Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 900
Filtrar
1.
Int Immunopharmacol ; 138: 112573, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-38971108

RESUMO

BACKGROUND: Tianhe Zhuifeng Gao (TZG) is an authorized Chinese patent drug with satisfying clinical efficacy, especially for RA patients with cold-dampness syndrome. However, its underlying pharmacological mechanisms remain unclear. METHOD: Anti-arthritic effects of TZG were evaluated using an adjuvant-induced arthritis (AIA) rat model. Transcriptional regulatory network analysis based on synovial tissues obtained from AIA rats, combining with our previous analysis based on whole blood samples from RA patients with cold-dampness syndrome and co-immunoprecipitation were performed to identify involved dominant pathways, which were experimentally verified using AIA-wind-cold-dampness stimulation modified (AIA-M) animal model. RESULTS: TZG treatment dramatically attenuated joint injury and inflammatory response in AIA rats, and PSMC2-RUNX2-COL1A1 axis, which was closely associated with bone/cartilage damage, was inferred to be one of therapeutic targets of TZG against RA. Experimentally, TZG displayed obvious pharmacological effects for alleviating the joint inflammation and destruction through reinstating the body weight, reducing the arthritis score, the limbs diameters, the levels of RF and CRP, and the inflammatory cytokines, recovering the thymus and spleen indexes, diminishing bone and cartilage destruction, as well elevating the pain thresholds of AIA-M rats. In addition, TZG markedly reversed the abnormal energy metabolism in AIA-M rats through enhancing articular temperature, daily water consumption, and regulating expression levels of energy metabolism parameters and hormones. Moreover, TZG also significantly modulated the abnormal expression levels of PSMC2, RUNX2 and COL1A1 proteins in the ankle tissues of AIA-M rats. CONCLUSION: TZG may exert the bone protective effects in RA therapy via regulating bone and cartilage damage-associated PSMC2-RUNX2-COL1A1 axis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo I , Medicamentos de Ervas Chinesas , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Experimental/tratamento farmacológico , Ratos , Humanos , Masculino , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacologia , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Redes Reguladoras de Genes/efeitos dos fármacos , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Cartilagem/metabolismo , Cartilagem/patologia , Cartilagem/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/farmacologia , Transdução de Sinais/efeitos dos fármacos
2.
J Nanobiotechnology ; 22(1): 445, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069607

RESUMO

BACKGROUND: The incidence of osteochondral defects caused by trauma, arthritis or tumours is increasing annually, but progress has not been made in terms of treatment methods. Due to the heterogeneous structure and biological characteristics of cartilage and subchondral bone, the integration of osteochondral repair is still a challenge. RESULTS: In the present study, a novel bilayer hydrogel scaffold was designed based on anatomical characteristics to imitate superficial cartilage and subchondral bone. The scaffold showed favourable biocompatibility, and the addition of an antioxidant nanozyme (LiMn2O4) promoted reactive oxygen species (ROS) scavenging by upregulating antioxidant proteins. The cartilage layer effectively protects against chondrocyte degradation in the inflammatory microenvironment. Subchondral bionic hydrogel scaffolds promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) by regulating the AMPK pathway in vitro. Finally, an in vivo rat preclinical osteochondral defect model confirmed that the bilayer hydrogel scaffold efficiently promoted cartilage and subchondral bone regeneration. CONCLUSIONS: In general, our biomimetic hydrogel scaffold with the ability to regulate the inflammatory microenvironment can effectively repair osteochondral defects. This strategy provides a promising method for regenerating tissues with heterogeneous structures and biological characteristics.


Assuntos
Regeneração Óssea , Hidrogéis , Células-Tronco Mesenquimais , Osteogênese , Ratos Sprague-Dawley , Alicerces Teciduais , Animais , Hidrogéis/química , Hidrogéis/farmacologia , Alicerces Teciduais/química , Ratos , Células-Tronco Mesenquimais/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Masculino , Diferenciação Celular/efeitos dos fármacos , Inflamação , Engenharia Tecidual/métodos , Espécies Reativas de Oxigênio/metabolismo , Condrogênese/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Cartilagem Articular/efeitos dos fármacos , Células Cultivadas
3.
Int J Biol Macromol ; 272(Pt 1): 132848, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38830491

RESUMO

Collagen-based (COL) hydrogels could be a promising treatment option for injuries to the articular cartilage (AC) becuase of their similarity to AC native extra extracellular matrix. However, the high hydration of COL hydrogels poses challenges for AC's mechanical properties. To address this, we developed a hydrogel platform that incorporating cellulose nanocrystals (CNCs) within COL and followed by plastic compression (PC) procedure to expel the excessive fluid out. This approach significantly improved the mechanical properties of the hydrogels and enhanced the chondrogenic differentiation of mesenchymal stem cells (MSCs). Radially confined PC resulted in higher collagen fibrillar densities together with reducing fibril-fibril distances. Compressed hydrogels containing CNCs exhibited the highest compressive modulus and toughness. MSCs encapsulated in these hydrogels were initially affected by PC, but their viability improved after 7 days. Furthermore, the morphology of the cells and their secretion of glycosaminoglycans (GAGs) were positively influenced by the compressed COL-CNC hydrogel. Our findings shed light on the combined effects of PC and CNCs in improving the physical and mechanical properties of COL and their role in promoting chondrogenesis.


Assuntos
Diferenciação Celular , Celulose , Condrogênese , Colágeno , Hidrogéis , Células-Tronco Mesenquimais , Nanopartículas , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Celulose/química , Celulose/farmacologia , Condrogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Nanopartículas/química , Colágeno/química , Colágeno/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Plásticos/química , Plásticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Glicosaminoglicanos/metabolismo , Cartilagem/citologia , Cartilagem/efeitos dos fármacos
4.
Mar Drugs ; 22(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38786592

RESUMO

Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.


Assuntos
Osso e Ossos , Cartilagem , Colágeno , Gadiformes , Hidrolisados de Proteína , Animais , Colágeno/metabolismo , Humanos , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Bebidas , Alimento Funcional , Hidrólise
5.
Colloids Surf B Biointerfaces ; 239: 113959, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38772085

RESUMO

Cartilage repair remains a major challenge in clinical trials. These current cartilage repair materials can not effectively promote chondrocyte generation, limiting their practical application in cartilage repair. In this work, we develop an implantable scaffold of RADA-16 peptide hydrogel incorporated with TGF-ß1 to provide a microenvironment for stem cell-directed differentiation and chondrocyte adhesion growth. The longest release of growth factor TGF-ß1 release can reach up to 600 h under physiological conditions. TGF-ß1/RADA-16 hydrogel was demonstrated to be a lamellar porous structure. Based on the cell culture with hBMSCs, TGF-ß1/RADA-16 hydrogel showed excellent ability to promote cell proliferation, directed differentiation into chondrocytes, and functional protein secretion. Within 14 days, 80% of hBMSCs were observed to be directed to differentiate into vigorous chondrocytes in the co-culture of TGF-ß1/RADA-16 hydrogels with hBMSCs. Specifically, these newly generated chondrocytes can secrete and accumulate large amounts of collagen II within 28 days, which can effectively promote the formation of cartilage tissue. Finally, the exploration of RADA-16 hydrogel-based scaffolds incorporated with TGF-ß1 bioactive species would further greatly promote the practical clinical trials of cartilage remediation, which might have excellent potential to promote cartilage regeneration in areas of cartilage damage.


Assuntos
Cartilagem , Diferenciação Celular , Condrócitos , Hidrogéis , Regeneração , Alicerces Teciduais , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Regeneração/efeitos dos fármacos , Alicerces Teciduais/química , Hidrogéis/química , Hidrogéis/farmacologia , Humanos , Condrócitos/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Cartilagem/fisiologia , Cartilagem/metabolismo , Proliferação de Células/efeitos dos fármacos , Engenharia Tecidual/métodos , Células Cultivadas , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Animais , Condrogênese/efeitos dos fármacos , Peptídeos
6.
Med Sci Monit ; 30: e943738, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38664941

RESUMO

BACKGROUND The pathological mechanism of osteoarthritis is still unclear. The regulation of the immune microenvironment has been of growing interest in the progression and treatment of osteoarthritis. Macrophages with different phenotypes, producing different cytokines, have been linked to the mechanism of cartilage injury in osteoarthritis. Copper ions play a role in the immune response and are involved in the pathological mechanisms of osteoarthritis by affecting the metabolism of the cartilage matrix. Bioactive glass (BG) is an osteogenic material with superior biocompatibility. Here, we report on the regulatory behavior of macrophages using a copper-based composite BG material. MATERIAL AND METHODS Cu-BGC powder was prepared by sol-gel method, and scaffolds were fabricated and characterized using 3D printing. Macrophage cultures grown with Cu-BGC were examined for cell culture and proliferation. The effect of Cu-BGC on the degradation metabolism of chondrocytes, cultured in the environment of inflammatory cytokine IL-1ß, was determined. In addition, the morphology of macrophages, secretion of inflammatory cytokines, and expression of surface markers were examined. RESULTS The results show that Cu-BGC promotes macrophage proliferation at a range of concentrations and increases the secretion of anti-inflammatory cytokines while inhibiting proinflammatory cytokines. At the same time, M2-type cell surface markers are definitely expressed and the morphology of macrophages is altered. In addition, Cu-BGC inhibited the degradation metabolism of chondrocytes in the inflammatory environment induced by IL-1ß. CONCLUSIONS These results suggest that Cu-BGC induced macrophage polarization into an M2 type anti-inflammatory phenotype, and inhibition of immune injury response may play a role in delaying cartilage matrix damage in osteoarthritis.


Assuntos
Proliferação de Células , Condrócitos , Cobre , Citocinas , Macrófagos , Osteoartrite , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Osteoartrite/patologia , Osteoartrite/metabolismo , Animais , Condrócitos/metabolismo , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Cobre/metabolismo , Cobre/farmacologia , Citocinas/metabolismo , Camundongos , Proliferação de Células/efeitos dos fármacos , Cartilagem Articular/patologia , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Cartilagem/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Células RAW 264.7 , Vidro , Alicerces Teciduais
7.
Jt Dis Relat Surg ; 35(1): 156-168, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38108177

RESUMO

OBJECTIVES: In this study, we aimed to determine the bioefficacy of epidermal growth factor (EGF), boric acid (BA), and their combination on cartilage injury in rats. MATERIALS AND METHODS: In in vitro setting, the cytotoxic effects of BA, EGF, and their combinations using mouse fibroblast cell (L929), human bone osteosarcoma cell (Saos-2), and human adipose derived mesenchymal stem cells (hAD-MSCs) were determined by applying MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] test. In in vivo setting, 72 rats were randomly divided into four groups. A standard chondral defect was created and microfracture was performed in all groups. Group A was determined as the control group. In addition to the standard procedure, Group B received 100 ng/mL of EGF, Group C received a combination of 100 ng/mL of EGF and 10 µg/mL of BA combination, and Group D 20 µg/mL of BA. RESULTS: The cytotoxic effect of the combinations of EGF dilutions (1, 5, 10, 25, 50, 100, 200 ng/mL) with BA (100, 300, 500 µg/mL) was observed only in the 72-h application period and in Saos-2. The cytotoxic effect of BA was reduced when combined with EGF. There was no significant difference in the histopathological scores among the groups (p=0.13). CONCLUSION: Our study showed that EGF and low-dose BA application had a positive effect on cartilage healing in rats. Significant decreases in recovery scores were observed in the other groups. The combination of EGF and BA promoted osteoblast growth. Detection of lytic lesions in the group treated with 20 µg/mL of BA indicates that BA may have a cytotoxic effect.


Assuntos
Ácidos Bóricos , Cartilagem , Fator de Crescimento Epidérmico , Animais , Humanos , Camundongos , Ratos , Ácidos Bóricos/farmacologia , Ácidos Bóricos/uso terapêutico , Cartilagem/efeitos dos fármacos , Cartilagem/lesões , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/uso terapêutico , Fator de Crescimento Epidérmico/metabolismo , Linhagem Celular
8.
J. oral res. (Impresa) ; 11(5): 1-16, nov. 23, 2022. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1437225

RESUMO

Background: Endocrine Disrupting Chemicals (EDCs) would cause alterations in organs/systems of exposed individuals or their progeny. Objetive: To identify and analyze the main published findings on the effects of exposure to EDCs on teeth, cartilage, and bone. Material and Methods: Two databases were analyzed: Medline and Web of Science. Only observational studies analyzing the effect of EDCs on mineralized tissues published since 2006 were included in the study. Results: 25 articles were selected, most of them involving EDCs pesticides, plasticizers, or personal care products, highlighting organochlorine compounds, bisphenols, phthalates, dioxins, parabens, and perfluoroalkyls. Thirty-six per cent of the studies reported an accumulation of EDCs in teeth or bones, while 64% reported alterations in their development or morphology, mainly at the bone level, primarily affecting their mineral density and size, as well as that of the bones of exposed individuals or their progeny. The type of effect observed was related to the EDCs analyzed, and it seemed to depend on variables such as age, sex, ethnicity/race, and even the metabolic status of the individuals in the different species analyzed. No evidence associated with effects on cartilage was found. Conclusion: EDCs in the environment, at work, or at home, under different exposure routes, are capable of accumulating in teeth and bone, particularly affecting the latter. It is necessary to study the effect of EDCs on mineralized tissues in agro-industrial areas, especially on teeth.


Antecedentes: Los Químicos Disruptores Endocrinos (EDCs) causarían alteraciones en órganos/sistemas de individuos expuestos, o su progenie. Objetivo: Identificar y analizar los principales hallazgos publicados sobre el efecto de la exposición a EDCs en dientes, cartílago y hueso. Material y Métodos: Se analizaron dos bases de datos: Medline y Web of Science, incluyendo solo estudios observacionales publicados desde el 2006, analizando el efecto de los EDCs sobre tejidos mineralizados. Resultados:25 artículos fueron seleccionados, siendo la mayoría de los EDCs pesticidas, plastificantes o productos de cuidado personal, destacando los compuestos Organo-clorados, Bisfenoles, Ftalatos, Dioxinas, Parabenos y los Perfluoroalquilos. Un 36% de los estudios reportaron un acúmulo de EDCs en dientes o huesos, mientras que un 64% informaron de alteraciones en su desarrollo o morfología, particularmente a nivel de huesos, afectando principalmente su densidad mineral y su tamaño, así como el de los individuos expuestos o su progenie. El tipo de efecto observado tuvo relación con el EDCs analizado, pareciendo depender de variables tales como edad, sexo, etnia/raza e incluso el estado metabólico de los individuos, en las diferentes especies analizadas. No se encontraron evidencias asociadas a efectos en el cartílago. Conclusión: Los EDCs en el medio ambiente, ámbito laboral o doméstico, bajo distintas rutas de exposición, son capaces de acumularse en diente y hueso, afectando particularmente a este último. Es necesario estudiar el efecto de los EDCs en los tejidos mineralizados en zonas agroindustriales, particularmente a nivel de dientes.


Assuntos
Humanos , Dente/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Fluorocarbonos , Bioacumulação
9.
BMC Complement Med Ther ; 22(1): 25, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35086536

RESUMO

BACKGROUND: Osteoarthritis (OA) treatment aims to improve inflammation and delay cartilage degeneration. However, there is no effective strategy presently available. Ononin, a representative isoflavone glycoside component extracted from natural Chinese herbs, exerts anti-inflammatory and proliferative effects. However, the therapeutic effect of ononin on chondrocyte inflammation remains unclear. METHODS: In this study, we explored the therapeutic effect and potential mechanism of ononin in OA by establishing an interleukin-1 beta (IL-1ß)-induced chondrocyte inflammation model. RESULTS: Our results verified that ononin alleviated the IL-1ß-induced decrease in chondrocyte viability, attenuated the overexpression of the inflammatory factors tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6), and simultaneously inhibited the expression of cartilage extracellular matrix (ECM)-degrading enzymes such as matrix metalloproteinase-13 (MMP-13). Furthermore, the decomposition of Collagen II protein could be alleviated in the OA model by ononin. Finally, ononin improved chondrocyte inflammation by downregulating the mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) signalling pathways. CONCLUSION: Our findings suggested that ononin could inhibit the IL-1ß-induced proinflammatory response and ECM degradation in chondrocytes by interfering with the abnormal activation of the MAPK and NF-κB pathways, indicating its protective effect against OA.


Assuntos
Cartilagem/efeitos dos fármacos , Glucosídeos/farmacologia , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Isoflavonas/farmacologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Osteoartrite , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Cartilagem/citologia , Cartilagem/metabolismo , Cartilagem/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Regulação para Baixo , Glucosídeos/uso terapêutico , Inflamação/tratamento farmacológico , Isoflavonas/uso terapêutico , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Osteoartrite/patologia , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Ratos Sprague-Dawley , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
10.
Sci China Life Sci ; 65(2): 309-327, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34109475

RESUMO

Significant cellular senescence has been observed in cartilage harvested from patients with osteoarthritis (OA). In this study, we aim to develop a senescence-relevant OA-like cartilage model for developing disease-modifying OA drugs (DMOADs). Specifically, human bone marrow-derived mesenchymal stromal cells (MSCs) were expanded in vitro up to passage 10 (P10-MSCs). Following their senescent phenotype formation, P10-MSCs were subjected to pellet culture in chondrogenic medium. Results from qRT-PCR, histology, and immunostaining indicated that cartilage generated from P10-MSCs displayed both senescent and OA-like phenotypes without using other OA-inducing agents, when compared to that from normal passage 4 (P4)-MSCs. Interestingly, the same gene expression differences observed between P4-MSCs and P10-MSC-derived cartilage tissues were also observed between the preserved and damaged OA cartilage regions taken from human samples, as demonstrated by RNA Sequencing data and other analysis methods. Lastly, the utility of this senescence-initiated OA-like cartilage model in drug development was assessed by testing several potential DMOADs and senolytics. The results suggest that pre-existing cellular senescence can induce the generation of OA-like changes in cartilage. The P4- and P10-MSCs derived cartilage models also represent a novel platform for predicting the efficacy and toxicity of potential DMOADs on both preserved and damaged cartilage in humans.


Assuntos
Antirreumáticos/farmacologia , Cartilagem/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Modelos Biológicos , Osteoartrite/tratamento farmacológico , Antirreumáticos/uso terapêutico , Cartilagem/metabolismo , Cartilagem/patologia , Diferenciação Celular , Células Cultivadas , Senescência Celular/genética , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Senoterapia/farmacologia , Engenharia Tecidual , Transcriptoma
11.
J Nanobiotechnology ; 19(1): 343, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702302

RESUMO

OBJECTIVES: This study aimed to investigate the roles of adipose mesenchymal stem cell (AMSC)-derived extracellular vesicles (EVs) binding with chitosan oligosaccharides (COS) in cartilage injury, as well as the related mechanisms. RESULTS: IL-1ß treatment significantly inhibited the viability and migration of chondrocytes and enhanced cell apoptosis (P < 0.05), while chitosan oligosaccharides and extracellular vesicles-chitosan oligosaccharide conjugates (EVs-COS/EVs-COS conjugates) reversed the changes induced by IL-1ß (P < 0.05), and the effects of extracellular vesicles-chitosan oligosaccharide conjugates were better than those of chitosan oligosaccharides (P < 0.05). After cartilage damage, IL-1ß, OPN, and p53 were significantly upregulated, COL1A1, COL2A1, OCN, RUNX2, p-Akt/Akt, PI3K, c-Myc, and Bcl2 were markedly downregulated, and extracellular vesicles-chitosan oligosaccharide conjugates reversed the expression induced by cartilage injury. Through sequencing, 760 differentially expressed genes (DEGs) clustered into four expression patterns were associated with negative regulation of the canonical Wnt, PI3K-Akt, AMPK, and MAPK signaling pathways. CONCLUSION: Extracellular vesicles-chitosan oligosaccharide conjugates may serve as a new cell-free biomaterial to facilitate cartilage injury repair and improve osteoarthritis.


Assuntos
Cartilagem , Quitosana , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/lesões , Cartilagem/metabolismo , Células Cultivadas , Quitosana/química , Quitosana/farmacologia , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Vesículas Extracelulares/química , Feminino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Oligossacarídeos/química , Oligossacarídeos/farmacologia , Osteoartrite/metabolismo , Ratos , Ratos Wistar , Organismos Livres de Patógenos Específicos , Transcriptoma/genética , Cicatrização/efeitos dos fármacos
12.
Int Immunopharmacol ; 100: 108119, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34492535

RESUMO

Osteoarthritis is a common chronic disease associated with chondrocyte inflammation and cartilage matrix hydrolyzation. Studies report that IL-1ß plays a critical role in osteoarthritis. Anti-inflammatory effect of nootkatone has been explored in acute and chronic inflammatory disease, thus the current study sought to explore its therapeutic effect in osteoarthritis. Notably, the effect of nootkatone in osteoarthritis has not been elucidated. Therefore, murine primary chondrocytes were extracted and ACLT induced OA mouse model was established in the current study to explore the therapeutic effect of nootkatone in OA both in vitro and in vivo. The findings showed that nootkatone inhibited inflammatory response and protected cartilage balance in murine primary chondrocyte. Further analysis showed that nootkatone suppressed inflammation and protected cartilage against degeneration induced by ACLT surgery in mice. The cellular mechanism of the protective effect of nootkatone in osteoarthritis and associated signaling pathway was identified as the NF-κB signaling pathway. In summary, the findings of the current study indicated that nootkatone is a potential therapeutic agent for OA.


Assuntos
Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Proteínas I-kappa B/metabolismo , Osteoartrite/tratamento farmacológico , Sesquiterpenos Policíclicos/farmacologia , Animais , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Citocinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Substâncias Protetoras/farmacologia
13.
Int J Mol Sci ; 22(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34298867

RESUMO

The hexosamine biosynthetic pathway (HBP) is essential for the production of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), the building block of glycosaminoglycans, thus playing a crucial role in cartilage anabolism. Although O-GlcNAcylation represents a protective regulatory mechanism in cellular processes, it has been associated with degenerative diseases, including osteoarthritis (OA). The present study focuses on HBP-related processes as potential therapeutic targets after cartilage trauma. Human cartilage explants were traumatized and treated with GlcNAc or glucosamine sulfate (GS); PUGNAc, an inhibitor of O-GlcNAcase; or azaserine (AZA), an inhibitor of GFAT-1. After 7 days, cell viability and gene expression analysis of anabolic and catabolic markers, as well as HBP-related enzymes, were performed. Moreover, expression of catabolic enzymes and type II collagen (COL2) biosynthesis were determined. Proteoglycan content was assessed after 14 days. Cartilage trauma led to a dysbalanced expression of different HBP-related enzymes, comparable to the situation in highly degenerated tissue. While GlcNAc and PUGNAc resulted in significant cell protection after trauma, only PUGNAc increased COL2 biosynthesis. Moreover, PUGNAc and both glucosamine derivatives had anti-catabolic effects. In contrast, AZA increased catabolic processes. Overall, "fueling" the HBP by means of glucosamine derivatives or inhibition of deglycosylation turned out as cells and chondroprotectives after cartilage trauma.


Assuntos
Vias Biossintéticas/efeitos dos fármacos , Doenças das Cartilagens/tratamento farmacológico , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Glucosamina/farmacologia , Hexosaminas/metabolismo , Uridina Difosfato N-Acetilglicosamina/farmacologia , Biomarcadores/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Doenças das Cartilagens/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo II/metabolismo , Feminino , Expressão Gênica/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Fosforilação/efeitos dos fármacos
14.
Toxicology ; 459: 152847, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34245815

RESUMO

Previous findings have confirmed that prenatal nicotine exposure (PNE) leads to retarded cartilage development in the fetal growth plate. It is characterized by insufficient matrix synthesis and decreased expression of matrix phenotype genes aggrecan (ACAN) and Col2A1 in the fetal growth plate chondrocytes; however, the specific molecular mechanism is yet unclear. This study intends to clarify the specific molecular mechanism of fetal osteochondral retardation caused by PNE through animal and cellular experiments. The present study demonstrated that in male offspring of the PNE group (the pregnant rats were subcutaneously administered nicotine 1.0 mg/kg twice per day (2.0 mg/kg.d) at GD11-20), the cartilage matrix of the fetal growth plate was lightly stained, the collagen was reduced, and expression of the matrix phenotype genes, ACAN and Col2A1, was significantly decreased. It was further found that PNE decreased histone acetylation (H3K9/H3K14) levels in the ACAN and Col2A1 promoter regions. Moreover, the expression of Snail and HDAC1/2 was increased in the PNE group. in vitro, the nicotine treatment at different concentrations elevated the expression of Snail/HDAC1/2 while decreasing the H3K9/H3K14 levels in the ACAN and Col2A1 promoter regions. Snail-siRNA transfection partially abolished the nicotine-induced increase in HDAC1/2 expression and decreased the histone acetylation levels in the ACAN and Col2A1 promoter regions. Trichostatin A (TSA) treatment partially reversed the nicotine-induced changes in downstream parameters. In summary, PNE-induced decreased cartilage matrix synthesis in the fetal growth plate of male offspring is effectuated by Snail/HDAC1/2-mediated decreased H3K9/H3K14 levels in the ACAN and Col2A1 promoter regions.


Assuntos
Retardo do Crescimento Fetal/induzido quimicamente , Histona Desacetilase 1/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/efeitos dos fármacos , Histona Desacetilase 2/metabolismo , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Fatores de Transcrição da Família Snail/efeitos dos fármacos , Fatores de Transcrição da Família Snail/metabolismo , Agrecanas/metabolismo , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/patologia , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Colágeno/metabolismo , Colágeno Tipo II/metabolismo , Feminino , Lâmina de Crescimento/efeitos dos fármacos , Masculino , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Transfecção
15.
Eur Cell Mater ; 41: 616-632, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34091884

RESUMO

In vitro models aim to recapitulate the in vivo situation. To more closely mimic the knee joint environment, current in vitro models need improvements to reflect the complexity of the native tissue. High molecular weight hyaluronan (hMwt HA) is one of the most abundant bioactive macromolecules in healthy synovial fluid, while shear and dynamic compression are two joint-relevant mechanical forces. The present study aimed at investigating the concomitant effect of joint-simulating mechanical loading (JSML) and hMwt HA-supplemented culture medium on the chondrogenic differentiation of primary human bone-marrow-derived mesenchymal stem cells (hBM-MSCs). hBM-MSC chondrogenesis was investigated over 28 d at the gene expression level and total DNA, sulphated glycosaminoglycan, TGF-ß1 production and safranin O staining were evaluated. The concomitant effect of hMwt HA culture medium and JSML significantly increased cartilage-like matrix deposition and sulphated glycosaminoglycan synthesis, especially during early chondrogenesis. A stabilisation of the hBM-MSC-derived chondrocyte phenotype was observed through the reduced upregulation of the hypertrophic marker collagen X and an increase in the chondrogenic collagen type II/X ratio. A combination of JSML and hMwt HA medium better reflects the complexity of the in vivo synovial joint environment. Thus, JSML and hMwt HA medium will be two important features for joint-related culture models to more accurately predict the in vivo outcome, therefore reducing the need for animal studies. Reducing in vitro artefacts would enable a more reliable prescreening of potential cartilage repair therapies.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Condrogênese/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Idoso , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Colágeno Tipo X/metabolismo , DNA/metabolismo , Feminino , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Líquido Sinovial/efeitos dos fármacos , Líquido Sinovial/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química
16.
Adv Sci (Weinh) ; 8(11): e2100143, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34105266

RESUMO

Biomaterials play an important role in treating bone defects by promoting direct osteogenic healing through intramembranous ossification (IO). However, majority of the body's bones form via cartilaginous intermediates by endochondral ossification (EO), a process that has not been well mimicked by engineered scaffolds, thus limiting their clinical utility in treating large segmental bone defects. Here, by entrapping corticosteroid dexamethasone within biomimetic recombinant human bone morphogenetic protein (rhBMP)-loaded porous mesoporous bioglass scaffolds and regulating their release kinetics, significant degree of ectopic bone formation through endochondral ossification is achieved. By regulating the recruitment and polarization of immune suppressive macrophage phenotypes, the scaffold promotes rapid chondrogenesis by activating Hif-3α signaling pathway in mesenchymal stem cells, which upregulates the expression of downstream chondrogenic genes. Inhibition of Hif-3α signaling reverses the endochondral ossification phenotype. Together, these results reveal a strategy to facilitate developmental bone growth process using immune modulating biomimetic scaffolds, thus providing new opportunities for developing biomaterials capable of inducing natural tissue regeneration.


Assuntos
Biomimética , Condrogênese/efeitos dos fármacos , Imunomodulação/efeitos dos fármacos , Engenharia Tecidual , Regeneração Óssea/efeitos dos fármacos , Cartilagem/efeitos dos fármacos , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular , Condrócitos , Humanos , Imunomodulação/genética , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química
17.
J Interferon Cytokine Res ; 41(5): 164-171, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34003680

RESUMO

We aimed to investigate the effects of interleukin (IL)-35 on proangiogenic factors in IL-1ß-pretreated chondrocyte-like SW1353 cells and screen-related genes that participated in osteoarthritis (OA) cartilage with IL-35, proangiogenic factors, and P38 mitogen-activated protein kinase (MAPK) signaling pathway. Different concentrations of IL-35 incubated with IL-1ß stimulated SW1353 cells with or without SB203580 (inhibitor of P38 MAPK). Proangiogenic molecule expression was assessed by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Microarray datasets were downloaded from the Gene Expression Omnibus database of OA cartilage. Protein-protein interaction of genes was visualized by Search Tool for the Retrieval Interacting Genes and Cytoscape. Database for Annotation, Visualization, and Integrated Discovery was used to screen biological processes and pathways. IL-35 inhibited mRNA expression of proangiogenic factors in IL-1ß-stimulated SW1353 cells through the P38 MAPK signaling pathway. IL-35 inhibited angiopoietin-2 secretion. We found that 8 related genes, 18 biological processes, and 6 pathways may associate with IL-35, P38 MAPK signaling pathway, and cartilage angiogenesis. IL-35 regulated the expression of proangiogenic factors through P38 MAPK signaling pathway in IL-1ß-stimulated SW1353 cells. IL-35 and P38 MAPK pathway may participate in neovascularization of cartilage. Our findings may provide molecular mechanisms and possible genes target treatment for OA.


Assuntos
Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Interleucina-1beta/farmacologia , Interleucinas/metabolismo , Neovascularização Fisiológica , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Células Cultivadas , Biologia Computacional/métodos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Humanos , Neovascularização Fisiológica/genética , Osteoartrite/etiologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Mapeamento de Interação de Proteínas
18.
Eur Cell Mater ; 41: 471-484, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33945627

RESUMO

Injectable therapies for intervertebral disc (IVD) repair are gaining much interest. Recently, a chitosan (CH)-based injectable scaffold has been developed that has similar mechanical properties to human nucleus pulposus (NP) and provides a suitable environment for encapsulated NP cell survival and proteoglycan production. The hypothesis of the study was that the biological response of the encapsulated cells can be further increased by adding gelatine and Link N (LN, a naturally occurring peptide present in cartilage and IVD extracellular matrix), known to increase cell adhesion and proteoglycan production, respectively. The effect of gelatine on the mechanical properties of a CH hydrogel was evaluated through rheological and compressive mechanical tests. Production of proteoglycan [assessed as glycosaminoglycan (GAG)] by encapsulated NP cells was determined in the presence or absence of gelatine in normal or degenerative medium supplemented with LN. Normal and degenerative media replicate the healthy and degenerative disc environment, respectively. Gelatine slightly reduced the gelation rate of CH hydrogel but improved its final mechanical properties in compression. LN had a minimal effect in normal medium but induced significantly more GAG production in degenerative medium (p < 0.001, 4.7-fold superior to the control), reaching similar results to transforming growth factor (TGF)-ß (used as a positive control). GAG production was further increased in CH-gelatine hydrogels, confirming an additive effect of LN and gelatine in a degenerative environment. The results supported the concept that CH-gelatine hydrogels supplemented with LN can help restore the function of the NP during the early stages of IVD degeneration.


Assuntos
Quitosana/farmacologia , Matriz Extracelular/efeitos dos fármacos , Gelatina/farmacologia , Hidrogéis/farmacologia , Degeneração do Disco Intervertebral/tratamento farmacológico , Disco Intervertebral/efeitos dos fármacos , Animais , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Engenharia Tecidual/métodos
19.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33986191

RESUMO

Activating mutations in fibroblast growth factor receptor 3 (FGFR3) and inactivating mutations in the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase both result in decreased production of cyclic GMP in chondrocytes and severe short stature, causing achondroplasia (ACH) and acromesomelic dysplasia, type Maroteaux, respectively. Previously, we showed that an NPR2 agonist BMN-111 (vosoritide) increases bone growth in mice mimicking ACH (Fgfr3Y367C/+). Here, because FGFR3 signaling decreases NPR2 activity by dephosphorylating the NPR2 protein, we tested whether a phosphatase inhibitor (LB-100) could enhance BMN-111-stimulated bone growth in ACH. Measurements of cGMP production in chondrocytes of living tibias, and of NPR2 phosphorylation in primary chondrocytes, showed that LB-100 counteracted FGF-induced dephosphorylation and inactivation of NPR2. In ex vivo experiments with Fgfr3Y367C/+ mice, the combination of BMN-111 and LB-100 increased bone length and cartilage area, restored chondrocyte terminal differentiation, and increased the proliferative growth plate area, more than BMN-111 alone. The combination treatment also reduced the abnormal elevation of MAP kinase activity in the growth plate of Fgfr3Y367C/+ mice and improved the skull base anomalies. Our results provide a proof of concept that a phosphatase inhibitor could be used together with an NPR2 agonist to enhance cGMP production as a therapy for ACH.


Assuntos
Acondroplasia/genética , Desenvolvimento Ósseo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Peptídeo Natriurético Tipo C/análogos & derivados , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Piperazinas/farmacologia , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/genética , Receptores do Fator Natriurético Atrial/agonistas , Animais , Doenças do Desenvolvimento Ósseo/genética , Cartilagem/efeitos dos fármacos , Cartilagem/crescimento & desenvolvimento , Diferenciação Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Sinergismo Farmacológico , Lâmina de Crescimento/efeitos dos fármacos , Lâmina de Crescimento/crescimento & desenvolvimento , Camundongos , Peptídeo Natriurético Tipo C/farmacologia , Tamanho do Órgão , Fosforilação , Cultura Primária de Células , Receptores do Fator Natriurético Atrial/genética , Tíbia/efeitos dos fármacos , Tíbia/crescimento & desenvolvimento
20.
Molecules ; 26(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915775

RESUMO

Although the anti-tumor and anti-infective properties of ß-glucans have been well-discussed, their role in bone metabolism has not been reviewed so far. This review discusses the biological effects of ß-glucans on bone metabolisms, especially on bone-resorbing osteoclasts, which are differentiated from hematopoietic precursors. Multiple immunoreceptors that can recognize ß-glucans were reported to be expressed in osteoclast precursors. Coordinated co-stimulatory signals mediated by these immunoreceptors are important for the regulation of osteoclastogenesis and bone remodeling. Curdlan from the bacterium Alcaligenes faecalis negatively regulates osteoclast differentiation in vitro by affecting both the osteoclast precursors and osteoclast-supporting cells. We also showed that laminarin, lichenan, and glucan from baker's yeast, as well as ß-1,3-glucan from Euglema gracilisas, inhibit the osteoclast formation in bone marrow cells. Consistent with these findings, systemic and local administration of ß-glucan derived from Aureobasidium pullulans and Saccharomyces cerevisiae suppressed bone resorption in vivo. However, zymosan derived from S. cerevisiae stimulated the bone resorption activity and is widely used to induce arthritis in animal models. Additional research concerning the relationship between the molecular structure of ß-glucan and its effect on osteoclastic bone resorption will be beneficial for the development of novel treatment strategies for bone-related diseases.


Assuntos
Glucanos/metabolismo , Osteogênese/fisiologia , Animais , Regeneração Óssea , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Diferenciação Celular/efeitos dos fármacos , Glucanos/farmacologia , Humanos , Imunomodulação , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteogênese/efeitos dos fármacos , Receptores Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA