Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
1.
PLoS One ; 17(2): e0264628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35213675

RESUMO

BACKGROUND: The complement system plays an important role in pathophysiology of cardiovascular disease (CVD), and might be involved in accelerated atherogenesis in rheumatoid arthritis (RA). The role of complement activation in response to treatment, and in development of premature CVD in RA, is limited. Therefore, we examined the effects of methotrexate (MTX) and tumor necrosis factor inhibitors (TNFi) on complement activation using soluble terminal complement complex (TCC) levels in RA; and assessed associations between TCC and inflammatory and cardiovascular biomarkers. METHODS: We assessed 64 RA patients starting with MTX monotherapy (n = 34) or TNFi with or without MTX co-medication (TNFi±MTX, n = 30). ELISA was used to measure TCC in EDTA plasma. The patients were examined at baseline, after 6 weeks and 6 months of treatment. RESULTS: Median TCC was 1.10 CAU/mL, and 57 (89%) patients had TCC above the estimated upper reference limit (<0.70). Compared to baseline, TCC levels were significantly lower at 6-week visit (0.85 CAU/mL, p<0.0001), without significant differences between the two treatment regimens. Notably, sustained reduction in TCC was only achieved after 6 months on TNFi±MTX (0.80 CAU/mL, p = 0.006). Reductions in TCC after treatment were related to decreased C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and interleukin 6, and increased levels of total, high and low-density lipoprotein cholesterol. Similarly, baseline TCC was significantly related to baseline CRP, ESR and interleukin 6. Patients with endothelial dysfunction had higher baseline TCC than those without (median 1.4 versus 1.0 CAU/mL, p = 0.023). CONCLUSIONS: Patients with active RA had elevated TCC, indicating increased complement activation. TCC decreased with antirheumatic treatment already after 6 weeks. However, only treatment with TNFi±MTX led to sustained reduction in TCC during the 6-month follow-up period. RA patients with endothelial dysfunction had higher baseline TCC compared to those without, possibly reflecting involvement of complement in the atherosclerotic process in RA.


Assuntos
Antirreumáticos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Ativação do Complemento/efeitos dos fármacos , Antirreumáticos/uso terapêutico , Sedimentação Sanguínea , Proteína C-Reativa/análise , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Complexo de Ataque à Membrana do Sistema Complemento/análise , Esquema de Medicação , Quimioterapia Combinada , Feminino , Humanos , Interleucina-6/sangue , Masculino , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Pessoa de Meia-Idade , Resultado do Tratamento , Inibidores do Fator de Necrose Tumoral/farmacologia , Inibidores do Fator de Necrose Tumoral/uso terapêutico
2.
Front Immunol ; 13: 746068, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154091

RESUMO

Antibody-induced complement activation may cause injury of the neuromuscular junction (NMJ) and is thus considered as a primary pathogenic factor in human myasthenia gravis (MG) and animal models of experimental autoimmune myasthenia gravis (EAMG). In this study, we tested whether CRIg/FH, a targeted complement inhibitor, could attenuate NMJ injury in rat MG models. We first demonstrated that CRIg/FH could inhibit complement-dependent cytotoxicity on human rhabdomyosarcoma TE671 cells induced by MG patient-derived IgG in vitro. Furthermore, we investigated the therapeutic effect of CRIg/FH in a passive and an active EAMG rodent model. In both models, administration of CRIg/FH could significantly reduce the complement-mediated end-plate damage and suppress the development of EAMG. In the active EAMG model, we also found that CRIg/FH treatment remarkably reduced the serum concentration of autoantibodies and of the cytokines including IFN-γ, IL-2, IL-6, and IL-17, and upregulated the percentage of Treg cells in the spleen, which was further verified in vitro. Therefore, our findings indicate that CRIg/FH may hold the potential for the treatment of MG via immune modulation.


Assuntos
Inativadores do Complemento/farmacologia , Imunomodulação/efeitos dos fármacos , Miastenia Gravis Autoimune Experimental/imunologia , Miastenia Gravis Autoimune Experimental/prevenção & controle , Proteínas Recombinantes de Fusão/farmacologia , Animais , Autoanticorpos/imunologia , Autoimunidade , Diferenciação Celular , Linhagem Celular , Ativação do Complemento/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Imunoglobulina G/imunologia , Mediadores da Inflamação/metabolismo , Ativação Linfocitária , Miastenia Gravis Autoimune Experimental/diagnóstico , Ratos , Índice de Gravidade de Doença , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo
3.
J Gen Virol ; 102(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704923

RESUMO

The highly pathogenic Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a severe respiratory virus. Recent reports indicate additional central nervous system (CNS) involvement. In this study, human DPP4 transgenic mice were infected with MERS-CoV, and viral antigens were first detected in the midbrain-hindbrain 4 days post-infection, suggesting the virus may enter the brainstem via peripheral nerves. Neurons and astrocytes throughout the brain were infected, followed by damage of the blood brain barrier (BBB), as well as microglial activation and inflammatory cell infiltration, which may be caused by complement activation based on the observation of deposition of complement activation product C3 and high expression of C3a receptor (C3aR) and C5a receptor (C5aR1) in neurons and glial cells. It may be concluded that these effects were mediated by complement activation in the brain, because of their reduction resulted from the treatment with mouse C5aR1-specific mAb. Such mAb significantly reduced nucleoprotein expression, suppressed microglial activation and decreased activation of caspase-3 in neurons and p38 phosphorylation in the brain. Collectively, these results suggest that MERS-CoV infection of CNS triggers complement activation, leading to inflammation-mediated damage of brain tissue, and regulating of complement activation could be a promising intervention and adjunctive treatment for CNS injury by MERS-CoV and other coronaviruses.


Assuntos
Encéfalo/patologia , Proteínas do Sistema Complemento/imunologia , Infecções por Coronavirus/patologia , Dipeptidil Peptidase 4/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/virologia , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Humanos , Inflamação , Camundongos , Camundongos Transgênicos , Microglia/imunologia , Microglia/patologia
4.
Life Sci ; 280: 119700, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34111465

RESUMO

AIMS: This study evaluated the effect of euphol isolated from Euphorbia umbellata (Pax) Bruyns latex on the activation of complement pathways (classical (CP), alternative (AP) and lectin (LP)), neutrophil chemotaxis, cytotoxic activity, cell morphology and death in HRT-18 and 3T3 cells lines. MAIN METHODS: CP and AP were assessed using hemolytic assays and ELISA for LP; neutrophil chemotaxis was performed using Boyden's chamber; cytotoxicity was evaluated by neutral red methodology and characteristics of cell death were assessed by cell morphology with hematological staining. KEY FINDINGS: Although euphol increased CP activation (38% at a concentration of 976.1 µM), an inhibitory effect on AP, LP (31% and 32% reduction in the concentration of 976.1 µM) and neutrophil chemotaxis (inhibit 84% of neutrophil migration at a concentration 292.9 µM) was observed. In addiction euphol was able to induce significant cell death in a time-dependent manner, presenting an IC50 of 70.8 µM and 39.2 µM for HRT-18 and 3T3 cell lines respectively and it was also observed apoptotic characteristics as cellular rounding, chromatin condensation and blebs formation for both cell lines. SIGNIFICANCE: Euphol has a potential use for the treatment of complement-related inflammatory diseases due to its ability to downregulate inflammation. On the other hand, the controlled activation of CP can contribute to complement-dependent cytotoxicity in the context of monoclonal antibody-based cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ativação do Complemento/efeitos dos fármacos , Fatores Imunológicos/farmacologia , Lanosterol/análogos & derivados , Células 3T3 , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Euphorbia/química , Humanos , Lanosterol/farmacologia , Camundongos , Neoplasias/tratamento farmacológico
5.
Invest Ophthalmol Vis Sci ; 62(4): 11, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33830174

RESUMO

Purpose: The risk for age-related macular degeneration has been tied to an overactive complement system. Despite combined attempts by academia and industry to develop therapeutics that modulate the complement response, particularly in the late geographic atrophy form of advanced AMD, to date, there is no effective treatment. We have previously demonstrated that pathology in the smoke-induced ocular pathology (SIOP) model, a model with similarities to dry AMD, is dependent on activation of the alternative complement pathway and that a novel complement activation site targeted inhibitor of the alternative pathway can be delivered to ocular tissues via an adeno-associated virus (AAV). Methods: Two different viral vectors for specific tissue targeting were compared: AAV5-VMD2-CR2-fH for delivery to the retinal pigment epithelium (RPE) and AAV2YF-smCBA-CR2-fH for delivery to retinal ganglion cells (RGCs). Efficacy was tested in SIOP (6 months of passive smoke inhalation), assessing visual function (optokinetic responses), retinal structure (optical coherence tomography), and integrity of the RPE and Bruch's membrane (electron microscopy). Protein chemistry was used to assess complement activation, CR2-fH tissue distribution, and CR2-fH transport across the RPE. Results: RPE- but not RGC-mediated secretion of CR2-fH was found to reduce SIOP and complement activation in RPE/choroid. Bioavailability of CR2-fH in RPE/choroid could be confirmed only after AAV5-VMD2-CR2-fH treatment, and inefficient, adenosine triphosphate-dependent transport of CR2-fH across the RPE was identified. Conclusions: Our results suggest that complement inhibition for AMD-like pathology is required basal to the RPE and argues in favor of AAV vector delivery to the RPE or outside the blood-retina barrier.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/administração & dosagem , Degeneração Macular/tratamento farmacológico , Epitélio Pigmentado da Retina/patologia , Animais , Corioide , Modelos Animais de Doenças , Injeções Intravítreas , Degeneração Macular/metabolismo , Degeneração Macular/patologia , Camundongos , Camundongos Endogâmicos C57BL , Retina , Epitélio Pigmentado da Retina/efeitos dos fármacos , Tomografia de Coerência Óptica
6.
MAbs ; 13(1): 1893427, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33682619

RESUMO

Fc galactosylation is a critical quality attribute for anti-tumor recombinant immunoglobulin G (IgG)-based monoclonal antibody (mAb) therapeutics with complement-dependent cytotoxicity (CDC) as the mechanism of action. Although the correlation between galactosylation and CDC has been known, the underlying structure-function relationship is unclear. Heterogeneity of the Fc N-glycosylation produced by Chinese hamster ovary (CHO) cell culture biomanufacturing process leads to variable CDC potency. Here, we derived a kinetic model of galactose transfer reaction in the Golgi apparatus and used this model to determine the correlation between differently galactosylated species from CHO cell culture process. The model was validated by a retrospective data analysis of more than 800 historical samples from small-scale and large-scale CHO cell cultures. Furthermore, using various analytical technologies, we discovered the molecular basis for Fc glycan terminal galactosylation changing the three-dimensional conformation of the Fc, which facilitates the IgG1 hexamerization, thus enhancing C1q avidity and subsequent complement activation. Our study offers insight into the formation of galactosylated species, as well as a novel three-dimensional understanding of the structure-function relationship of terminal galactose to complement activation in mAb therapeutics.


Assuntos
Anticorpos Monoclonais/farmacologia , Ativação do Complemento/efeitos dos fármacos , Complemento C1q/agonistas , Citotoxicidade Imunológica/efeitos dos fármacos , Galactose/metabolismo , Fragmentos Fc das Imunoglobulinas/farmacologia , Imunoglobulina G/farmacologia , Processamento de Proteína Pós-Traducional , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Células CHO , Complemento C1q/metabolismo , Cricetulus , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Cinética , Modelos Biológicos , Multimerização Proteica , Relação Estrutura-Atividade
7.
Eur J Immunol ; 51(5): 1218-1233, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33533020

RESUMO

Monoclonal antibodies (mAbs) have revolutionized clinical medicine, especially in the field of cancer immunotherapy. The challenge now is to improve the response rates, as immunotherapy still fails for many patients. Strategies to enhance tumor cell death is a fundamental aim, but relevant model systems for human tumor immunology are lacking. Herein, we have developed a preclinical human immune - three-dimensional (3D) tumor model (spheroids) to map the efficiency of tumor-specific isotypes for improved tumor cell killing. Different anti-CD20 Rituximab (RTX) isotypes alone or in combination, were evaluated for mediating complement-dependent cytotoxicity and antibody-dependent phagocytosis by human monocytic cells in 3D spheroids, in parallel with monolayer cultures, of human CD20+ B-cell lymphomas. We demonstrate that the IgG3 variant of RTX has the greatest tumoricidal effect over other isotypes, and when combined with apoptosis-inducing RTX-IgG2 isotype the therapeutic effect can be substantially enhanced. The results show further that the treatment outcome by RTX isotypes is influenced by tumor morphology and expression of the complement inhibitor CD59. Hence, the human immune-3D tumor model is a clinical relevant and attractive ex vivo system to predict mAbs for best efficacy in cancer immunotherapy.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Proteínas do Sistema Complemento/imunologia , Isotipos de Imunoglobulinas/farmacologia , Imunomodulação/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos , Antineoplásicos Imunológicos/uso terapêutico , Células Cultivadas , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Citotoxicidade Imunológica , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Humanos , Isotipos de Imunoglobulinas/uso terapêutico , Monócitos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia
8.
J Cell Physiol ; 236(5): 3660-3674, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33034385

RESUMO

The underlying mechanisms of complement activation in Stargardt disease type 1 (STGD1) and age-related macular degeneration (AMD) are not fully understood. Overaccumulation of all-trans-retinal (atRAL) has been proposed as the pathogenic factor in both diseases. By incubating retinal pigment epithelium (RPE) cells with atRAL, we showed that C5b-9 membrane attack complexes (MACs) were generated mainly through complement alternative pathway. An increase in complement factor B (CFB) expression as well as downregulation of complement regulatory proteins CD46, CD55, CD59, and CFH were observed in RPE cells after atRAL treatment. Furthermore, interleukin-1ß production was provoked in both atRAL-treated RPE cells and microglia/macrophages. Coincubation of RPE cells with interleukin-1 receptor antagonist (IL1Ra) and atRAL ameliorated complement activation and downregulated CFB expression by attenuating both p38 and c-Jun N-terminal kinase (JNK) signaling pathways. Our findings demonstrate that atRAL induces an autocrine/paracrine IL-1/IL-1R signaling to promote complement alternative pathway activation in RPE cells and provide a novel perspective on the pathomechanism of macular degeneration.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Via Alternativa do Complemento/efeitos dos fármacos , Interleucina-1/metabolismo , Receptores de Interleucina-1/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinaldeído/farmacologia , Transdução de Sinais , Acetilcisteína/farmacologia , Animais , Células Cultivadas , Fator B do Complemento/metabolismo , Regulação para Baixo , Humanos , Interleucina-1/genética , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suínos , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
J Ethnopharmacol ; 265: 113348, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32896626

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The species Euphorbia umbellata (leitosinha) has been traditionally used for the treatment of inflammatory diseases and cancer. AIM OF THE STUDY: Evaluation the effect of E. umbellata latex extracts obtained with hexane, chloroform, ethyl acetate and methanol on the activation of the complement pathways and neutrophil chemotaxis. MATERIALS AND METHODS: The latex was partitioned using Soxhlet apparatus and hexane, chloroform, ethyl acetate and methanol as solvents. The classical and alternative pathway activity were performed by hemolytic assays with sensitized sheep or rabbit erythrocytes, respectively; the lectin pathway activity was quantified by ELISA, through the measurement of C4 molecules and the chemotaxis of human neutrophils was performed using 1% casein as the chemotactic inducer and Boyden's chamber. GC-Q-ToF and NMR analyses were applied to evaluate the chemical composition of E. umbellata latex extracts. RESULTS: All E. umbellata latex extracts exhibited an inhibitory effect on the activation of the alternative pathway. Methanol and ethyl acetate extracts inhibited the classical pathway while chloroform extract activated this pathway. Ethyl acetate and hexane extracts inhibited lectin activation. All E. umbellata extracts inhibited casein-induced neutrophil chemotaxis. Terpenes and phenolic compounds have been suggested to be present in the E. umbellta latex extracts. CONCLUSION: The E. umbellata latex was able to modulate the functions of the immune system. Thus, it is possible to infer that the terpenes and phenolic compounds of the phytocomplex of E. umbellata latex can contribute for the activity on the complement pathways.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Euphorbia/química , Neutrófilos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Quimiotaxia/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/química , Coelhos , Ovinos , Solventes/química , Terpenos/isolamento & purificação , Terpenos/farmacologia
10.
Front Immunol ; 11: 584509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329558

RESUMO

Rituximab is a pioneering anti-CD20 monoclonal antibody that became the first-line drug used in immunotherapy of B-cell malignancies over the last twenty years. Rituximab activates the complement system in vitro, but there is an ongoing debate on the exact role of this effector mechanism in therapeutic effect. Results of both in vitro and in vivo studies are model-dependent and preclude clear clinical conclusions. Additional confounding factors like complement inhibition by tumor cells, loss of target antigen and complement depletion due to excessively applied immunotherapeutics, intrapersonal variability in the concentration of main complement components and differences in tumor burden all suggest that a personalized approach is the best strategy for optimization of rituximab dosage and therapeutic schedule. Herein we critically review the existing knowledge in support of such concept and present original data on markers of complement activation, complement consumption, and rituximab accumulation in plasma of patients with chronic lymphocytic leukemia (CLL) and non-Hodgkin's lymphomas (NHL). The increase of markers such as C4d and terminal complement complex (TCC) suggest the strongest complement activation after the first administration of rituximab, but not indicative of clinical outcome in patients receiving rituximab in combination with chemotherapy. Both ELISA and complement-dependent cytotoxicity (CDC) functional assay showed that a substantial number of patients accumulate rituximab to the extent that consecutive infusions do not improve the cytotoxic capacity of their sera. Our data suggest that individual assessment of CDC activity and rituximab concentration in plasma may support clinicians' decisions on further drug infusions, or instead prescribing a therapy with anti-CD20 antibodies like obinutuzumab that more efficiently activate effector mechanisms other than complement.


Assuntos
Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Proteínas do Sistema Complemento/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/imunologia , Rituximab/farmacologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Murinos/farmacologia , Antígenos CD20/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Humanos , Linfoma não Hodgkin/tratamento farmacológico , Linfoma não Hodgkin/imunologia
11.
PLoS One ; 15(12): e0244307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362238

RESUMO

RATIONALE: Age-related macular degeneration (AMD) is the most prevalent form of irreversible blindness in the developed world. Aging, inflammation and complement dysregulation affecting the retinal pigment epithelium (RPE), are considered significant contributors in its pathogenesis and several evidences have linked tumor necrosis factor alpha (TNF-α) and complement component 3 (C3) with AMD. Acadesine, an analog of AMP and an AMP-activated protein kinase (AMPK) activator, has been shown to have cytoprotective effects in human clinical trials as well as having anti-inflammatory and anti-vascular exudative effects in animals. The purpose of this study was to evaluate if acadesine is able to suppress TNF-α induced C3 in RPE cells. METHODS: ARPE-19 and human primary RPE cells were cultured and allowed to grow to confluence. TNF-α was used for C3 induction in the presence or absence of acadesine. Small molecule inhibitors and siRNA were used to determine if acadesine exerts its effect via the extracellular or intracellular pathway and to evaluate the importance of AMPK for these effects. The expression level of C3 was determined by immunoblot analysis. RESULTS: Acadesine suppresses TNF-α induced C3 in a dose dependent manner. When we utilized the adenosine receptor inhibitor dipyridamole (DPY) along with acadesine, acadesine's effects were abolished, indicating the necessity of acadesine to enter the cell in order to exert it's action. However, pretreatment with 5-iodotubericidin (5-Iodo), an adenosine kinase (AK) inhibitor, didn't prevent acadesine from decreasing TNF-α induced C3 expression suggesting that acadesine does not exert its effect through AMP conversion and subsequent activation of AMPK. Consistent with this, knockdown of AMPK α catalytic subunit did not affect the inhibitory effect of acadesine on TNF-α upregulation of C3. CONCLUSIONS: Our results suggest that acadesine suppresses TNF-α induced C3, likely through an AMPK-independent pathway, and could have potential use in complement over activation diseases.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Complemento C3/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Ribonucleosídeos/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Adenosina/metabolismo , Aminoimidazol Carboxamida/metabolismo , Aminoimidazol Carboxamida/farmacologia , Animais , Linhagem Celular , Células Cultivadas , Ativação do Complemento/efeitos dos fármacos , Complemento C3/efeitos dos fármacos , Humanos , Degeneração Macular/metabolismo , Fosforilação , Epitélio Pigmentado da Retina/efeitos dos fármacos , Pigmentos da Retina/metabolismo , Ribonucleosídeos/metabolismo , Ribonucleotídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
12.
Front Immunol ; 11: 578069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33362763

RESUMO

The complement system is an important part of the innate immune system, providing a strong defense against pathogens and removing apoptotic cells and immune complexes. Due to its strength, it is important that healthy human cells are protected against damage induced by the complement system. To be protected from complement, each cell type relies on a specific combination of both soluble and membrane-bound regulators. Their importance is indicated by the amount of pathologies associated with abnormalities in these complement regulators. Here, we will discuss the current knowledge on complement regulatory protein polymorphisms and expression levels together with their link to disease. These diseases often result in red blood cell destruction or occur in the eye, kidney or brain, which are tissues known for aberrant complement activity or regulation. In addition, complement regulators have also been associated with different types of cancer, although their mechanisms here have not been elucidated yet. In most of these pathologies, treatments are limited and do not prevent the complement system from attacking host cells, but rather fight the consequences of the complement-mediated damage, using for example blood transfusions in anemic patients. Currently only few drugs targeting the complement system are used in the clinic. With further demand for therapeutics rising linked to the wide range of complement-mediated disease we should broaden our horizon towards treatments that can actually protect the host cells against complement. Here, we will discuss the latest insights on how complement regulators can benefit therapeutics. Such therapeutics are currently being developed extensively, and can be categorized into full-length complement regulators, engineered complement system regulators and antibodies targeting complement regulators. In conclusion, this review provides an overview of the complement regulatory proteins and their links to disease, together with their potential in the development of novel therapeutics.


Assuntos
Anticorpos/uso terapêutico , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/uso terapêutico , Proteínas do Sistema Complemento/metabolismo , Doenças do Sistema Imunitário/tratamento farmacológico , Animais , Anticorpos/efeitos adversos , Inativadores do Complemento/efeitos adversos , Proteínas do Sistema Complemento/genética , Desenho de Fármacos , Descoberta de Drogas , Humanos , Doenças do Sistema Imunitário/imunologia , Doenças do Sistema Imunitário/metabolismo , Imunidade Inata/efeitos dos fármacos , Polimorfismo Genético
13.
Mar Drugs ; 18(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321960

RESUMO

Antimicrobial peptides (AMPs) are not only cytotoxic towards host pathogens or cancer cells but also are able to act as immunomodulators. It was shown that some human and non-human AMPs can interact with complement proteins and thereby modulate complement activity. Thus, AMPs could be considered as the base for complement-targeted therapeutics development. Arenicins from the sea polychaete Arenicola marina, the classical example of peptides with a ß-hairpin structure stabilized by a disulfide bond, were shown earlier to be among the most prospective regulators. Here, we investigate the link between arenicins' structure and their antimicrobial, hemolytic and complement-modulating activities using the derivative Ar-1-(C/A) without a disulfide bond. Despite the absence of this bond, the peptide retains all important functional activities and also appears less hemolytic in comparison with the natural forms. These findings could help to investigate new complement drugs for regulation using arenicin derivatives.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/farmacologia , Proteínas de Helminto/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/toxicidade , Inativadores do Complemento/química , Inativadores do Complemento/toxicidade , Eritrócitos/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Proteínas de Helminto/química , Proteínas de Helminto/toxicidade , Hemólise/efeitos dos fármacos , Humanos , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Conformação Proteica , Coelhos , Carneiro Doméstico , Relação Estrutura-Atividade
14.
Clin Immunol ; 221: 108616, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33148511

RESUMO

In complement-driven thrombotic microangiopathies, failure to regulate complement activation leads to end-organ damage. The modified Ham (mHam) test measures complement-mediated killing of a nucleated cell in vitro but lacks a confirmatory assay and reliable positive controls. We demonstrate that C5b-9 accumulation on the surface of TF1 PIGAnull cells correlates with cell killing in the mHam. We also show that Sialidase treatment of cells or addition of Shiga toxin 1 to human serum serve as a more reliable positive control for the mHam than cobra venom factor or lipopolysaccharide. Simultaneously performing the mHam and measuring C5b-9 accumulation either in GVB++ or GVB0 MgEGTA buffer with the addition of complement pathway specific inhibitors (anti-C5 antibody or a factor D inhibitor, ACH-145951) can be used to localize defects in complement regulation. As more targeted complement inhibitors become available, these assays may aid in the selection of personalized treatments for patients with complement-mediated diseases.


Assuntos
Síndrome Antifosfolipídica/imunologia , Síndrome Hemolítico-Urêmica Atípica/imunologia , Ativação do Complemento/efeitos dos fármacos , Inativadores do Complemento/farmacologia , Adulto , Bioensaio , Linhagem Celular Tumoral , Complemento C3c/imunologia , Complemento C4b/imunologia , Complexo de Ataque à Membrana do Sistema Complemento/imunologia , Venenos Elapídicos/farmacologia , Feminino , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Neuraminidase/farmacologia , Fragmentos de Peptídeos/imunologia , Toxina Shiga I/farmacologia
15.
Clin Immunol ; 220: 108598, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32961333

RESUMO

Growing clinical evidence has implicated complement as a pivotal driver of COVID-19 immunopathology. Deregulated complement activation may fuel cytokine-driven hyper-inflammation, thrombotic microangiopathy and NET-driven immunothrombosis, thereby leading to multi-organ failure. Complement therapeutics have gained traction as candidate drugs for countering the detrimental consequences of SARS-CoV-2 infection. Whether blockade of terminal complement effectors (C5, C5a, or C5aR1) may elicit similar outcomes to upstream intervention at the level of C3 remains debated. Here we compare the efficacy of the C5-targeting monoclonal antibody eculizumab with that of the compstatin-based C3-targeted drug candidate AMY-101 in small independent cohorts of severe COVID-19 patients. Our exploratory study indicates that therapeutic complement inhibition abrogates COVID-19 hyper-inflammation. Both C3 and C5 inhibitors elicit a robust anti-inflammatory response, reflected by a steep decline in C-reactive protein and IL-6 levels, marked lung function improvement, and resolution of SARS-CoV-2-associated acute respiratory distress syndrome (ARDS). C3 inhibition afforded broader therapeutic control in COVID-19 patients by attenuating both C3a and sC5b-9 generation and preventing FB consumption. This broader inhibitory profile was associated with a more robust decline of neutrophil counts, attenuated neutrophil extracellular trap (NET) release, faster serum LDH decline, and more prominent lymphocyte recovery. These early clinical results offer important insights into the differential mechanistic basis and underlying biology of C3 and C5 inhibition in COVID-19 and point to a broader pathogenic involvement of C3-mediated pathways in thromboinflammation. They also support the evaluation of these complement-targeting agents as COVID-19 therapeutics in large prospective trials.


Assuntos
Betacoronavirus/patogenicidade , Complemento C3/antagonistas & inibidores , Complemento C5/antagonistas & inibidores , Inativadores do Complemento/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Pneumonia Viral/tratamento farmacológico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores/sangue , Proteína C-Reativa/metabolismo , COVID-19 , Estudos de Coortes , Ativação do Complemento/efeitos dos fármacos , Complemento C3/genética , Complemento C3/imunologia , Complemento C5/genética , Complemento C5/imunologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Armadilhas Extracelulares/efeitos dos fármacos , Feminino , Expressão Gênica , Humanos , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/virologia , Pandemias , Peptídeos Cíclicos/uso terapêutico , Pneumonia Viral/complicações , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2 , Índice de Gravidade de Doença
17.
Front Immunol ; 11: 1643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849563

RESUMO

Introduction: Proteinuria contributes to progression of renal damage, partly by complement activation on proximal tubular epithelial cells. By pattern recognition, properdin has shown to bind to heparan sulfate proteoglycans on tubular epithelium and can initiate the alternative complement pathway (AP). Properdin however, also binds to C3b(Bb) and properdin binding to tubular cells might be influenced by the presence of C3b(Bb) on tubular cells and/or by variability in properdin proteins in vitro. In this study we carefully evaluated the specificity of the properdin - heparan sulfate interaction and whether this interaction could be exploited in order to block alternative complement activation. Methods: Binding of various properdin preparations to proximal tubular epithelial cells (PTEC) and subsequent AP activation was determined in the presence or absence of C3 inhibitor Compstatin and properdin inhibitor Salp20. Heparan sulfate proteoglycan dependency of the pattern recognition of properdin was evaluated on PTEC knocked down for syndecan-1 by shRNA technology. Solid phase binding assays were used to evaluate the effectivity of heparin(oids) and recombinant Salp20 to block the pattern recognition of properdin. Results: Binding of serum-derived and recombinant properdin preparations to PTECs could be dose-dependently inhibited (P < 0.01) and competed off (P < 0.01) by recombinant Salp20 (IC50: ~125 ng/ml) but not by Compstatin. Subsequent properdin-mediated AP activation on PTECs could be inhibited by Compstatin (P < 0.01) and blocked by recombinant Salp20 (P < 0.05). Syndecan-1 deficiency in PTECs resulted in a ~75% reduction of properdin binding (P = 0.057). In solid-phase binding assays, properdin binding to C3b could be dose-dependently inhibited by recombinant Salp20> heparin(oid) > C3b. Discussion: In this study we showed that all properdin preparations recognize heparan sulfate/syndecan-1 on PTECs with and without Compstatin C3 blocking conditions. In contrast to Compstatin, recombinant Salp20 prevents heparan sulfate pattern recognition by properdin on PTECs. Both complement inhibitors prevented properdin-mediated C3 activation. Binding of properdin to C3b could also be blocked by heparin(oids) and recombinant Salp20. This work indicates that properdin serves as a docking station for AP activation on PTECs and a Salp20 analog or heparinoids may be viable inhibitors in properdin mediated AP activation.


Assuntos
Complemento C3b/metabolismo , Inativadores do Complemento/farmacologia , Células Epiteliais/efeitos dos fármacos , Heparitina Sulfato/metabolismo , Proteínas de Insetos/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Properdina/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas e Peptídeos Salivares/farmacologia , Sindecana-1/metabolismo , Animais , Linhagem Celular , Ativação do Complemento/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Ixodes , Túbulos Renais Proximais/metabolismo , Peptídeos Cíclicos/farmacologia , Ligação Proteica , Transdução de Sinais , Sindecana-1/genética
18.
J Immunol ; 205(5): 1433-1440, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32839213

RESUMO

Ischemia-reperfusion injury (IRI) is a complex inflammatory process that detrimentally affects the function of transplanted organs. Neutrophils are important contributors to the pathogenesis of renal IRI. Signaling by G-CSF, a regulator of neutrophil development, trafficking, and function, plays a key role in several neutrophil-associated inflammatory disease models. In this study, we investigated whether targeting neutrophils with a neutralizing mAb to G-CSFR would reduce inflammation and protect against injury in a mouse model of warm renal IRI. Mice were treated with anti-G-CSFR 24 h prior to 22-min unilateral renal ischemia. Renal function and histology, complement activation, and expression of kidney injury markers, and inflammatory mediators were assessed 24 h after reperfusion. Treatment with anti-G-CSFR protected against renal IRI in a dose-dependent manner, significantly reducing serum creatinine and urea, tubular injury, neutrophil and macrophage infiltration, and complement activation (plasma C5a) and deposition (tissue C9). Renal expression of several proinflammatory genes (CXCL1/KC, CXCL2/MIP-2, MCP-1/CCL2, CXCR2, IL-6, ICAM-1, P-selectin, and C5aR) was suppressed by anti-G-CSFR, as was the level of circulating P-selectin and ICAM-1. Neutrophils in anti-G-CSFR-treated mice displayed lower levels of the chemokine receptor CXCR2, consistent with a reduced ability to traffic to inflammatory sites. Furthermore, whole transcriptome analysis using RNA sequencing showed that gene expression changes in IRI kidneys after anti-G-CSFR treatment were indistinguishable from sham-operated kidneys without IRI. Hence, anti-G-CSFR treatment prevented the development of IRI in the kidneys. Our results suggest G-CSFR blockade as a promising therapeutic approach to attenuate renal IRI.


Assuntos
Nefropatias/tratamento farmacológico , Substâncias Protetoras/farmacologia , Receptores de Fator Estimulador de Colônias de Granulócitos/antagonistas & inibidores , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Quimiocinas/metabolismo , Ativação do Complemento/efeitos dos fármacos , Creatinina/sangue , Modelos Animais de Doenças , Expressão Gênica/efeitos dos fármacos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Nefropatias/sangue , Nefropatias/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Traumatismo por Reperfusão/sangue , Traumatismo por Reperfusão/metabolismo , Ureia/sangue
19.
Curr Drug Deliv ; 17(9): 728-735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32713341

RESUMO

The conventional treatment regimen for cancer with a single chemotherapeutic agent is far behind the clinical expectations due to the complexity of cancer biology and is also associated with poor Quality of Life (QOL) due to off-site toxicity and multidrug resistance. In recent years, nanopotentiated combination therapy has shown significant improvement in cancer treatment via a synergistic approach. However, being synthetic in nature, nanocarriers have been associated with the activation of the Complement (C) activation system resulting in serious hypersensitivity reactions known as CActivation Related Pseudoallergy (CARPA) effect once given via intravenous injection. On the other hand, nanopotentiated oral drug delivery offers several advantages for the effective and safe delivery of the drug to the target site. This hypothesis aims to put forward wherein Exemestane (chemotherapeutic agent) and lycopene (herbal bioactive) co-laden into PEGylated liposomes and delivered to the breast cancer via the oral route. PEGylation of the liposomes would prevent both molecules from the harsh microenvironment of the Gastrointestinal Tract (GIT) and would eventually promote their intestinal absorption via the lymphatic pathway to the systemic circulation. Lycopene being a potent antioxidant and anti-cancer herbal bioactive would promote the therapeutic efficacy of the Exemestane via a synergistic approach. This nanopotentiated oral combination therapy would pave the path for the safe and effective treatment of cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Neoplasias da Mama/tratamento farmacológico , Nanopartículas/química , Administração Oral , Androstadienos/administração & dosagem , Androstadienos/efeitos adversos , Androstadienos/farmacocinética , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Inibidores da Aromatase/administração & dosagem , Inibidores da Aromatase/efeitos adversos , Inibidores da Aromatase/farmacocinética , Disponibilidade Biológica , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Ativação do Complemento/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Absorção Gastrointestinal , Humanos , Lipossomos , Licopeno/administração & dosagem , Licopeno/efeitos adversos , Licopeno/farmacocinética , Camundongos , Polietilenoglicóis/química , Estudo de Prova de Conceito , Distribuição Tecidual , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Front Immunol ; 11: 917, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582144

RESUMO

Complement activation as a driver of pathology in myasthenia gravis (MG) has been appreciated for decades. The terminal complement component [membrane attack complex (MAC)] is found at the neuromuscular junctions of patients with MG. Animals with experimental autoimmune MG are dependent predominantly on an active complement system to develop weakness. Mice deficient in intrinsic complement regulatory proteins demonstrate a significant increase in the destruction of the neuromuscular junction. As subtypes of MG have been better defined, it has been appreciated that acetylcholine receptor antibody-positive disease is driven by complement activation. Preclinical assessments have confirmed that complement inhibition would be a viable therapeutic approach. Eculizumab, an antibody directed toward the C5 component of complement, was demonstrated to be effective in a Phase 3 trial with subsequent approval by the Federal Drug Administration of the United States and other worldwide regulatory agencies for its use in acetylcholine receptor antibody-positive MG. Second- and third-generation complement inhibitors are in development and approaching pivotal efficacy evaluations. This review will summarize the history and present the state of knowledge of this new therapeutic modality.


Assuntos
Ativação do Complemento/efeitos dos fármacos , Complemento C5/antagonistas & inibidores , Inativadores do Complemento/uso terapêutico , Miastenia Gravis/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Complemento C5/imunologia , Complemento C5/metabolismo , Inativadores do Complemento/efeitos adversos , Modelos Animais de Doenças , Humanos , Miastenia Gravis/imunologia , Miastenia Gravis/metabolismo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA