolismo , Aminoácidos de Cadeia Ramificada , Animais , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Quimiocina CCL2/metabolismo , Colesterol/metabolismo , Hiperlipidemias/genética , Interleucina-6 , Lipoproteínas LDL , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos , Fator de Necrose Tumoral alfa/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo
20.
Clin Epigenetics ; 14(1): 116, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123616

RESUMO

Lung cancer patients are diagnosed at late stages when curative treatments are no longer possible; thus, molecular biomarkers for noninvasive detection are urgently needed. In this sense, we previously identified and validated an epigenetic 4-gene signature that yielded a high diagnostic performance in tissue and invasive pulmonary fluids. We analyzed DNA methylation levels using the ultrasensitive digital droplet PCR in noninvasive samples in a cohort of 83 patients. We demonstrated that BCAT1 is the candidate that achieves high diagnostic efficacy in circulating DNA derived from plasma (area under the curve: 0.85). Impact of potentially confounding variables was also explored.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Pulmonares , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , DNA , Metilação de DNA , Epigênese Genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Transaminases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA