Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 228
Filtrar
1.
Anal Chem ; 96(24): 9885-9893, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38848670

RESUMO

Glutathione (GSH) redox control and arginine metabolism are critical in regulating the physiological response to injury and oxidative stress. Quantification assessment of the GSH/arginine redox metabolism supports monitoring metabolic pathway shifts during pathological processes and their linkages to redox regulation. However, assessing the redox status of organisms with complex matrices is challenging, and single redox molecule analysis may not be accurate for interrogating the redox status in cells and in vivo. Herein, guided by a paired derivatization strategy, we present a new ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS)-based approach for the functional assessment of biological redox status. Two structurally analogous probes, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) and newly synthesized 2-methyl-6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (MeAQC), were set for paired derivatization. The developed approach was successfully applied to LPS-stimulated RAW 264.7 cells and HDM-induced asthma mice to obtain quantitative information on GSH/arginine redox metabolism. The results suggest that the redox status was remarkably altered upon LPS and HDM stimulation. We expect that this approach will be of good use in a clinical biomarker assay and potential drug screening associated with redox metabolism, oxidative damage, and redox signaling.


Assuntos
Arginina , Glutationa , Oxirredução , Espectrometria de Massas em Tandem , Animais , Arginina/metabolismo , Arginina/análise , Arginina/química , Glutationa/metabolismo , Glutationa/análise , Camundongos , Espectrometria de Massas em Tandem/métodos , Células RAW 264.7 , Carbamatos/metabolismo , Carbamatos/química , Cromatografia Líquida de Alta Pressão , Lipopolissacarídeos/farmacologia , Aminoquinolinas/química
2.
Chem Biol Drug Des ; 103(5): e14509, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684369

RESUMO

The biphenyl scaffold represents a prominent privileged structure within the realms of organic chemistry and drug development. Biphenyl derivatives have demonstrated notable biological activities, including antimicrobial, anti-inflammatory, anti-HIV, and the treatment of neuropathic pain. Importantly, their anticancer abilities should not be underestimated. In this context, the present study involves the design and synthesis of a series of biphenyl derivatives featuring an additional privileged structure, namely the quinoline core. We have also diversified the substituents attached to the benzyloxy group at either the meta or para position of the biphenyl ring categorized into two distinct groups: [4,3']biphenylaminoquinoline-substituted and [3,3']biphenylaminoquinoline-substituted compounds. We embarked on an assessment of the cytotoxic activities of these derivatives in colorectal cancer cell line SW480 and prostate cancer cell line DU145 for exploring the structure-activity relationship. Furthermore, we determined the IC50 values of selected compounds that exhibited superior inhibitory effects on cell viability against SW480, DU145 cells, as well as MDA-MB-231 and MiaPaCa-2 cells. Notably, [3,3']biphenylaminoquinoline derivative 7j displayed the most potent cytotoxicity against these four cancer cell lines, SW480, DU145, MDA-MB-231, and MiaPaCa-2, with IC50 values of 1.05 µM, 0.98 µM, 0.38 µM, and 0.17 µM, respectively. This highly promising outcome underscores the potential of [3,3']biphenylaminoquinoline 7j for further investigation as a prospective anticancer agent in future research endeavors.


Assuntos
Antineoplásicos , Compostos de Bifenilo , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Compostos de Bifenilo/antagonistas & inibidores , Compostos de Bifenilo/farmacologia , Compostos de Bifenilo/química , Ensaios de Seleção de Medicamentos Antitumorais , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Aminoquinolinas/síntese química , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
3.
Eur J Med Chem ; 264: 116043, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38118392

RESUMO

Amongst heterocyclic compounds, quinoline and its derivatives are advantaged scaffolds that appear as a significant assembly motif for developing new drug entities. Aminoquinoline moiety has gained significant attention among researchers in the 21stcentury. Considering the biological and pharmaceutical importance of aminoquinoline derivatives, herein, we review the recent developments (since 2019) in various biological activities of the 4-aminoquinoline scaffold hybridized with diverse heterocyclic moieties such as quinoline, pyridine, pyrimidine, triazine, dioxine, piperazine, pyrazoline, piperidine, imidazole, indole, oxadiazole, carbazole, dioxole, thiazole, benzothiazole, pyrazole, phthalimide, adamantane, benzochromene, and pyridinone. Moreover, by gaining knowledge about SARs, structural insights, and molecular targets, this review may help medicinal chemists design cost-effective, selective, safe, and more potent 4-aminoquinoline hybrids for diverse biological activities.


Assuntos
Antimaláricos , Quinolinas , Plasmodium falciparum , Antimaláricos/farmacologia , Aminoquinolinas/farmacologia , Aminoquinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade
4.
J Med Chem ; 65(3): 2262-2287, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34995458

RESUMO

Through regulation of the epigenome, the bromodomain and extra terminal (BET) family of proteins represent important therapeutic targets for the treatment of human disease. Through mimicking the endogenous N-acetyl-lysine group and disrupting the protein-protein interaction between histone tails and the bromodomain, several small molecule pan-BET inhibitors have progressed to oncology clinical trials. This work describes the medicinal chemistry strategy and execution to deliver an orally bioavailable tetrahydroquinoline (THQ) pan-BET candidate. Critical to the success of this endeavor was a potency agnostic analysis of a data set of 1999 THQ BET inhibitors within the GSK collection which enabled identification of appropriate lipophilicity space to deliver compounds with a higher probability of desired oral candidate quality properties. SAR knowledge was leveraged via Free-Wilson analysis within this design space to identify a small group of targets which ultimately delivered I-BET567 (27), a pan-BET candidate inhibitor that demonstrated efficacy in mouse models of oncology and inflammation.


Assuntos
Aminoquinolinas/química , Desenho de Fármacos , Proteínas/metabolismo , Administração Oral , Aminoquinolinas/metabolismo , Aminoquinolinas/farmacocinética , Aminoquinolinas/uso terapêutico , Animais , Benzoatos/química , Benzoatos/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cães , Meia-Vida , Humanos , Masculino , Camundongos , Conformação Molecular , Simulação de Dinâmica Molecular , Neoplasias/tratamento farmacológico , Proteínas/antagonistas & inibidores , Ratos , Relação Estrutura-Atividade
5.
Bioorg Med Chem Lett ; 51: 128371, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34534673

RESUMO

Malignant gliomas are the most common brain tumors, with generally dismal prognosis, early clinical deterioration and high mortality. Recently, 2-aminoquinoline scaffold derivatives have shown pronounced activity in central nervous system disorders. We herein reported a series of 2-aminoquinoline-3-carboxamides as novel non-alkylator anti-glioblastoma agents. The synthesized compounds showed comparable activity to cisplatin against glioblastoma cell line U87 MG in vitro. Among them, we found that 6a displayed good inhibitory activity against A172 and U118 MG glioblastoma cell lines and induced cell cycle arrest in the G2/M phase and apoptosis in U87 MG by flow cytometry analysis. Additionally, 6a displayed low cytotoxicity to several normal human cell lines. In silico study showed 6a had promising physicochemical properties and was predicted to cross the blood-brain barrier. Moreover, preliminary structure-activity relationships are also investigated, shedding light on further modifications towards more potent agents on this series of compounds. Our results suggest this compound has a promising potential as an anti-glioblastoma agent with a differential effect between tumor and non-malignant cells.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Aminoquinolinas/síntese química , Aminoquinolinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
6.
Rapid Commun Mass Spectrom ; 35(22): e9195, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34491599

RESUMO

RATIONALE: Pyrotinib is an irreversible EGFR/HER2 inhibitor that has shown antitumor activity and tolerance in the treatment of breast cancer. Studies focused on its metabolic pathways and major metabolites are insufficient. In the evaluation of drug safety and therapeutic use, metabolite characterization is critical. The metabolism of pyrotinib in vitro was studied utilizing rat, dog and human hepatocytes in this study. METHODS: Pyrotinib (10 µM) was incubated with hepatocytes in Williams' E medium. The metabolites were examined and profiled using ultrahigh-performance liquid chromatography coupled with quadrupole/orbitrap high-resolution mass spectrometry. The metabolite structures were deduced by comparing their precise molecular weights, fragment ions and retention times with those of the parent drug. RESULTS: A total of 16 metabolites, including 6 novel ones, were discovered and structurally described under the present conditions. Oxidation, demethylation, dehydrogenation, O-dealkylation and glutathione (GSH) conjugation were all involved in the metabolism of pyrotinib in hepatocytes. The most predominant metabolic route was identified as GSH conjugation (M5). CONCLUSIONS: This study generated valuable metabolite profiles of pyrotinib in several species, which will aid in the understanding of the drug's disposition in various species and in evaluating the contribution of metabolites to overall effectiveness and toxicity of pyrotinib.


Assuntos
Acrilamidas/química , Acrilamidas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Hepatócitos/metabolismo , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cães , Hepatócitos/química , Humanos , Ratos , Espectrometria de Massas em Tandem/métodos
7.
Eur J Med Chem ; 225: 113763, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34419892

RESUMO

The tumor microenvironment contains high concentrations of TGFß, a crucial immunosuppressive cytokine. TGFß stimulates immune escape by promoting peripheral immune tolerance to avoid tumoricidal attack. Small-molecule inhibitors of TGFßR1 are a prospective method for next-generation immunotherapies. In the present study, we identified selective 4-aminoquinoline-based inhibitors of TGFßR1 through structural and rational-based design strategies. This led to the identification of compound 4i, which was found to be selective for TGFßR1 with the exception of MAP4K4 in the kinase profiling assay. The compound was then further optimized to remove MAP4K4 activity, since MAP4K4 is vital for proper T-cell function and its inhibition could exacerbate tumor immunosuppression. Optimization efforts led to compound 4s that inhibited TGFßR1 at an IC50 of 0.79 ± 0.19 nM with 2000-fold selectivity against MAP4K4. Compound 4s represents a highly selective TGFßR1 inhibitor that has potential applications in immuno-oncology.


Assuntos
Aminoquinolinas/farmacologia , Descoberta de Drogas , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Receptor do Fator de Crescimento Transformador beta Tipo I/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/química , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Estrutura Molecular , Proteínas Serina-Treonina Quinases/imunologia , Receptor do Fator de Crescimento Transformador beta Tipo I/imunologia , Relação Estrutura-Atividade
8.
Biochimie ; 191: 33-36, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34418485

RESUMO

Major advances have been made recently in the application of the highly selective G4 DNA ligand pyridostatin (PDS) for targeting and visualization of this noncanonical DNA structure in eukaryotic genomes. However, the interaction of PDS with the G4 structure constrained by double-stranded DNA has not yet been analyzed. Here, we induced folding of G4 structures in double-stranded DNA promoter fragments of several oncogenes by annealing the DNA under molecular crowding conditions created by polyethylene glycol (PEG) or in the presence of PDS. Both PEG and PDS induced similar DNA folding, as demonstrated by gel mobility assays and S1 nuclease cleavage. The cationic porphyrin derivative ZnP1 was used to probe the G4 structure in both conditions and thus provided with "footprint" of PDS. The PEG-stabilized G4 structure was susceptible to photo-induced oxidation by ZnP1 and tended to revert to a duplex after oxidation. Guanines in the 5'-tetrad were the most accessible to ZnP1 and became protected from oxidation upon binding of PDS which prevented the G4 structure from rearranging into a double helix. The study demonstrates the applicability of porphyrin ZnP1 for the probing of G4 structures in the genomic context and footprinting of G4 specific ligands.


Assuntos
Aminoquinolinas/química , DNA/química , Quadruplex G , Conformação de Ácido Nucleico , Ácidos Picolínicos/química
9.
Org Lett ; 23(15): 5947-5951, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34270264

RESUMO

Protected dipeptides can be converted into cyclic ketoaminals, which can be subjected to palladium-catalyzed regioselective C-H functionalization. The best results are obtained using the 2-(methylthio)aniline (MTA) directing group, which is superior to the commonly used 8-aminoquinoline (AQ) group. No epimerization of stereogenic centers is observed. Subsequent cleavage of the directing and protecting groups allows the incorporation of a modified dipeptide into larger peptide chains.


Assuntos
Aminoquinolinas/química , Compostos de Anilina/química , Peptídeos/química , Catálise , Estrutura Molecular , Paládio
10.
Bioorg Chem ; 114: 105160, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34328861

RESUMO

Literature conclusively shows that one of the quinolinequinone analogs (6-anilino-5,8-quinolinequinone), referred to as LY83583 hereafter, an inhibitor of guanylyl cyclase, was used as the inhibitor of the cell proliferation in cancer cells. In the present work, a series of analogs of the LY83583 containing alkoxy group(s) in aminophenyl ring (AQQ1-15) were designed and synthesized via a two-step route and evaluated for their in vitro cytotoxic activity against four different cancer cell lines (K562, Jurkat, MT-2, and HeLa) and human peripheral blood mononuclear cells (PBMCs) by MTT assay. The analog (AQQ13) was identified to possess the most potent cytotoxic activity against K562 human chronic myelogenous (CML) cell line (IC50 = 0.59 ± 0.07 µM) with significant selectivity (SI = 4.51) compared to imatinib (IC50 = 5.46 ± 0.85 µM; SI = 4.60). Based on its superior cytotoxic activity, the analog AQQ13 was selected for further mechanistic studies including determination of its apoptotic effects on K562 cell line via annexin V/ethidium homodimer III staining potency, ABL1 kinase inhibitory activity, and DNA cleaving capacity. Results ascertained that the analog AQQ13 induced apoptosis in K562 cell line with notable DNA-cleaving activity. However, AQQ13 demonstrated weak ABL1 inhibition indicating the correlation between anti-K562 and anti-ABL1 activities. In continuance, respectively conducted in silico molecular docking and Absorption, Distribution, Metabolism, and Excretion (ADME) studies drew attention to enhanced binding interactions of AQQ13 towards DNA and its high compatibility with the potential limits of specified pharmacokinetic parameters making it as a potential anti-leukemic drug candidate. Our findings may provide a new insight for further development of novel quinolinequinone-based anticancer analogs against CML.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Clivagem do DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/metabolismo , Relação Estrutura-Atividade
11.
Biomed Chromatogr ; 35(12): e5221, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34331710

RESUMO

Pyrotinib is an irreversible EGFR/HER2 inhibitor that has been approved for the treatment of breast cancer. The aim of this work was to establish a quantification method for the simultaneous determination of pyrotinib and its metabolite pyrotinib-lactam in rat plasma using UPLC-MS/MS. After simple protein precipitation with acetonitrile, the analytes and internal standard (neratinib) were separated on an ACQUITY BEH C18 column (2.1 × 50 mm, 1.7 µm) using a mobile phase of water containing 0.1% formic acid and acetonitrile. The detection was performed using selected reaction monitoring mode with precursor-to-product ion transitions at m/z 583.2 > 138.1 for pyrotinib, m/z 597.2 > 152.1 for pyrotinib-lactam, and m/z 557.2 > 112.1 for internal standard. The assay exhibited excellent linearity in the concentration range of 0.5-1000 ng/mL for pyrotinib and pyrotinib-lactam. The assay met the criteria of the United States Food and Drug Administration-validated bioanalytical methods and was successfully applied to a pharmacokinetic study of pyrotinib and its metabolite for the first time. Our results demonstrated that pyrotinib rapidly converted into pyrotinib-lactam, whose in vivo exposure was 21% that of pyrotinib.


Assuntos
Acrilamidas/sangue , Acrilamidas/farmacocinética , Aminoquinolinas/sangue , Aminoquinolinas/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Acrilamidas/química , Acrilamidas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/metabolismo , Animais , Limite de Detecção , Modelos Lineares , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
12.
Nat Chem ; 13(7): 626-633, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34183817

RESUMO

DNA-protein interactions regulate critical biological processes. Identifying proteins that bind to specific, functional genomic loci is essential to understand the underlying regulatory mechanisms on a molecular level. Here we describe a co-binding-mediated protein profiling (CMPP) strategy to investigate the interactome of DNA G-quadruplexes (G4s) in native chromatin. CMPP involves cell-permeable, functionalized G4-ligand probes that bind endogenous G4s and subsequently crosslink to co-binding G4-interacting proteins in situ. We first showed the robustness of CMPP by proximity labelling of a G4 binding protein in vitro. Employing this approach in live cells, we then identified hundreds of putative G4-interacting proteins from various functional classes. Next, we confirmed a high G4-binding affinity and selectivity for several newly discovered G4 interactors in vitro, and we validated direct G4 interactions for a functionally important candidate in cellular chromatin using an independent approach. Our studies provide a chemical strategy to map protein interactions of specific nucleic acid features in living cells.


Assuntos
Alcinos/química , Reagentes de Ligações Cruzadas/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Diazometano/química , Quadruplex G , Aminoquinolinas/química , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/efeitos da radiação , DNA/química , DNA/genética , Proteínas de Ligação a DNA/química , Diazometano/efeitos da radiação , Células HEK293 , Humanos , Ligantes , Estudo de Prova de Conceito , Ligação Proteica , Raios Ultravioleta
13.
Chem Biol Interact ; 345: 109555, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34146539

RESUMO

Quinone-based small molecules are the promising structures for antiproliferative drug design and can induce apoptosis in cancer cells. Among them, one of the quinolinequinones, named as 6-anilino-5,8-quinolinequinone, LY83583 has the ability to inhibit the growth of cancer cells as an inhibitor of cyclase. The biological potential of all synthesized compounds as the analogs of the identified lead molecule LY83583 that possessed the antiproliferative efficiency was determined. The two series of the LY83583 analogs containing electron-withdrawing or electron-donating group(s) were synthesized and subsequently in vitro evaluated for their cytotoxic activity against K562, Jurkat, MT-2, and HeLa cell lines using MTT assay. All the LY83583 analogs showed antiproliferative activity with good IC50 values (less than positive control imatinib). Four analogs from each series were also selected for the determination of selectivity against human peripheral blood mononuclear cells (PBMCs). The analog AQQ15 showed high potency towards all cancer cell lines with almost similar selectivity of imatinib. In order to get a better insight into cytotoxic effects of the analog AQQ15 in K562 cells, further apoptotic effects due to annexin V/ethidium homodimer III staining, ABL1 kinase inhibition, and DNA cleaving ability were examined. The analog AQQ15 induced apoptotic cell death in K562 cells with 34.6% compared to imatinib (6.5%). This analog showed no considerable ABL1 kinase inhibitory activity but significant DNA cleavage activity indicating DNA fragmentation-induced apoptosis. Besides, molecular docking studies revealed that the analog AQQ15 established proper interactions with the deoxyribose sugar attached with the nucleobases adenine and guanidine respectively, in the minor groove of the double helix of DNA. In silico predicted pharmacokinetic parameters of this analog were found to comply with the standard range making it an efficient anticancer drug candidate for further research.


Assuntos
Aminoquinolinas/química , Aminoquinolinas/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Aminoquinolinas/síntese química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico
14.
J Med Chem ; 63(22): 13719-13732, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33190481

RESUMO

COTI-2 is a novel anticancer thiosemicarbazone in phase I clinical trial. However, the effects of metal complexation (a main characteristic of thiosemicarbazones) and acquired resistance mechanisms are widely unknown. Therefore, in this study, the copper and iron complexes of COTI-2 were synthesized and evaluated for their anticancer activity and impact on drug resistance in comparison to metal-free thiosemicarbazones. Investigations using Triapine-resistant SW480/Tria and newly established COTI-2-resistant SW480/Coti cells revealed distinct structure-activity relationships. SW480/Coti cells were found to overexpress ABCC1, and COTI-2 being a substrate for this efflux pump. This was unexpected, as ABCC1 has strong selectivity for glutathione adducts. The recognition by ABCC1 could be explained by the reduction kinetics of a ternary Cu-COTI-2 complex with glutathione. Thus, only thiosemicarbazones forming stable, nonreducible copper(II)-glutathione adducts are recognized and, in turn, effluxed by ABCC1. This reveals a crucial connection between copper complex chemistry, glutathione interaction, and the resistance profile of clinically relevant thiosemicarbazones.


Assuntos
Aminoquinolinas/metabolismo , Cobre/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Glutationa/metabolismo , Líquido Intracelular/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Tiossemicarbazonas/metabolismo , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cobre/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glutationa/química , Humanos , Líquido Intracelular/efeitos dos fármacos , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Difração de Raios X
15.
Nucleic Acids Res ; 48(21): 11942-11957, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33137181

RESUMO

Genomic DNA and cellular RNAs can form a variety of non-B secondary structures, including G-quadruplex (G4) and R-loops. G4s are constituted by stacked guanine tetrads held together by Hoogsteen hydrogen bonds and can form at key regulatory sites of eukaryote genomes and transcripts, including gene promoters, untranslated exon regions and telomeres. R-loops are 3-stranded structures wherein the two strands of a DNA duplex are melted and one of them is annealed to an RNA. Specific G4 binders are intensively investigated to discover new effective anticancer drugs based on a common rationale, i.e.: the selective inhibition of oncogene expression or specific impairment of telomere maintenance. However, despite the high number of known G4 binders, such a selective molecular activity has not been fully established and several published data point to a different mode of action. We will review published data that address the close structural interplay between G4s and R-loops in vitro and in vivo, and how these interactions can have functional consequences in relation to G4 binder activity. We propose that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.


Assuntos
DNA/química , Quadruplex G , Genoma Humano , Estruturas R-Loop , RNA/química , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Pareamento de Bases , DNA/genética , DNA/metabolismo , Quadruplex G/efeitos dos fármacos , Instabilidade Genômica , Guanina/química , Guanina/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Ácidos Picolínicos/química , Ácidos Picolínicos/farmacologia , Regiões Promotoras Genéticas , Estruturas R-Loop/efeitos dos fármacos , RNA/genética , RNA/metabolismo , Telômero/efeitos dos fármacos , Telômero/metabolismo , Telômero/ultraestrutura , Homeostase do Telômero
16.
Nat Commun ; 11(1): 4615, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934241

RESUMO

Integration of the unique advantages of the fields of drug discovery and drug delivery is invaluable for the advancement of drug development. Here we propose a self-delivering one-component new-chemical-entity nanomedicine (ONN) strategy to improve cancer therapy through incorporation of the self-assembly principle into drug design. A lysosomotropic detergent (MSDH) and an autophagy inhibitor (Lys05) are hybridised to develop bisaminoquinoline derivatives that can intrinsically form nanoassemblies. The selected BAQ12 and BAQ13 ONNs are highly effective in inducing lysosomal disruption, lysosomal dysfunction and autophagy blockade and exhibit 30-fold higher antiproliferative activity than hydroxychloroquine used in clinical trials. These single-drug nanoparticles demonstrate excellent pharmacokinetic and toxicological profiles and dramatic antitumour efficacy in vivo. In addition, they are able to encapsulate and deliver additional drugs to tumour sites and are thus promising agents for autophagy inhibition-based combination therapy. Given their transdisciplinary advantages, these BAQ ONNs have enormous potential to improve cancer therapy.


Assuntos
Aminoquinolinas/química , Antineoplásicos/química , Sistemas de Liberação de Medicamentos/métodos , Lisossomos/efeitos dos fármacos , Nanomedicina/métodos , Neoplasias/tratamento farmacológico , Aminoquinolinas/administração & dosagem , Aminoquinolinas/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Composição de Medicamentos , Sistemas de Liberação de Medicamentos/instrumentação , Humanos , Nanomedicina/instrumentação , Nanopartículas/química , Neoplasias/fisiopatologia , Ratos , Ratos Sprague-Dawley
17.
ACS Appl Mater Interfaces ; 12(38): 42499-42510, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32838525

RESUMO

Cancer immunotherapy involves a cascade of events that ultimately leads to cytotoxic immune cells effectively identifying and destroying cancer cells. Responsive nanomaterials, which enable spatiotemporal orchestration of various immunological events for mounting a highly potent and long-lasting antitumor immune response, are an attractive platform to overcome challenges associated with existing cancer immunotherapies. Here, we report a multifunctional near-infrared (NIR)-responsive core-shell nanoparticle, which enables (i) photothermal ablation of cancer cells for generating tumor-associated antigen (TAA) and (ii) triggered release of an immunomodulatory drug (gardiquimod) for starting a series of immunological events. The core of these nanostructures is composed of a polydopamine nanoparticle, which serves as a photothermal agent, and the shell is made of mesoporous silica, which serves as a drug carrier. We employed a phase-change material as a gatekeeper to achieve concurrent release of both TAA and adjuvant, thus efficiently activating the antigen-presenting cells. Photothermal immunotherapy enabled by these nanostructures resulted in regression of primary tumor and significantly improved inhibition of secondary tumor in a mouse melanoma model. These biocompatible, biodegradable, and NIR-responsive core-shell nanostructures simultaneously deliver payload and cause photothermal ablation of the cancer cells. Our results demonstrate potential of responsive nanomaterials in generating highly synergistic photothermal immunotherapeutic response.


Assuntos
Aminoquinolinas/farmacologia , Antineoplásicos/farmacologia , Imidazóis/farmacologia , Fatores Imunológicos/farmacologia , Imunoterapia , Melanoma/terapia , Terapia Fototérmica , Aminoquinolinas/química , Animais , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Feminino , Imidazóis/química , Fatores Imunológicos/química , Indóis/química , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Dióxido de Silício/química , Propriedades de Superfície , Células Tumorais Cultivadas
18.
J Chromatogr Sci ; 58(8): 687-694, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32676669

RESUMO

Ganirelix is a synthetic decapeptide linked with nine different amino acids. To understand the peptide amino acid sequence or primary structure, the first step is to determine the amino acid composition of the peptide which can be a determining factor for the peptide immunogenicity. Edman degradation is not a suitable analytical technique to identify amino acid sequence present in Ganirelix due to the absence of uncharged N-terminal amino group. To address this challenge, a pre-column derivatization method was developed with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent. In the present work, the Ganirelix active pharmaceutical ingredient present in the injectable formulation was isolated by fraction collection and further purified by flash chromatography. The amino acid composition of Ganirelix is assayed by carrying out acid hydrolysis with 6 mol L-1 hydrochloric acid solution containing 1% phenol at 100°C for 24 h and derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate reagent solution, followed by determination of individual amino acids by reverse-phase chromatography using a C18 column. High resolution was achieved for the nine amino acid mixture. The amino acid composition results of temperature-stressed Ganirelix generic product and reference listed drug are in good agreement with the theoretical molar ratio of label information.


Assuntos
Aminoácidos/análise , Aminoquinolinas/química , Carbamatos/química , Hormônio Liberador de Gonadotropina/análogos & derivados , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Medicamentos Genéricos/análise , Medicamentos Genéricos/química , Hormônio Liberador de Gonadotropina/análise , Hormônio Liberador de Gonadotropina/química , Reprodutibilidade dos Testes
19.
Chemistry ; 26(40): 8676-8688, 2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32452579

RESUMO

Resistance to chemotherapy is a current clinical problem, especially in the treatment of microbial infections and cancer. One strategy to overcome this is to make new derivatives of existing drugs by conjugation to organometallic fragments, either by an appropriate linker, or by direct coordination of the drug to a metal. We illustrate this with examples of conjugated organometallic metallocene sandwich and half-sandwich complexes, RuII and OsII arene, and RhIII and IrIII cyclopentadienyl half-sandwich complexes. Ferrocene conjugates are particularly promising. The ferrocene-chloroquine conjugate ferroquine is in clinical trials for malaria treatment, and a ferrocene-tamoxifen derivative (a ferrocifen) seems likely to enter anticancer trails soon. Several other examples illustrate that organometallic conjugation can restore the activity of drugs to which resistance has developed.


Assuntos
Aminoquinolinas/química , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Complexos de Coordenação/química , Compostos Ferrosos/química , Malária/tratamento farmacológico , Metalocenos/química , Compostos Organometálicos/química , Compostos de Rutênio/farmacologia , Antimaláricos/farmacologia , Cloroquina/química , Complexos de Coordenação/uso terapêutico , Humanos , Estrutura Molecular , Compostos de Rutênio/síntese química
20.
Bioorg Chem ; 99: 103824, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32334192

RESUMO

The chemokine receptor CXCR4 has been explored as a drug target due to its involvement in pathological conditions such as HIV infection and cancer metastasis. Here we report the structure-activity relationship study of novel CXCR4 antagonists based on an aminoquinoline template. This template is devoid of the chiral center in the classical tetrahydroquinoline (THQ) ring moiety and therefore can be easily synthesized. A number of potent CXCR4 antagonists were identified, exemplified by compound 3, which demonstrated excellent binding affinity with CXCR4 receptor (IC50 = 57 nM) and inhibited CXCL12 induced cytosolic calcium increase (IC50 = 0.24 nM). Furthermore, compound 3 potently inhibited CXLC12/CXCR4 mediated cell migration in a transwell invasion assay. The simplified synthetic approach combined with good physicochemical properties (e.g. MW 362, clogP 2.1, PSA 48, pKa 7.0 for compound 3) demonstrate the potential of this aminoquinoline template as a novel scaffold to develop CXCR4 antagonists.


Assuntos
Aminoquinolinas/farmacologia , Desenho de Fármacos , Receptores CXCR4/antagonistas & inibidores , Aminoquinolinas/síntese química , Aminoquinolinas/química , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Receptores CXCR4/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA