Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
HGG Adv ; 5(3): 100314, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38816995

RESUMO

Inherited retinal diseases (IRDs) are a group of rare monogenic diseases with high genetic heterogeneity (pathogenic variants identified in over 280 causative genes). The genetic diagnostic rate for IRDs is around 60%, mainly thanks to the routine application of next-generation sequencing (NGS) approaches such as extensive gene panels or whole exome analyses. Whole-genome sequencing (WGS) has been reported to improve this diagnostic rate by revealing elusive variants, such as structural variants (SVs) and deep intronic variants (DIVs). We performed WGS on 33 unsolved cases with suspected autosomal recessive IRD, aiming to identify causative genetic variants in non-coding regions or to detect SVs that were unexplored in the initial screening. Most of the selected cases (30 of 33, 90.9%) carried monoallelic pathogenic variants in genes associated with their clinical presentation, hence we first analyzed the non-coding regions of these candidate genes. Whenever additional pathogenic variants were not identified with this approach, we extended the search for SVs and DIVs to all IRD-associated genes. Overall, we identified the missing causative variants in 11 patients (11 of 33, 33.3%). These included three DIVs in ABCA4, CEP290 and RPGRIP1; one non-canonical splice site (NCSS) variant in PROM1 and three SVs (large deletions) in EYS, PCDH15 and USH2A. For the previously unreported DIV in CEP290 and for the NCCS variant in PROM1, we confirmed the effect on splicing by reverse transcription (RT)-PCR on patient-derived RNA. This study demonstrates the power and clinical utility of WGS as an all-in-one test to identify disease-causing variants missed by standard NGS diagnostic methodologies.


Assuntos
Doenças Retinianas , Sequenciamento Completo do Genoma , Humanos , Doenças Retinianas/genética , Doenças Retinianas/diagnóstico , Masculino , Feminino , Itália , Criança , Adulto , Adolescente , Predisposição Genética para Doença/genética , Proteínas do Citoesqueleto/genética , Pré-Escolar , Caderinas/genética , Mutação , Variação Genética/genética , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas Relacionadas a Caderinas , Adulto Jovem , Transportadores de Cassetes de Ligação de ATP/genética , Pessoa de Meia-Idade , Proteínas do Olho/genética , Antígenos de Neoplasias/genética , Linhagem , Proteínas de Ciclo Celular
2.
Front Med (Lausanne) ; 10: 1310050, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38105897

RESUMO

Retinal degenerative diseases, including glaucoma, age-related macular degeneration, diabetic retinopathy, and a broad range of inherited retinal diseases, are leading causes of irreversible vision loss and blindness. Gene therapy is a promising and fast-growing strategy to treat both monogenic and multifactorial retinal disorders. Vectors for gene delivery are crucial for efficient and specific transfer of therapeutic gene(s) into target cells. AAV vectors are ideal for retinal gene therapy due to their inherent advantages in safety, gene expression stability, and amenability for directional engineering. The eye is a highly compartmentalized organ composed of multiple disease-related cell types. To determine a suitable AAV vector for a specific cell type, the route of administration and choice of AAV variant must be considered together. Here, we provide a brief overview of AAV vectors for gene transfer into important ocular cell types, including retinal pigment epithelium cells, photoreceptors, retinal ganglion cells, Müller glial cells, ciliary epithelial cells, trabecular meshwork cells, vascular endothelial cells, and pericytes, via distinct injection methods. By listing suitable AAV vectors in basic research and (pre)clinical studies, we aim to highlight the progress and unmet needs of AAV vectors in retinal gene therapy.

3.
Biomedicines ; 11(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38137345

RESUMO

The purpose of this study is to describe worldwide gene therapy clinical trials aimed at treating ophthalmic disorders. Information regarding all worldwide clinical trials was collected through 15 different sources, including ClinicalTrials.gov. There were 159 gene therapy clinical trials on ophthalmic diseases up until 2022. Phase 1/2 trials had the highest frequency (50-32%), followed by phase 2 (33-21%); 107 trials (67%) were conducted in a single country, and 50 trials (31%) were multinational. Overall, the USA was the site of 113 (71%) single or multinational trials. Of the trials, 153 (96%) targeted retina and optic nerve disorders, 3 (2%) glaucoma, 2 (1%) uveitis, and 1 (1%) cornea; 104 trials (65%) employed gene augmentation using viral vectors, and the remaining employed other methods such as inhibitory RNA (18-11%) and cell-based gene therapy using encapsulated cell technology (18-11%). For gene augmentation trials, adeno-associated virus was used for transgene delivery in 87% of cases. The most common conditions targeted by gene augmentation included inherited retinal (74%) and age-related macular degeneration (wet, 14%; dry, 7%). Overall, a large number of gene therapy clinical trials have been conducted in the eye, and so far, one has led to regulatory approval.

4.
Epigenomics ; 15(9): 557-570, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37458071

RESUMO

EZH2, acting as a catalytic subunit of PRC2 to catalyze lysine 27 in histone H3, induces the suppression of gene expression. EZH2 can regulate cell proliferation and differentiation of retinal progenitors, which are required for physiological retinal development. Meanwhile, an abnormal level of EZH2 has been observed in ocular tumors and other pathological tissues. This review summarizes the current knowledge on EZH2 in retinal development and ocular diseases, including inherited retinal diseases, ocular tumors, corneal injury, cataract, glaucoma, diabetic retinopathy and age-related retinal degeneration. We highlight the potential of targeting EZH2 as a precision therapeutic target in ocular diseases.


EZH2 is a protein that helps to regulate the activity of genes in cells. It works as a part of a complex called PRC2 to control a chemical group called lysine 27 in histone H3 and then inhibit the expression of genes. EZH2 is important for the normal development of the retina. Abnormal levels of EZH2 are associated with various eye diseases. This review summarizes the role of EZH2 in different ocular diseases and the potential mechanisms. Targeting EZH2 may be a novel way to treat or prevent ocular diseases.


Assuntos
Neoplasias , Complexo Repressor Polycomb 2 , Humanos , Complexo Repressor Polycomb 2/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/metabolismo , Retina/metabolismo , Neoplasias/metabolismo
5.
Orphanet J Rare Dis ; 18(1): 223, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37525225

RESUMO

BACKGROUND: Non-syndromic inherited retinal dystrophies (IRDs) such as retinitis pigmentosa or Leber congenital amaurosis generally manifest between early childhood and late adolescence, imposing profound long-term impacts as a result of vision impairment or blindness. IRDs are highly heterogeneous, with often overlapping symptoms among different IRDs, and achieving a definite diagnosis is challenging. This narrative review provides a clinical overview of the non-syndromic generalized photoreceptor dystrophies, particularly retinitis pigmentosa and Leber congenital amaurosis. The clinical investigations and genetic testing needed to establish a diagnosis are outlined, and current management approaches are discussed, focusing on the importance of the involvement of an interdisciplinary team from diagnosis and initial care to long-term follow-up and support. RESULTS: The effective management of IRDs requires a multidisciplinary, and ideally interdisciplinary, team of experts knowledgeable about IRDs, with experienced professionals from fields as diverse as ophthalmology, neuropsychiatry, psychology, neurology, genetics, orthoptics, developmental therapy, typhlology, occupational therapy, otolaryngology, and orientation and mobility specialties. Accurate clinical diagnosis encompasses a range of objective and subjective assessments as a prerequisite for the genetic testing essential in establishing an accurate diagnosis necessary for the effective management of IRDs, particularly in the era of gene therapies. Improvements in genome sequencing techniques, such as next-generation sequencing, have greatly facilitated the complex process of determining IRD-causing gene variants and establishing a molecular diagnosis. Genetic counseling is essential to help the individual and their family understand the condition, the potential risk for offspring, and the implications of a diagnosis on visual prognosis and treatment options. Psychological support for patients and caregivers is important at all stages of diagnosis, care, and rehabilitation and is an essential part of the multidisciplinary approach to managing IRDs. Effective communication throughout is essential, and the patient and caregivers' needs and expectations must be acknowledged and discussed. CONCLUSION: As IRDs can present at an early age, clinicians need to be aware of the clinical signs suggesting visual impairment and follow up with multidisciplinary support for timely diagnoses to facilitate appropriate therapeutic or rehabilitation intervention to minimize vision loss.


Assuntos
Amaurose Congênita de Leber , Distrofias Retinianas , Retinose Pigmentar , Adolescente , Humanos , Pré-Escolar , Amaurose Congênita de Leber/diagnóstico , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/terapia , Distrofias Retinianas/diagnóstico , Distrofias Retinianas/genética , Distrofias Retinianas/terapia , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Testes Genéticos , Terapia Genética , Mutação
6.
Singapore Med J ; 64(1): 17-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36722513

RESUMO

Inherited ocular diseases comprise a heterogeneous group of rare and complex diseases, including inherited retinal diseases (IRDs) and inherited optic neuropathies. Recent success in adeno-associated virus-based gene therapy, voretigene neparvovec (Luxturna®) for RPE65-related IRDs, has heralded rapid evolution in gene therapy platform technologies and strategies, from gene augmentation to RNA editing, as well as gene agnostic approaches such as optogenetics. This review discusses the fundamentals underlying the mode of inheritance, natural history studies and clinical trial outcomes, as well as current and emerging therapies covering gene therapy strategies, cell-based therapies and bionic vision.


Assuntos
Oftalmopatias , Humanos , Oftalmopatias/terapia
7.
Methods Mol Biol ; 2560: 393-399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36481913

RESUMO

Gene therapy is emerging as a treatment for inherited diseases including retinitis pigmentosa. Through surgery, specifically with pars plana vitrectomy, the subretinal space can be accessed to directly administer this treatment. The goal herein is to provide an overview of this approach.


Assuntos
Terapia Genética
8.
Expert Opin Emerg Drugs ; 27(4): 431-443, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36562395

RESUMO

INTRODUCTION: Mutations in the RPGR gene are responsible for one of the most prevalent and severe types of retinitis pigmentosa. Gene therapy has shown great promise to treat inherited retinal diseases, and currently, four RPGR gene therapy vectors are being evaluated in clinical trials. AREAS COVERED: This manuscript reviews the gene therapy products that are in development for X-linked retinitis pigmentosa caused by mutations in RPGR, and the challenges that scientists and clinicians have faced. EXPERT OPINION: The development of a gene therapy product for RPGR-associated retinal degeneration has been a great challenge due to the incomplete understanding of the underlying genetics and mechanism of action of RPGR, and on the other hand, due to the instability of the RPGR gene. Three of the four gene therapy vectors currently in clinical trials include a codon-optimized version of the human RPGR sequence, and the other vector contains a shortened version of the human RPGR. To date, the only Phase I/II results published in a peer-reviewed journal demonstrate a good safety profile and an improvement in the visual field using a codon optimized version of RPGRORF15.


Assuntos
Proteínas do Olho , Retinose Pigmentar , Humanos , Códon , Proteínas do Olho/genética , Terapia Genética/métodos , Mutação , Retinose Pigmentar/genética , Retinose Pigmentar/terapia
9.
EMBO Mol Med ; 14(11): e15941, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36194668

RESUMO

Inherited retinal diseases (IRDs) are a group of diseases whose common landmark is progressive photoreceptor loss. The development of gene-specific therapies for IRDs is hampered by their wide genetic heterogeneity. Mitochondrial dysfunction is proving to constitute one of the key pathogenic events in IRDs; hence, approaches that enhance mitochondrial activities have a promising therapeutic potential for these conditions. We previously reported that miR-181a/b downregulation boosts mitochondrial turnover in models of primary retinal mitochondrial diseases. Here, we show that miR-181a/b silencing has a beneficial effect also in IRDs. In particular, the injection in the subretinal space of an adeno-associated viral vector (AAV) that harbors a miR-181a/b inhibitor (sponge) sequence (AAV2/8-GFP-Sponge-miR-181a/b) improves retinal morphology and visual function both in models of autosomal dominant (RHO-P347S) and of autosomal recessive (rd10) retinitis pigmentosa. Moreover, we demonstrate that miR-181a/b downregulation modulates the level of the mitochondrial fission-related protein Drp1 and rescues the mitochondrial fragmentation in RHO-P347S photoreceptors. Overall, these data support the potential use of miR-181a/b downregulation as an innovative mutation-independent therapeutic strategy for IRDs, which can be effective both to delay disease progression and to aid gene-specific therapeutic approaches.


Assuntos
MicroRNAs , Retinose Pigmentar , Humanos , Regulação para Baixo , Retina/patologia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Mutação , MicroRNAs/genética , MicroRNAs/metabolismo
11.
Front Genome Ed ; 3: 775330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34901928

RESUMO

Inherited retinal diseases (IRDs) are chronic, hereditary disorders that lead to progressive degeneration of the retina. Disease etiology originates from a genetic mutation-inherited or de novo-with a majority of IRDs resulting from point mutations. Given the plethora of IRDs, to date, mutations that cause these dystrophies have been found in approximately 280 genes. However, there is currently only one FDA-approved gene augmentation therapy, Luxturna (voretigene neparvovec-rzyl), available to patients with RPE65-mediated retinitis pigmentosa (RP). Although clinical trials for other genes are underway, these techniques typically involve gene augmentation rather than genome surgery. While gene augmentation therapy delivers a healthy copy of DNA to the cells of the retina, genome surgery uses clustered regularly interspaced short palindromic repeats (CRISPR)-based technology to correct a specific genetic mutation within the endogenous genome sequence. A new technique known as prime editing (PE) applies a CRISPR-based technology that possesses the potential to correct all twelve possible transition and transversion mutations as well as small insertions and deletions. EDIT-101, a CRISPR-based therapy that is currently in clinical trials, uses double-strand breaks and nonhomologous end joining to remove the IVS26 mutation in the CEP290 gene. Preferably, PE does not cause double-strand breaks nor does it require any donor DNA repair template, highlighting its unparalleled efficiency. Instead, PE uses reverse transcriptase and Cas9 nickase to repair mutations in the genome. While this technique is still developing, with several challenges yet to be addressed, it offers promising implications for the future of IRD treatment.

12.
Indian J Ophthalmol ; 69(9): 2257-2265, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34427196

RESUMO

Over 2 million people worldwide are suffering from gene-related retinal diseases, inherited or acquired, and over 270 genes have been identified which are found to be responsible for these conditions. This review article touches upon the mechanisms of gene therapy, various enzymes of the visual cycle responsible for different genetic diseases, Luxturna-the first US Food and Drug Administration (FDA)-approved therapeutic gene product, and several ongoing trials of gene therapy for age-related macular degeneration. Gene therapy has tremendous potential for retinal conditions due to its ease of accessibility, immune-privileged status, and tight blood-retinal barriers, limiting systemic side effects of the drug. In recent years, advances in gene therapy in retinal conditions have increasing significantly, with progress in cell-specific targeting and transduction efficiency of gene products through the use of adeno-associated viral vectors (AAVs), suggesting that even greater success in future clinical trials is possible.


Assuntos
Degeneração Macular , Preparações Farmacêuticas , Doenças Retinianas , Terapia Genética , Vetores Genéticos , Humanos , Degeneração Macular/terapia , Doenças Retinianas/genética , Doenças Retinianas/terapia , Estados Unidos
13.
Orphanet J Rare Dis ; 16(1): 257, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088339

RESUMO

BACKGROUND: This research aimed to establish recommendations on the clinical and genetic characteristics necessary to confirm patient eligibility for gene supplementation with voretigene neparvovec. METHODS: An expert steering committee comprising an interdisciplinary panel of Italian experts in the three fields of medical specialisation involved in the management of RPE65-associated inherited retinal disease (IRD) (medical retina, genetics, vitreoretinal surgery) proposed clinical questions necessary to determine the correct identification of patients with the disease, determine the fundamental clinical and genetics tests to reach the correct diagnosis and to evaluate the urgency to treat patients eligible to receive treatment with voretigene neparvovec. Supported by an extensive review of the literature, a series of statements were developed and refined to prepare precisely constructed questionnaires that were circulated among an external panel of experts comprising ophthalmologists (retina specialists, vitreoretinal surgeons) and geneticists with extensive experience in IRDs in Italy in a two-round Delphi process. RESULTS: The categories addressed in the questionnaires included clinical manifestations of RPE65-related IRD, IRD screening and diagnosis, gene testing and genotyping, ocular gene therapy for IRDs, patient eligibility and prioritisation and surgical issues. Response rates by the survey participants were over 90% for the majority of items in both Delphi rounds. The steering committee developed the key consensus recommendations on each category that came from the two Delphi rounds into a simple and linear diagnostic algorithm designed to illustrate the patient pathway leading from the patient's referral centre to the retinal specialist centre. CONCLUSIONS: Consensus guidelines were developed to guide paediatricians and general ophthalmologists to arrive at the correct diagnosis of RPE65-associated IRD and make informed clinical decisions regarding eligibility for a gene therapy approach to RPE65-associated IRD. The guidelines aim to ensure the best outcome for the patient, based on expert opinion, the published literature, and practical experience in the field of IRDs.


Assuntos
Terapia Genética , Doenças Retinianas , Consenso , Humanos , Itália , Retina
14.
Int J Mol Sci ; 22(5)2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668384

RESUMO

This study aims to genetically characterize a two-year-old patient suffering from multiple systemic abnormalities, including skeletal, nervous and developmental involvements and Leber congenital amaurosis (LCA). Genetic screening by next-generation sequencing identified two heterozygous pathogenic variants in nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) as the molecular cause of the disease: c.439+5G>T and c.299+526_*968dup.This splice variant has never been reported to date, whereas pathogenic duplication has recently been associated with cases displaying an autosomal recessive disorder that includes a severe form of spondylo-epiphyseal dysplasia, sensorineural hearing loss, intellectual disability and LCA (SHILCA), as well as some brain anomalies. Our patient presented clinical manifestations which correlated strongly with this reported syndrome. To further study the possible transcriptional alterations resulting from these mutations, mRNA expression assays were performed in the patient and her father. The obtained results detected aberrant alternative transcripts and unbalanced levels of expression, consistent with severe systemic involvement. Moreover, these analyses also detected a novel NMNAT1 isoform, which is variably expressed in healthy human tissues. Altogether, these findings represent new evidence of the correlation of NMNAT1 and SHILCA syndrome, and provide additional insights into the healthy and pathogenic expression of this gene.


Assuntos
Perda Auditiva Neurossensorial/patologia , Deficiência Intelectual/patologia , Amaurose Congênita de Leber/patologia , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Osteocondrodisplasias/patologia , Pré-Escolar , Feminino , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/genética , Heterozigoto , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Amaurose Congênita de Leber/complicações , Amaurose Congênita de Leber/genética , Masculino , Mutação , Osteocondrodisplasias/complicações , Osteocondrodisplasias/genética , Linhagem , Isoformas de Proteínas
15.
Stem Cell Res Ther ; 12(1): 52, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-33422139

RESUMO

BACKGROUND: Retinitis pigmentosa (RP) is a progressive inherited retinal disease with great interest for finding effective treatment modalities. Stem cell-based therapy is one of the promising candidates. We aimed to investigate the safety, feasibility, and short-term efficacy of intravitreal injection of bone marrow-derived mesenchymal stem cells (BM-MSCs) in participants with advanced stage RP. METHODS: This non-randomized phase I clinical trial enrolled 14 participants, categorized into three groups based on a single dose intravitreal BM-MSC injection of 1 × 106, 5 × 106, or 1 × 107 cells. We evaluated signs of inflammation and other adverse events (AEs). We also assessed the best corrected visual acuity (BCVA), visual field (VF), central subfield thickness (CST), and subjective experiences. RESULTS: During the 12-month period, we noticed several mild and transient AEs. Interestingly, we found statistically significant improvements in the BCVA compared to baseline, although they returned to the baseline at 12 months. The VF and CST were stable, indicating no remarkable disease progression. We followed 12 participants beyond the study period, ranging from 1.5 to 7 years, and observed one severe but manageable AE at year 3. CONCLUSION: Intravitreal injection of BM-MSCs appears to be safe and potentially effective. All adverse events during the 12-month period required observation without any intervention. For the long-term follow-up, only one participant needed surgical treatment for a serious adverse event and the vision was restored. An enrollment of larger number of participants with less advanced RP and long-term follow-up is required to evaluate the safety and efficacy of this intervention. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01531348 . Registered on February 10, 2012.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Retinose Pigmentar , Humanos , Injeções Intravítreas , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Retina , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Transplante Autólogo
16.
Front Genet ; 12: 794805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069693

RESUMO

Inherited retinal diseases (IRDs) are a heterogenous group of orphan eye diseases that typically result from monogenic mutations and are considered attractive targets for gene-based therapeutics. Following the approval of an IRD gene replacement therapy for Leber's congenital amaurosis due to RPE65 mutations, there has been an intensive international research effort to identify the optimal gene therapy approaches for a range of IRDs and many are now undergoing clinical trials. In this review we explore therapeutic challenges posed by IRDs and review current and future approaches that may be applicable to different subsets of IRD mutations. Emphasis is placed on five distinct approaches to gene-based therapy that have potential to treat the full spectrum of IRDs: 1) gene replacement using adeno-associated virus (AAV) and nonviral delivery vectors, 2) genome editing via the CRISPR/Cas9 system, 3) RNA editing by endogenous and exogenous ADAR, 4) mRNA targeting with antisense oligonucleotides for gene knockdown and splicing modification, and 5) optogenetic approaches that aim to replace the function of native retinal photoreceptors by engineering other retinal cell types to become capable of phototransduction.

17.
Graefes Arch Clin Exp Ophthalmol ; 259(3): 643-652, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32910309

RESUMO

PURPOSE: The primary aim of our study was to evaluate retinal microvascular anomalies recorded with optical coherence tomography angiography (OCTA) and the retinal metabolic function measured with retinal oximetry (RO) in patients with retinitis pigmentosa (RP). The secondary aim of the study was to link the presence of macular edema to microvascular and metabolic parameters in RP. METHODS: OCTA and RO were performed on 94 eyes: 64 eyes diagnosed with RP with (ME-RP) and without (no-ME-RP) macular edema were compared with 30 control eyes. Study end points were as follows: mean superficial (FAZ-S) and deep foveal avascular zone (FAZ-D) determined by OCTA. In addition, we evaluated the mean arterial (A-SO2; %), venular (V-SO2; %) oxygen saturation, their difference (A-V SO2; %), as well as the corresponding mean diameter of the retinal arterioles (D-A; µm) and venules (D-V; µm). RESULTS: RP patients differed from controls by enlarged FAZ-S and FAZ-D (p ≤ 0.001), attenuated retinal vessels (p ≤ 0.001), and increased retinal vessel oxygen saturation (p ≤ 0.010). Subgroup analyses within RP patients revealed more pronounced alterations of microvascular parameters and metabolic function in the presence of macular edema. In the no-ME-RP subgroup, significant interactions were present between FAZ-S, A-SO2, and V-SO2, whereas in the ME-RP subgroup, we found significant correlations between FAZ-D and D-A. CONCLUSION: A combined microvascular structure-metabolic function approach enhances our understanding of inherited retinal diseases. The presence of macular edema in RP seems to be a result of more altered microvascular-metabolic function. Macular edema should thus be taken into consideration when evaluating microvascular and/or metabolic changes in RP.


Assuntos
Macula Lutea , Edema Macular , Retinose Pigmentar , Angiofluoresceinografia , Humanos , Vasos Retinianos , Retinose Pigmentar/diagnóstico por imagem , Tomografia de Coerência Óptica
18.
Clin Ophthalmol ; 14: 3855-3869, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33223822

RESUMO

Subretinal gene therapy trials began with the discovery of RPE65 variants and their association with Leber congenital amaurosis. The RPE65 protein is critical for the normal functioning of the visual phototransduction cascade. RPE65 gene knockout animal models were developed and showed similar diseased phenotypes to their human counterparts. Proof of concept studies were carried out in these animal models using subretinal RPE65 gene replacement therapy, resulting in improvements in various visual function markers including electroretinograms, pupillary light responses, and object avoidance behaviors. Positive results in animal models led to Phase 1 human studies using adeno-associated viral vectors. Results in these initial human studies also showed positive impact on visual function and acceptable safety. A landmark Phase 3 study was then conducted by Spark Therapeutics using a dose of 1.5 x1011 vector genomes after dose-escalation studies confirmed its efficacy and safety. Multi-luminance mobility testing was used to measure the primary efficacy endpoint due to its excellent reliability in detecting the progression of inherited retinal diseases. After the study met its primary endpoint, the Food and Drug Administration approved voretigene neparvovec (Luxturna®) for use in RPE65-associated inherited retinal diseases.

19.
Artigo em Inglês | MEDLINE | ID: mdl-32377379

RESUMO

BACKGROUND: To analyze intraoperative OCT (iOCT) findings during subretinal gene therapy. METHODS: A single-center, retrospective, observational, case series study of twenty one eyes submitted to subretinal gene therapy. Intrasurgical high definition videos were included for analyzes. Cases with absence of iOCT video or unsuccessful bleb creation were excluded. Sharp needle tip (SNT) or blunted needle tip (BNT) and their interaction with neurosensory retina were evaluated. Presence of subretinal air bubbles, visible opened retinotomy, and medication reflux were also correlated and analyzed. RESULTS: Nineteen of twenty-one eyes were included. Of the two excluded eyes, subretinal bleb creation was unsuccessful in one and technical issues prevented OCT image acquisition in the other. Immediately before subretinal injection, needle indention/penetration of the neurosensory retina with temporary indentation of the RPE/choroid was evident in 16 (84%) of the 19 eyes. Complete RPE/choroid indentation was needed with BNT use compared to SNT (p = 0.0114). An open retinotomy was identified in 14 (74%) of 19 eyes at the conclusion of bleb injection and was more commonly associated with SNT (p = 0.0108). CONCLUSIONS: iOCT provides valuable real-time feedback of cross-sectional retinal anatomy during subretinal gene therapy surgeries. The type of needle tip and its use during the gene therapy procedure seems to influence in the bleb creation and presence of visible open retinotomy. Further studies of iOCT findings during gene therapy delivery procedures are likely to help refine the surgical technique.

20.
Mol Ther Nucleic Acids ; 19: 144-156, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-31837604

RESUMO

Inherited retinal diseases (IRDs) represent a frequent cause of genetic blindness. Their high genetic heterogeneity hinders the application of gene-specific therapies to the vast majority of patients. We recently demonstrated that the microRNA miR-204 is essential for retinal function, although the underlying molecular mechanisms remain poorly understood. Here, we investigated the therapeutic potential of miR-204 in IRDs. We subretinally delivered an adeno-associated viral (AAV) vector carrying the miR-204 precursor to two genetically different IRD mouse models. The administration of AAV-miR-204 preserved retinal function in a mouse model for a dominant form of retinitis pigmentosa (RHO-P347S). This was associated with a reduction of apoptotic photoreceptor cells and with a better preservation of photoreceptor marker expression. Transcriptome analysis showed that miR-204 shifts expression profiles of transgenic retinas toward those of healthy retinas by the downregulation of microglia activation and photoreceptor cell death. Delivery of miR-204 exerted neuroprotective effects also in a mouse model of Leber congenital amaurosis, due to mutations of the Aipl1 gene. Our study highlights the mutation-independent therapeutic potential of AAV-miR204 in slowing down retinal degeneration in IRDs and unveils the previously unreported role of this miRNA in attenuating microglia activation and photoreceptor cell death.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA