Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Cancer Immunol Immunother ; 73(9): 170, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954079

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has shown promising results in hematologic malignancies, but its effectiveness in solid cancers remains challenging. Macrophages are immune cells residing within the tumor microenvironment. They can phagocytose tumor cells. Recently, CAR macrophages (CAR-M) have been a promising candidate for treating solid cancers. One of the common cancer antigens overexpressed in various types of cancer is CD147. CAR-T and NK cells targeting CD147 antigen have shown significant efficacy against hepatocellular carcinoma. Nevertheless, CAR-M targeting the CD147 molecule has not been investigated. In this study, we generated CAR targeting the CD147 molecule using the THP-1 monocytic cell line (CD147 CAR-M). The CD147 CAR-M exhibited typical macrophage characteristics, including phagocytosis of zymosan bioparticles and polarization ability toward M1 and M2 phenotypes. Furthermore, the CD147 CAR-M demonstrated enhanced anti-tumor activity against K562 and MDA-MB-231 cells without exhibiting off-target cytotoxicity against normal cells. Our research provides valuable insights into the potential of CD147 CAR-M as a promising platform for cancer immunotherapy, with applications in both hematologic malignancies and solid cancers.


Assuntos
Basigina , Imunoterapia Adotiva , Macrófagos , Fagocitose , Receptores de Antígenos Quiméricos , Humanos , Fagocitose/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Imunoterapia Adotiva/métodos , Basigina/imunologia , Basigina/metabolismo , Neoplasias/imunologia , Neoplasias/terapia , Camundongos , Animais , Linhagem Celular Tumoral , Microambiente Tumoral/imunologia
2.
Cell Immunol ; 401-402: 104845, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38909549

RESUMO

CD147 is a T cell activation-associated molecule which is closely involved in the formation of the immune synapse (IS). However, the precise role of CD147 in T cell activation and IS formation remains unclear. In the present study, we demonstrated that CD147 translocated to the IS upon T cell activation and was primarily distributed in the peripheral super molecular cluster (p-SMAC). The knock down of CD147 expression in T cells, but not in B cells, impaired IS formation. CD147 participated in IS formation between T cells and different types of antigen-presenting cells (APCs), including macrophages and dendritic cells. Ligation of CD147 with its monoclonal antibody (mAb) HAb18 effectively inhibited T cell activation and IL-2 secretion. CD98, a critical molecule interacting with CD147, was distributed in IS in a CD147-dependent way. Phosphorylation levels of T cell receptor (TCR) related molecules, like ZAP-70, ERK, and cJun, were down-regulated by CD147 ligation, which is crucial for the interaction of CD147 and TCR signaling transduction. CD147 is indispensable for the formation of immune synapses and plays an important role in the regulation of its function.


Assuntos
Basigina , Sinapses Imunológicas , Ativação Linfocitária , Linfócitos T , Basigina/metabolismo , Basigina/imunologia , Sinapses Imunológicas/metabolismo , Sinapses Imunológicas/imunologia , Ativação Linfocitária/imunologia , Humanos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Fosforilação , Anticorpos Monoclonais/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Linfócitos B/imunologia , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Interleucina-2/metabolismo , Interleucina-2/imunologia , Animais , Células Jurkat
3.
J Immunol ; 213(2): 148-160, 2024 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-38787053

RESUMO

Human IgA Abs engage neutrophils for cancer immunotherapy more effectively than IgG Abs. Previous studies demonstrated that engineering approaches improved biochemical and functional properties. In this study, we report a novel, to our knowledge, IgA2 Ab against the epidermal growth factor receptor generated by protein engineering and polymerization. The resulting molecule demonstrated a covalent linkage of L and H chains and an effective polymerization by the joining chain. The engineered dimer outperformed its monomeric variant in functional experiments on Fab-mediated modes of action and binding to the Fc receptor. The capacity to engage neutrophils for Ab-dependent cell-mediated cytotoxicity (ADCC) of adherent growing target cancer cells was cell line dependent. Although the engineered dimer displayed a long-term efficacy against the vulva carcinoma cell line A431, there was a notable in-efficacy against human papillomavirus (HPV)- head and neck squamous cell carcinoma (HNSCC) cell lines. However, the highly engineered IgA Abs triggered a neutrophil-mediated cytotoxicity against HPV+ HNSCC cell lines. Short-term ADCC efficacy correlated with the target cells' epidermal growth factor receptor expression and the ability of cancer cell-conditioned media to enhance the CD147 surface level on neutrophils. Notably, the HPV+ HNSCC cell lines demonstrated a significant increment in releasing soluble CD147 and a reduced induction of membranous CD147 on neutrophils compared with HPV- cells. Although membranous CD147 on neutrophils may impair proper IgA-Fc receptor binding, soluble CD147 enhanced the IgA-neutrophil-mediated ADCC in a dose-dependent manner. Thus, engineering IgA Abs and impedance-based ADCC assays provided valuable information regarding the target-effector cell interaction and identified CD147 as a putative critical parameter for neutrophil-mediated cytotoxicity.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Basigina , Receptores ErbB , Neoplasias de Cabeça e Pescoço , Imunoglobulina A , Neutrófilos , Engenharia de Proteínas , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Neutrófilos/imunologia , Receptores ErbB/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Imunoglobulina A/imunologia , Basigina/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/terapia
4.
Cancer Lett ; 542: 215762, 2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-35659513

RESUMO

T cell acute lymphoblastic leukemia (T-ALL) is invasive and heterogeneous, and existing therapies are sometimes unsuccessful. Chimeric antigen receptor (CAR) T cell therapy is a breakthrough tumor treatment method, particularly for B cell acute lymphoblastic leukemia. We found that CD147 was highly expressed in tumor T cells of T-ALL patients and T cell lymphoma. Therefore, CD147-CAR T cells that contain a humanized single-chain variable fragment targeting human CD147 and a second-generation CAR frame were constructed for treating T-ALL. CD147-CAR T cells were able to maintain a healthy proliferation rate, preserving a subset of CD62L+/CCR7+ memory T cells. CD147-CAR T cells showed a potent anti-tumor activity against human T-ALL cell line and T-ALL blasts, releasing high level of cytokines in the process. However, CD147-CAR T cells exhibited potential safety toward human normal cells and CD147-deficent cells. NOD/ShiLtJGpt-Prkdcem26Cd52Il2rgem26Cd22/Gpt mice were used to establish a T-ALL xenograft model and CD147-CAR T cells conferred robust protection against T-ALL progression and significantly improved survival in mice. Overall, we found that CD147 is a potential antigen target of CAR T cell therapy for T-ALL.


Assuntos
Basigina , Imunoterapia Adotiva , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Animais , Basigina/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia Adotiva/métodos , Camundongos , Camundongos Endogâmicos NOD , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T
5.
Front Immunol ; 12: 739592, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975837

RESUMO

Background: Angiogenesis is a major contributor to the development of inflammation during Rheumatoid arthritis (RA), as the vascularization of the pannus provides nutrients and oxygen for the infiltrating immune cells and proliferating synoviocytes. Tocilizumab (TCZ) is an anti-IL-6 receptor antibody that is used in the treatment of RA patients, and has been shown to exert anti-inflammatory effects. However, its effects on angiogenesis are not fully elucidated, and the molecular mechanisms regulating this effect are unknown. Methods: We evaluated the concentrations of several pro- and anti-angiogenic factors and the expression levels of several microRNA molecules that are associated with RA and angiogenesis in serum samples obtained from 40 RA patients, before and 4 months after the initiation of TCZ treatment. Additionally, we used an in vitro co-culture system of fibroblasts (the HT1080 cell line) and monocytes (the U937 cell line) to explore the mechanisms of TCZ action. Results: Serum samples from RA patients treated with TCZ exhibited reduced circulating levels of EMMPRIN/CD147, enhanced expression of circulating miR-146a-5p and miR-150-5p, and reduced the angiogenic potential as was manifested by the lower number of tube-like structures that were formed by EaHy926 endothelial cell line. In vitro, the accumulation in the supernatants of the pro-angiogenic factors EMMPRIN, VEGF and MMP-9 was increased by co-culturing the HT1080 fibroblasts and the U937 monocytes, while the accumulation of the anti-angiogenic factor thrombospondin-1 (Tsp-1) and the expression levels of miR-146a-5p were reduced. Transfection of HT1080 cells with the miR-146a-5p mimic, decreased the accumulation of EMMPRIN, VEGF and MMP-9. When we neutralized EMMPRIN with a blocking antibody, the supernatants derived from these co-cultures displayed reduced migration, proliferation and tube formation in the functional assays. Conclusions: Our findings implicate miR-146a-5p in the regulation of EMMPRIN and propose that TCZ affects angiogenesis through its effects on EMMPRIN and miR-146a-5p.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Artrite Reumatoide/tratamento farmacológico , Basigina/imunologia , MicroRNAs/imunologia , Neovascularização Patológica/tratamento farmacológico , Artrite Reumatoide/sangue , Artrite Reumatoide/imunologia , Basigina/sangue , Basigina/genética , Técnicas de Cocultura , Feminino , Humanos , Masculino , MicroRNAs/sangue , MicroRNAs/genética , Pessoa de Meia-Idade , Neovascularização Patológica/sangue , Neovascularização Patológica/imunologia , Células Tumorais Cultivadas
6.
J Leukoc Biol ; 110(2): 343-356, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33205451

RESUMO

Treatment of solid tumors is often hindered by an immunosuppressive tumor microenvironment (TME) that prevents effector immune cells from eradicating tumor cells and promotes tumor progression, angiogenesis, and metastasis. Therefore, targeting components of the TME to restore the ability of immune cells to drive anti-tumoral responses has become an important goal. One option is to induce an immunogenic cell death (ICD) of tumor cells that would trigger an adaptive anti-tumoral immune response. Here we show that incubating mouse renal cell carcinoma (RENCA) and colon carcinoma cell lines with an anti-extracellular matrix metalloproteinase inducer polyclonal antibody (161-pAb) together with complement factors can induce cell death that inhibits caspase-8 activity and enhances the phosphorylation of receptor-interacting protein kinase 3 (RIPK3) and mixed-lineage kinase-like domain (MLKL). This regulated necrotic death releases high levels of dsRNA molecules to the conditioned medium (CM) relative to the necrotic death of tumor cells induced by H2 O2 or the apoptotic death induced by etoposide. RAW 264.7 macrophages incubated with the CM derived from these dying cells markedly enhanced the secretion of IFNß, and enhanced their cytotoxicity. Furthermore, degradation of the dsRNA in the CM abolished the ability of RAW 264.7 macrophages to secrete IFNß, IFNγ-induced protein 10 (IP-10), and TRAIL. When mice bearing RENCA tumors were immunized with the 161-pAb, their lysates displayed elevated levels of phosphorylated RIPK3 and MLKL, as well as increased concentrations of dsRNA, IFNß, IP-10, and TRAIL. This shows that an antigen-targeted therapy using an antibody and complement factors that triggers ICD can shift the mode of macrophage activation by triggering regulated necrotic death of tumor cells.


Assuntos
Basigina/imunologia , Proteínas do Sistema Complemento/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Necrose/imunologia , Trifosfato de Adenosina/metabolismo , Animais , Biomarcadores , Caspases/metabolismo , Sobrevivência Celular , Citotoxicidade Imunológica , DNA de Neoplasias/imunologia , Modelos Animais de Doenças , Humanos , Imunomodulação , L-Lactato Desidrogenase/metabolismo , Camundongos
7.
Front Immunol ; 11: 607069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335532

RESUMO

Upon recognition of microbial DNA or self-DNA, the cyclic-GMP-AMP synthase (cGAS) of the host catalyzes the production of the cyclic dinucleotide cGAMP. cGAMP is the main activator of STING, stimulator of interferon genes, leading to interferon synthesis through the STING-TBK1-IRF3 pathway. STING is also a hub for activation of NF-κB and autophagy. The present review details the striking similarities between T and B cell responses in severe coronavirus disease 2019 (COVID-19) and both animal or human models of STING gain of function (SAVI syndromes: STING-associated vasculopathy with onset in infancy). Those similarities may be further clues for a delayed activation of STING in severe COVID-19 patients, due to DNA damages following severe acute respiratory syndrome coronaviruses (SARS-CoV-2) infection and unusual role of STING in SARS-CoV-2 control. In early stages, Th2 differentiation are noticed in both severe COVID-19 and SAVI syndromes; then, CD4+ and CD8+ T cells functional exhaustion/senescent patterns due to TCR hyper-responsiveness are observed. T cell delayed over-responses can contribute to pneumonitis and delayed cytokine secretion with over-production of IL-6. Last, STING over-activation induces progressive CD4+ and CD8+ T lymphopenia in SAVI syndromes, which parallels what is observed in severe COVID-19. ACE2, the main receptor of SARS-CoV-2, is rarely expressed in immune cells, and it has not been yet proven that some human lymphocytes could be infected by SARS-CoV-2 through CD147 or CD26. However, STING, expressed in humans T cells, might be triggered following excessive transfer of cGAMP from infected antigen presenting cells into activated CD4+ and CD8+ T cells lymphocytes. Indeed, those lymphocytes highly express the cGAMP importer SLC19A1. Whereas STING is not expressed in human B cells, B cells counts are much less affected, either in COVID-19 or SAVI syndromes. The recognition of delayed STING over-activation in severe COVID-19 patients could prompt to target STING with specific small molecules inhibitors already designed and/or aspirin, which inhibits cGAS.


Assuntos
Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Proteínas de Membrana/imunologia , SARS-CoV-2/imunologia , Células Th2/imunologia , Enzima de Conversão de Angiotensina 2/imunologia , Animais , Linfócitos B/patologia , Basigina/imunologia , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , Dipeptidil Peptidase 4/imunologia , Humanos , Fator Regulador 3 de Interferon/imunologia , Nucleotidiltransferases/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Transdução de Sinais/imunologia , Células Th2/patologia
9.
FEBS J ; 287(17): 3677-3680, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32738184

RESUMO

Coronavirus disease 2019 (COVID-19), the highly contagious illness caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread across the globe, becoming one of the most challenging public health crisis of our times. SARS-CoV-2 can cause severe disease associated with multiple organ damage. Cancer patients have a higher risk of SARS-CoV-2 infection and death. While the virus uses angiotensin-converting enzyme 2 (ACE2) as the primary entry receptor, the recent experimental and clinical findings suggest that some tumor markers, including CD147 (basigin), can provide an additional entry for SARS-CoV-2 infection through binding to the viral spike (S) protein. In the absence of specific viral drugs, blocking of CD147 might be a way to prevent virus invasion. Identifying other target proteins is of high importance as targeting the alternative receptors for SARS-CoV-2 might open up a promising avenue for the treatment of COVID-19 patients, including those who have cancer.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Basigina/antagonistas & inibidores , Biomarcadores Tumorais/antagonistas & inibidores , Tratamento Farmacológico da COVID-19 , Neoplasias/tratamento farmacológico , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Basigina/genética , Basigina/imunologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Ensaios Clínicos como Assunto , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/virologia , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
10.
Allergy ; 75(11): 2829-2845, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32496587

RESUMO

BACKGROUND: Morbidity and mortality from COVID-19 caused by novel coronavirus SARS-CoV-2 is accelerating worldwide, and novel clinical presentations of COVID-19 are often reported. The range of human cells and tissues targeted by SARS-CoV-2, its potential receptors and associated regulating factors are still largely unknown. The aim of our study was to analyze the expression of known and potential SARS-CoV-2 receptors and related molecules in the extensive collection of primary human cells and tissues from healthy subjects of different age and from patients with risk factors and known comorbidities of COVID-19. METHODS: We performed RNA sequencing and explored available RNA-Seq databases to study gene expression and co-expression of ACE2, CD147 (BSG), and CD26 (DPP4) and their direct and indirect molecular partners in primary human bronchial epithelial cells, bronchial and skin biopsies, bronchoalveolar lavage fluid, whole blood, peripheral blood mononuclear cells (PBMCs), monocytes, neutrophils, DCs, NK cells, ILC1, ILC2, ILC3, CD4+ and CD8+ T cells, B cells, and plasmablasts. We analyzed the material from healthy children and adults, and from adults in relation to their disease or COVID-19 risk factor status. RESULTS: ACE2 and TMPRSS2 were coexpressed at the epithelial sites of the lung and skin, whereas CD147 (BSG), cyclophilins (PPIA andPPIB), CD26 (DPP4), and related molecules were expressed in both epithelium and in immune cells. We also observed a distinct age-related expression profile of these genes in the PBMCs and T cells from healthy children and adults. Asthma, COPD, hypertension, smoking, obesity, and male gender status generally led to the higher expression of ACE2- and CD147-related genes in the bronchial biopsy, BAL, or blood. Additionally, CD147-related genes correlated positively with age and BMI. Interestingly, we also observed higher expression of CD147-related genes in the lesional skin of patients with atopic dermatitis. CONCLUSIONS: Our data suggest different receptor repertoire potentially involved in the SARS-CoV-2 infection at the epithelial barriers and in the immune cells. Altered expression of these receptors related to age, gender, obesity and smoking, as well as with the disease status, might contribute to COVID-19 morbidity and severity patterns.


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , Basigina/imunologia , COVID-19/epidemiologia , Doença Crônica/epidemiologia , Dipeptidil Peptidase 4/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Enzima de Conversão de Angiotensina 2/genética , Asma/epidemiologia , Asma/genética , Asma/imunologia , Basigina/genética , COVID-19/genética , COVID-19/imunologia , Criança , Pré-Escolar , Comorbidade , Dipeptidil Peptidase 4/genética , Feminino , Expressão Gênica/genética , Humanos , Hipertensão/epidemiologia , Hipertensão/genética , Hipertensão/imunologia , Imunidade Inata/imunologia , Lactente , Masculino , Pessoa de Meia-Idade , Obesidade/epidemiologia , Obesidade/genética , Obesidade/imunologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/imunologia , Fatores de Risco , SARS-CoV-2/genética , Adulto Jovem
11.
Stem Cell Rev Rep ; 16(3): 434-440, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307653

RESUMO

The expressive number of deaths and confirmed cases of SARS-CoV-2 call for an urgent demand of effective and available drugs for COVID-19 treatment. CD147, a receptor on host cells, is a novel route for SARS-CoV-2 invasion. Thus, drugs that interfere in the spike protein/CD147 interaction or CD147 expression may inhibit viral invasion and dissemination among other cells, including in progenitor/stem cells. Studies suggest beneficial effects of azithromycin in reducing viral load of hospitalized patients, possibly interfering with ligand/CD147 receptor interactions; however, its possible effects on SARS-CoV-2 invasion has not yet been evaluated. In addition to the possible effect in invasion, azithromycin decreases the expression of some metalloproteinases (downstream to CD147), induces anti-viral responses in primary human bronchial epithelial infected with rhinovirus, decreasing viral replication and release. Moreover, resident lung progenitor/stem are extensively differentiated into myofibroblasts during pulmonary fibrosis, a complication observed in COVID-19 patients. This process, and the possible direct viral invasion of progenitor/stem cells via CD147 or ACE2, could result in the decline of these cellular stocks and failing lung repair. Clinical tests with allogeneic MSCs from healthy individuals are underway to enhance endogenous lung repair and suppress inflammation.


Assuntos
Antibacterianos/uso terapêutico , Azitromicina/uso terapêutico , Basigina/genética , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/terapia , Pandemias , Pneumonia Viral/terapia , Glicoproteína da Espícula de Coronavírus/genética , Transplante de Células-Tronco , Enzima de Conversão de Angiotensina 2 , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Linfócitos B/virologia , Basigina/antagonistas & inibidores , Basigina/imunologia , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Ensaios Clínicos como Assunto , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Pulmão/imunologia , Pulmão/virologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/imunologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Ligação Proteica/efeitos dos fármacos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/imunologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Células-Tronco/virologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/virologia , Carga Viral/efeitos dos fármacos
12.
Biochem Biophys Res Commun ; 513(4): 1083-1091, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31010682

RESUMO

Cluster of differentiation 147 (CD147), a transmembrane protein of the immunoglobulin superfamily, is a potential target of treatment against human non-small cell lung cancer (NSCLC). Although there have been exciting advances in epidermal growth factor receptor (EGFR)-targeted therapy for NSCLC in recent years, additional novel targeted agents are needed to improve the efficiency and to offer more options for patients. Antibody-drug conjugates (ADCs) utilize a chemical linker to conjugate cytotoxic drugs to a monoclonal antibody to maximize the delivery to target cells and minimize the delivery to other normal cells. The aim of this study was to prepare a novel anti-CD147 conjugate and examine the tumoricidal effect on NSCLC in vitro and in vivo. HcHAb18 was conjugated to the drug maytansinoid 1 (DM1) via a non-cleavable thioether linker (SMCC) to prepare HcHAb18-DM1 with an appropriate drug-antibody ratio (DAR). NSCLC cell lines expressing different levels of CD147 were tested in vitro to determine internalization, cell cycle arrest and cytotoxicity. In vivo efficacy and safety of HcHAb18-DM1 were evaluated in NSCLC xenograft mouse models. We found that HcHAb18-DM1 displayed an impressive potency in vitro and in vivo with a favorable safety profile. Upon binding to CD147, HcHAb18 could be internalized and delivered the payload DM1 to disturb mitotic spindle formation by microtubules. Target cells were arrested at G2/M phase and HcHAb18-DM1 exerted antiproliferative activity in vitro. Antigen-antibody binding and target cells with high growth rate were two integral prerequisites for exerting anti-tumor activity of HcHAb18-DM1. Therefore, we suggest HcHAb18-DM1 is a promising CD147-targeted therapeutic for NSCLC.


Assuntos
Basigina/imunologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Imunoconjugados/uso terapêutico , Maitansina/administração & dosagem , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/uso terapêutico , Basigina/análise , Carcinoma Pulmonar de Células não Pequenas/imunologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Xenoenxertos , Humanos , Imunoconjugados/química , Camundongos
13.
Oncol Rep ; 41(5): 2945-2956, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864716

RESUMO

Impaired antitumor immunity or induced immunosuppression in the tumor microenvironment contributes significantly to tumor progression and resistance to immunotherapy. It is becoming increasingly recognized that dynamic metabolic programming orchestrates appropriate immune responses, whereas incorrect metabolic reprogramming may underlie aberrant immune remodeling. Furthermore, pathways that control cellular metabolism and immune cell function by transcriptional and post­transcriptional mechanisms are intimately interlinked, including hypo-xia­inducible factor 1α, c­Myc and phosphatidylinositol 3­kinase/protein kinase B/mammalian target of rapamycin signaling. Immunometabolism is an emerging research field involving investigation of the interaction between immunological and metabolic processes. It is likely that high levels of nutrient competition and metabolic interplay exist between tumor cells and infiltrating immune cells in the local tumor milieu, which consequently leads to a reduction in antitumor immunity or immune cell dysfunction. Recently, a metabolic molecular mechanism responsible for the tumorigenic capacity of cluster of differentiation (CD)147, which exhibits high expression on the surface of various malignant tumor cells and is associated with tumor progression via multiple non­metabolic molecular mechanisms, was identified. The aim of the present review was to focus on the glycolytic mechanism mediated by the upregulation of CD147 in tumors and tumor­imposed metabolic restrictions on tumor­infiltrating immune cells, and the consequent immunological hyporesponsiveness. Cellular metabolism is becoming increasingly acknowledged as a key regulator of T­cell function, specification and fate, and the manipulation of metabolic programming may elucidate therapeutic options for immunological disorders and tumor immunotherapy.


Assuntos
Basigina/metabolismo , Glicólise/imunologia , Neoplasias/imunologia , Evasão Tumoral , Microambiente Tumoral/imunologia , Animais , Basigina/imunologia , Carcinogênese/imunologia , Modelos Animais de Doenças , Metabolismo Energético/imunologia , Humanos , Imunoterapia/métodos , Neoplasias/patologia , Neoplasias/terapia , Linfócitos T/imunologia , Linfócitos T/metabolismo
14.
Anticancer Res ; 38(3): 1311-1316, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29491054

RESUMO

BACKGROUND: CD147 (basigin/emmprin) is expressed on the surface of carcinoma cells. MATERIALS AND METHODS: For studying the efficacy of CD147-targeting medicine on CD147-expressing cells, we studied the effect of anti-CD147-labeled polymeric micelles (CD147ab micelles) that encapsulated a conjugate of doxorubicin with glutathione (GSH-DXR), with specific accumulation and cytotoxicity against CD147-expressing A431 human epidermoid carcinoma cells, Ishikawa human endometrial adenocarcinoma cells, and PC3 human prostate carcinoma cells. RESULTS: By treatment of each cell type with CD147ab micelles for 1 h, a specific accumulation of CD147ab micelles in CD147-expressing cells was observed. In addition, the cytotoxicity of GSH-DXR-encapsulated micelles against each cell type was measured by treatment of the micelles for 1 h. The cytotoxic effect of CD147ab micelles carrying GSH-DXR was 3- to 10-fold higher for these cells than that of micelles without GSH-DXR. CONCLUSION: These results suggest that GSH-DXR-encapsulated CD147ab micelles could serve as an effective drug delivery system to CD147-expressing carcinoma cells.


Assuntos
Anticorpos/química , Basigina/metabolismo , Doxorrubicina/análogos & derivados , Micelas , Animais , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Anticorpos/imunologia , Anticorpos/farmacologia , Basigina/antagonistas & inibidores , Basigina/imunologia , Carcinoma/metabolismo , Carcinoma/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Glutationa/análogos & derivados , Glutationa/química , Humanos , Camundongos
15.
AAPS J ; 20(2): 34, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476273

RESUMO

Low accumulation in tumor sites and slow intracellular drug release remain as the obstacles for nanoparticles to achieve effective delivery of chemotherapeutic drugs. In this study, multifunctional micelles were designed to deliver doxorubicin (Dox) to tumor sites to provide more efficient therapy against hepatic carcinoma. The micelles were based on pH-responsive carboxymethyl chitosan (CMCh) modified with a reactive oxygen species (ROS)-responsive segment phenylboronic acid pinacol ester (BAPE) and an active targeted ligand CD147 monoclonal antibody. The Dox-loaded micelles provided rapid and complete drug release in pH 5.3 incubation conditions with 1 mM H2O2. In addition, an in vitro cell uptake study revealed that CD147 modification significantly enhanced cellular internalization due to the high affinity to CD147 receptors, which are overexpressed on tumor cells. An in vivo study revealed that CD147-modified micellar formulations exhibited high accumulation in tumor sites and markedly enhanced antiproliferation effects with fewer side effects than other formulations. In conclusion, this CD147 receptor targeted delivery system with ROS/pH dual sensitivity provides a promising strategy for the treatment of hepatic carcinoma.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Hepáticas/tratamento farmacológico , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Basigina/imunologia , Linhagem Celular Tumoral , Preparações de Ação Retardada/administração & dosagem , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Micelas , Nanopartículas/química , Nanopartículas/metabolismo , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Front Immunol ; 9: 2919, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619283

RESUMO

Ulcerative colitis (UC) is an autoimmune disease that affects the colon and shares many clinical and histological features with the dextran sulfate sodium (DSS)-induced colitis model in mice. Angiogenesis is a critical component in many autoimmune diseases, as well as in the DSS-induced colitis model, and is it partially mediated by EMMPRIN, a multifunctional protein that can induce the expression of both the potent pro-angiogenic vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). We asked whether targeting EMMPRIN by active vaccination, using a novel, specific epitope in the protein, synthesized as a multiple antigenic peptide (MAP), could trigger beneficial effects in the DSS-induced colitic C57BL/6J mice. Mice were vaccinated with four boost injections (50 µg each) of either 161-MAP coding for the EMMPRIN epitope or the scrambled control peptide (Scr-MAP) emulsified in Freund's adjuvant. We show that male mice that were vaccinated with 161-MAP lost less weight, demonstrated improved disease activity indices (DAI), had reduced colitis histological score, and their colons were longer in comparison to mice vaccinated with the Scr-MAP. The 161-MAP vaccination also reduced serum and colon levels of EMMPRIN, colon concentrations of VEGF, MMP-9, and TGFß, and vessel density assessed by CD31 staining. A similar effect was observed in female mice vaccinated with 161-MAP, including weight loss, colitis histological score, colon length, colon levels of EMMPRIN and colon concentrations of VEGF. However, for female mice, the changes in DAI values, EMMPRIN serum levels, and MMP-9 and TGFß colon concentrations did not reach significance. We conclude that our strategy of alleviating autoimmunity in this model through targeting angiogenesis by actively vaccinating against EMMPRIN was successful and efficient in reducing angiogenesis.


Assuntos
Basigina/imunologia , Colite Ulcerativa/terapia , Mucosa Intestinal/irrigação sanguínea , Neovascularização Patológica/terapia , Animais , Autoimunidade/imunologia , Basigina/administração & dosagem , Basigina/antagonistas & inibidores , Basigina/sangue , Colite Ulcerativa/sangue , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/imunologia , Sulfato de Dextrana/administração & dosagem , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Epitopos/administração & dosagem , Epitopos/imunologia , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Masculino , Metaloproteinase 9 da Matriz/imunologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Peptídeos/administração & dosagem , Peptídeos/imunologia , Resultado do Tratamento , Vacinação/métodos , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Fator A de Crescimento do Endotélio Vascular/imunologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
Nanomedicine ; 14(6): 1949-1961, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29045824

RESUMO

HAb18G/CD147, an important marker in the progression of hepatocellular carcinoma (HCC), is highly expressed on the surface of HCC cells. To increase the therapeutic efficacy of Doxil (PEGylated liposomal doxorubicin) against HCC, we constructed CD147-targeted doxorubicin-loaded immunoliposomes (Anti-CD147 ILs-DOX) by conjugating F(ab')2 of a CD147-specific monoclonal antibody to DSPE-PEG-MAL, and then inserted the antibody-conjugated polymer to Doxil. Anti-CD147 ILs-DOX delivered DOX to CD147-overexpressing HCC cells specifically and efficiently in vitro and in vivo, resulting in enhanced therapeutic effects than non-targeted controls. Strikingly, Anti-CD147 ILs-DOX reduced the CD133-positive fraction of HCC cells, suggesting its potential in reducing the number of HCC stem cells. Pharmacokinetic and biodistribution studies of Anti-CD147 ILs-DOX confirmed its long circulation time and efficient accumulation in tumors. The superior antitumor effects of Anti-CD147 ILs-DOX than other treatments were demonstrated in both HCC cells and patient-derived HCC xenograft models. Anti-CD147 ILs-DOX represent a novel approach for targeted HCC therapy.


Assuntos
Anticorpos Monoclonais/química , Basigina/imunologia , Carcinoma Hepatocelular/tratamento farmacológico , Doxorrubicina/análogos & derivados , Sistemas de Liberação de Medicamentos , Imunoconjugados/administração & dosagem , Neoplasias Hepáticas/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Anticorpos Monoclonais/imunologia , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Feminino , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética , Distribuição Tecidual , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
PLoS One ; 12(8): e0183689, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832687

RESUMO

Melanoma accounts for nearly 80% of all deaths associated with skin cancer.CD147 plays a very important role in melanoma progression and the expression level may correlate with tumor malignancy. RING1 can bind DNA and act as a transcriptional repressor, play an important role in the aggressive phenotype in melanoma. The interactions between CD147 and RING1 were identified with a yeast two-hybrid and RING1 interacted with CD147 through the transmembrane domain. RING1 inhibits CD147's capability promoting melanoma cell migration. In conclusion, the study identified novel interactions between CD147 and RING1, recovered CD147 nuclear envelope distribution in melanoma cells, and suggested a new mechanism underlying how cytoplasmic CD147 promotes melanoma development.


Assuntos
Basigina/imunologia , Movimento Celular/imunologia , Melanoma/patologia , Membrana Nuclear/imunologia , Complexo Repressor Polycomb 1/fisiologia , Transcrição Gênica/fisiologia , Basigina/genética , Técnicas de Silenciamento de Genes , Humanos , Melanoma/metabolismo , Complexo Repressor Polycomb 1/genética
19.
Cell Death Dis ; 8(7): e2925, 2017 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703811

RESUMO

Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers worldwide. CD147 (EMMPRIN or basigin) is a leading gene relating to hepatocarcinogenesis and metastasis, and is detected in transmembrane, exosome or circulating forms in HCC patients. The endosome recycling of CD147 further enhances the function of this oncoprotein from a dynamic perspective. However, previous studies about CD147 mainly focused on one separate form, and little attention has been paid to how the different forms of tumor-derived CD147 changes. Moreover, uncovering the roles of the residual C-terminal portion of CD147 after shedding is inevitable to fully understand CD147 promoting tumor progression. In this study, we discovered that under low-cholesterol condition, CD147 endocytosis is inhibited but its shedding mediated by ADAM10 is enhanced. Further procession of residual CD147 in the lysosome produces nuclear-localized CD147-ICD (intracellular domain of CD147), which contributes to autophagy through NF-κB-TRAIL-caspase8-ATG3 axis. As autophagy endows cancer cells with increased adaptability to chemotherapy, and HAb 18 (a specific antibody targeting CD147) inhibits CD147 shedding and sequential CD147-ICD enhances autophagy, we found the combination of HAb 18 and cisplatin exhibited marked antitumor efficiency.


Assuntos
Autofagia , Basigina/metabolismo , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Antineoplásicos/toxicidade , Autofagia/efeitos dos fármacos , Basigina/química , Basigina/imunologia , Proteína Beclina-1/antagonistas & inibidores , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Cisplatino/toxicidade , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Leupeptinas/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Nus , Proteólise/efeitos dos fármacos , Sinvastatina/farmacologia , beta-Ciclodextrinas/farmacologia
20.
Blood ; 130(6): 777-788, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28596424

RESUMO

Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by accumulation of clonal B lymphocytes, resulting from a complex balance between cell proliferation and apoptotic death. Continuous crosstalk between cancer cells and local/distant host environment is required for effective tumor growth. Among the main actors of this dynamic interplay between tumoral cells and their microenvironment are the nano-sized vesicles called exosomes. Emerging evidence indicates that secretion, composition, and functional capacity of exosomes are altered as tumors progress to an aggressive phenotype. In CLL, no data exist exploring the specific changes in the proteomic profile of plasma-derived exosomes from patients during disease evolution. We hereby report for the first time different proteomic profiles of plasma exosomes, both between indolent and progressive CLLs as well as within the individual patients at the onset of disease and during its progression. Next, we focus on the changes of the exosome protein cargoes, which are found exclusively in patients with progressive CLL after disease progression. The alterations in the proteomic cargoes underline different networks specific for leukemia progression related to inflammation, oxidative stress, and NF-κB and phosphatidylinositol 3-kinase/AKT pathway activation. Finally, our results suggest a preponderant role for the protein S100-A9 as an activator of the NFκB pathway during CLL progression and suggest that the leukemic clone can generate an autoactivation loop through S100-A9 expression, NF-κB activation, and exosome secretion. Collectively, our data propose a new pathway for NF-κB activation in CLL and highlight the importance of exosomes as extracellular mediators promoting tumor progression in CLL.


Assuntos
Calgranulina B/imunologia , Exossomos/patologia , Leucemia Linfocítica Crônica de Células B/patologia , NF-kappa B/imunologia , Basigina/análise , Basigina/imunologia , Calgranulina B/análise , Progressão da Doença , Exossomos/imunologia , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/imunologia , NF-kappa B/análise , Proteoma/análise , Proteoma/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA