Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Clin Exp Immunol ; 216(3): 252-261, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38310540

RESUMO

Psoriasis is a chronic inflammatory skin disease with a characteristic isomorphic reaction, i.e. the Köbner reaction, induced by slight epidermal trauma. In this study, the tape-stripping technique was used to induce the development of Köbner reaction in 18 subjects with psoriasis. Eight subjects developed a positive reaction. To study the early cellular changes, skin biopsies were taken at the baseline and subsequent time points of 2 h, 1 d, 3 d, and 7 d for the immunostaining of complement C3c, iC3b, and cells expressing complement receptor 3 (CD11b/CD18; a receptor of iC3b) or CD14. The results show that the positive Köbner reaction is associated with rapid (2 h-1 d) and sustained (3-7 d) increase in the expression of epidermal C3c and iC3b and dermal C3c. In addition, there was a positive correlation between CD11b+ and CD14+ cells in baseline and 2 h-1 d biopsies with a subsequent increase in CD11b+ and CD14+ cells in 3-7 d biopsies in the Köbner-positive group. In the Köbner-negative group, only a transient increase in epidermal iC3b at 2 h-1 d, as well as rapid (2 h-1 d) and sustained increase (3-7 d) in dermal iC3b and CD14+ cells, was observed. In experiments with cultured monolayer keratinocytes, a slight cell damage already at 30 mJ/cm2 ultraviolet B irradiation led to increased expression of C3c, but not iC3b. Therefore, there are marked differences between Köbner groups in respect to the expression of C3c, iC3b, and cells expressing CD11b or CD14. Of note is the rapid and sustained increase in epidermal C3c and iC3b in the positive Köbner reaction.


Assuntos
Antígeno CD11b , Complemento C3b , Receptores de Lipopolissacarídeos , Psoríase , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Psoríase/imunologia , Psoríase/metabolismo , Feminino , Antígeno CD11b/metabolismo , Adulto , Pessoa de Meia-Idade , Complemento C3b/metabolismo , Complemento C3b/imunologia , Pele/patologia , Pele/imunologia , Pele/metabolismo , Pele/efeitos da radiação , Biópsia , Epiderme/metabolismo , Epiderme/imunologia , Epiderme/patologia
2.
Front Immunol ; 14: 1192767, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325666

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening disorder with a high rate of mortality. Complement activation in ARDS initiates a robust inflammatory reaction that can cause progressive endothelial injury in the lung. Here, we tested whether inhibition of the lectin pathway of complement could reduce the pathology and improve the outcomes in a murine model of LPS-induced lung injury that closely mimics ARDS in human. In vitro, LPS binds to murine and human collectin 11, human MBL and murine MBL-A, but not to C1q, the recognition subcomponent of the classical pathway. This binding initiates deposition of the complement activation products C3b, C4b and C5b-9 on LPS via the lectin pathway. HG-4, a monoclonal antibody that targets MASP-2, a key enzyme in the lectin pathway, inhibited lectin pathway functional activity in vitro, with an IC50 of circa 10nM. Administration of HG4 (5mg/kg) in mice led to almost complete inhibition of the lectin pathway activation for 48hrs, and 50% inhibition at 60hrs post administration. Inhibition of the lectin pathway in mice prior to LPS-induced lung injury improved all pathological markers tested. HG4 reduces the protein concentration in bronchoalveolar lavage fluid (p<0.0001) and levels of myeloid peroxide (p<0.0001), LDH (p<0.0001), TNFα and IL6 (both p<0.0001). Lung injury was significantly reduced (p<0.001) and the survival time of the mice increased (p<0.01). From the previous findings we concluded that inhibition of the lectin pathway has the potential to prevent ARDS pathology.


Assuntos
Lesão Pulmonar , Síndrome do Desconforto Respiratório , Animais , Humanos , Camundongos , Lectinas , Lipopolissacarídeos/toxicidade , Ativação do Complemento , Síndrome do Desconforto Respiratório/induzido quimicamente , Complemento C3b/metabolismo
3.
Immunol Rev ; 313(1): 120-138, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36271889

RESUMO

C3 is the central effector molecule of the complement system, mediating its multiple functions through different binding sites and their corresponding receptors. We will introduce the C3 forms (native C3, C3 [H2 O], and intracellular C3), the C3 fragments C3a, C3b, iC3b, and C3dg/C3d, and the C3 expression sites. To highlight the important role that C3 plays in human biological processes, we will give an overview of the diseases linked to C3 deficiency and to uncontrolled C3 activation. Next, we will present a structural description of C3 activation and of the C3 fragments generated by complement regulation. We will proceed by describing the C3a interaction with the anaphylatoxin receptor, followed by the interactions of opsonins (C3b, iC3b, and C3dg/C3d) with complement receptors, divided into two groups: receptors bearing complement regulatory functions and the effector receptors without complement regulatory activity. We outline the molecular architecture of the receptors, their binding sites on the C3 activation fragments, the cells expressing them, the diversity of their functions, and recent advances. With this review, we aim to give an up-to-date analysis of the processes triggered by C3 activation fragments on different cell types in health and disease contexts.


Assuntos
Complemento C3 , Complemento C3b , Humanos , Complemento C3/análise , Complemento C3/metabolismo , Complemento C3b/metabolismo , Receptores de Complemento/análise , Sítios de Ligação , Ativação do Complemento
4.
Acta Biomater ; 155: 123-138, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328123

RESUMO

The use of biomaterials in modern medicine has enabled advanced drug delivery strategies and led to reduced morbidity and mortality in a variety of interventions such as transplantation or hemodialysis. However, immune-mediated reactions still present a serious complication of these applications. One of the drivers of such reactions is the complement system, a central part of humoral innate immunity that acts as a first-in-line defense system in its own right but also coordinates other host defense responses. A major regulator of the complement system is the abundant plasma protein factor H (FH), which impairs the amplification of complement responses. Previously, we could show that it is possible to recruit FH to biomedical surfaces using the phage display-derived cyclic peptide 5C6 and, consequently, reduce deposition of C3b, an activation product of the complement system. However, the optimal orientation of 5C6 on surfaces, structural determinants within the peptide for the binding, and the exact binding region on FH remained unknown. Here, we show that the cyclic core and C-terminal region of 5C6 are essential for its interaction with FH and that coating through its N-terminus strongly increases FH recruitment and reduces C3-mediated opsonization in a microparticle-based assay. Furthermore, we could demonstrate that 5C6 selectively binds to FH but not to related proteins. The observation that 5C6 also binds murine FH raises the potential for translational evaluation in animal models. This work provides important insight for the future development of 5C6 as a probe or therapeutic entity to reduce complement activation on biomaterials. STATEMENT OF SIGNIFICANCE: Biomaterials have evolved into core technologies critical to biomedical and drug delivery applications alike, yet their safe and efficient use may be adversely impacted by immune responses to the foreign materials. Taking inspiration from microbial immune evasion strategies, our group developed a peptide-based surface coating that recruits factor H (FH), a host regulator of the complement system, from plasma to the material surface and prevents unwanted activation of this innate immunity pathway. In this study, we identified the molecular determinants that define the interaction between FH and the coated peptide, developed tethering strategies with largely enhanced binding capacity and provided important insight into the target selectivity and species specificity of the FH-binding peptide, thereby paving the way for preclinical development steps.


Assuntos
Complemento C3b , Fator H do Complemento , Animais , Camundongos , Fator H do Complemento/química , Fator H do Complemento/metabolismo , Complemento C3b/química , Complemento C3b/metabolismo , Materiais Biocompatíveis/farmacologia , Ligação Proteica , Peptídeos/farmacologia , Peptídeos/metabolismo
5.
Biol Futur ; 72(1): 7-13, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34554501

RESUMO

Integrins are essential membrane proteins that provide a tightly regulated link between the extracellular matrix and the intracellular cytoskeletal network. These cell surface proteins are composed of a non-covalently bound α chain and ß chain. The leukocyte-specific complement receptor 3 (CR3, αMß2, CD11b/CD18) and complement receptor 4 (CR4, αXß2, CD11c/CD18) belong to the family of ß2-integrins. These receptors bind multiple ligands like iC3b, ICAMs, fibrinogen or LPS, thus allowing them to partake in phagocytosis, cellular adhesion, extracellular matrix rearrangement and migration. CR3 and CR4 were generally expected to mediate identical functions due to their structural homology, overlapping ligand specificity and parallel expression on human phagocytes. Despite their similarities, the expression level and function of these receptors differ in a cell-type-specific manner, both under physiological and inflammatory conditions.We investigated comprehensively the individual role of CR3 and CR4 in various functions of human phagocytes, and we proved that there is a "division of labour" between these two receptors. In this review, I will summarize our current knowledge about this area.


Assuntos
Antígenos CD18/imunologia , Integrina alfaXbeta2/imunologia , Antígeno de Macrófago 1/imunologia , Fagócitos/imunologia , Fagocitose/imunologia , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Antígeno CD11c/imunologia , Antígeno CD11c/metabolismo , Antígenos CD18/metabolismo , Complemento C3b/imunologia , Complemento C3b/metabolismo , Humanos , Integrina alfaXbeta2/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Fagócitos/metabolismo
6.
Methods Mol Biol ; 2227: 69-81, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33847932

RESUMO

Impairment of the complement regulatory protein Factor H (FH) is implicated in the physiopathological mechanisms of different diseases like atypical hemolytic and uremic syndrome and C3 glomerulopathies. It may be due to genetic abnormalities or acquired with the development of autoantibodies. FH has several ligands; therefore, the exploration of its functions requires to perform different tests. Among them, two hemolytic tests are very useful because they give specific and complementary information about FH functions. The first one is dedicated to explore the FH capacity to dissociate the alternative pathway C3 convertase, whereas the second one is designed to explore the capacity of FH to bind cell surfaces and to protect them from complement attack. This chapter describes the procedures to perform these two hemolytic tests, exploring in a complementary way the FH functionality.


Assuntos
Fator H do Complemento/análise , Fator H do Complemento/fisiologia , Ensaio de Atividade Hemolítica de Complemento/métodos , Animais , Síndrome Hemolítico-Urêmica Atípica/sangue , Síndrome Hemolítico-Urêmica Atípica/diagnóstico , Síndrome Hemolítico-Urêmica Atípica/imunologia , Complemento C3b/análise , Complemento C3b/metabolismo , Citaferese/métodos , Eritrócitos/citologia , Eritrócitos/metabolismo , Humanos , Nefropatias/sangue , Nefropatias/diagnóstico , Nefropatias/imunologia , Ratos , Ovinos
7.
J Immunol ; 206(8): 1784-1792, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33811105

RESUMO

Complement factor H (CFH) is the major inhibitor of the alternative pathway of the complement system and is structurally related to beta2-glycoprotein I, which itself is known to bind to ligands, including coagulation factor XI (FXI). We observed reduced complement activation when FXI activation was inhibited in a baboon model of lethal systemic inflammation, suggesting cross-talk between FXI and the complement cascade. It is unknown whether FXI or its activated form, activated FXI (FXIa), directly interacts with the complement system. We explored whether FXI could interact with and inhibit the activity of CFH. We found that FXIa neutralized CFH by cleavage of the R341/R342 bonds. FXIa reduced the capacity of CFH to enhance the cleavage of C3b by factor I and the decay of C3bBb. The binding of CFH to human endothelial cells was also reduced after incubating CFH with FXIa. The addition of either short- or long-chain polyphosphate enhanced the capacity of FXIa to cleave CFH. FXIa also cleaved CFH that was present on endothelial cells and in the secretome from blood platelets. The generation of FXIa in plasma induced the cleavage of CFH. Moreover, FXIa reduced the cleavage of C3b by factor I in serum. Conversely, we observed that CFH inhibited FXI activation by either thrombin or FXIIa. Our study provides, to our knowledge, a novel molecular link between the contact pathway of coagulation and the complement system. These results suggest that FXIa generation enhances the activity of the complement system and thus may potentiate the immune response.


Assuntos
Plaquetas/metabolismo , Fator H do Complemento/metabolismo , Células Endoteliais/metabolismo , Fator XIa/metabolismo , Inflamação/metabolismo , Animais , Coagulação Sanguínea , Complemento C3b/metabolismo , Via Alternativa do Complemento , Fibrinogênio/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Papio , Ligação Proteica , Receptor Cross-Talk
8.
Front Immunol ; 11: 572562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33240263

RESUMO

Properdin (P) is a positive regulatory protein that stabilizes the C3 convertase and C5 convertase of the complement alternative pathway (AP). Several studies have suggested that properdin can bind directly to the surface of certain pathogens regardless of the presence of C3bBb. Saprophytic Leptospira are susceptible to complement-mediated killing, but the interaction of properdin with Leptospira spp. has not been evaluated so far. In this work, we demonstrate that properdin present in normal human serum, purified properdin, as well as properdin oligomers P2, P3, and P4, interact with Leptospira. Properdin can bind directly to the bacterial surface even in the absence of C3b. In line with our previous findings, AP activation was shown to be important for killing non-pathogenic L. biflexa, and properdin plays a key role in this process since this microorganism survives in P-depleted human serum and the addition of purified properdin to P-depleted human serum decreases the number of viable leptospires. A panel of pathogenic L.interrogans recombinant proteins was used to identify putative properdin targets. Lsa30, an outer membrane protein from L. interrogans, binds to unfractionated properdin and to a lesser extent to P2-P4 properdin oligomers. In conclusion, properdin plays an important role in limiting bacterial proliferation of non-pathogenic Leptospira species. Once bound to the leptospiral surface, this positive complement regulatory protein of the AP contributes to the formation of the C3 convertase on the leptospire surface even in the absence of prior addition of C3b.


Assuntos
Complemento C3b/metabolismo , Fator B do Complemento/metabolismo , Leptospira interrogans/fisiologia , Leptospira/fisiologia , Leptospirose/metabolismo , Properdina/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Processos de Crescimento Celular , Via Alternativa do Complemento , Citotoxicidade Imunológica , Humanos , Leptospira/patogenicidade , Leptospira interrogans/patogenicidade , Leptospirose/imunologia , Properdina/imunologia , Ligação Proteica , Virulência
9.
Front Immunol ; 11: 1643, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849563

RESUMO

Introduction: Proteinuria contributes to progression of renal damage, partly by complement activation on proximal tubular epithelial cells. By pattern recognition, properdin has shown to bind to heparan sulfate proteoglycans on tubular epithelium and can initiate the alternative complement pathway (AP). Properdin however, also binds to C3b(Bb) and properdin binding to tubular cells might be influenced by the presence of C3b(Bb) on tubular cells and/or by variability in properdin proteins in vitro. In this study we carefully evaluated the specificity of the properdin - heparan sulfate interaction and whether this interaction could be exploited in order to block alternative complement activation. Methods: Binding of various properdin preparations to proximal tubular epithelial cells (PTEC) and subsequent AP activation was determined in the presence or absence of C3 inhibitor Compstatin and properdin inhibitor Salp20. Heparan sulfate proteoglycan dependency of the pattern recognition of properdin was evaluated on PTEC knocked down for syndecan-1 by shRNA technology. Solid phase binding assays were used to evaluate the effectivity of heparin(oids) and recombinant Salp20 to block the pattern recognition of properdin. Results: Binding of serum-derived and recombinant properdin preparations to PTECs could be dose-dependently inhibited (P < 0.01) and competed off (P < 0.01) by recombinant Salp20 (IC50: ~125 ng/ml) but not by Compstatin. Subsequent properdin-mediated AP activation on PTECs could be inhibited by Compstatin (P < 0.01) and blocked by recombinant Salp20 (P < 0.05). Syndecan-1 deficiency in PTECs resulted in a ~75% reduction of properdin binding (P = 0.057). In solid-phase binding assays, properdin binding to C3b could be dose-dependently inhibited by recombinant Salp20> heparin(oid) > C3b. Discussion: In this study we showed that all properdin preparations recognize heparan sulfate/syndecan-1 on PTECs with and without Compstatin C3 blocking conditions. In contrast to Compstatin, recombinant Salp20 prevents heparan sulfate pattern recognition by properdin on PTECs. Both complement inhibitors prevented properdin-mediated C3 activation. Binding of properdin to C3b could also be blocked by heparin(oids) and recombinant Salp20. This work indicates that properdin serves as a docking station for AP activation on PTECs and a Salp20 analog or heparinoids may be viable inhibitors in properdin mediated AP activation.


Assuntos
Complemento C3b/metabolismo , Inativadores do Complemento/farmacologia , Células Epiteliais/efeitos dos fármacos , Heparitina Sulfato/metabolismo , Proteínas de Insetos/farmacologia , Túbulos Renais Proximais/efeitos dos fármacos , Properdina/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Proteínas e Peptídeos Salivares/farmacologia , Sindecana-1/metabolismo , Animais , Linhagem Celular , Ativação do Complemento/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Ixodes , Túbulos Renais Proximais/metabolismo , Peptídeos Cíclicos/farmacologia , Ligação Proteica , Transdução de Sinais , Sindecana-1/genética
10.
Front Immunol ; 11: 462, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32296419

RESUMO

Bacillus anthracis poly-γ-D-glutamic acid (PGA) capsule is an essential virulent factor that helps the bacterial pathogen to escape host immunity. Like other encapsulated bacterial species, the B. anthracis capsule may also inhibit complement-mediated clearance and ensure bacterial survival in the host. Previous reports suggest that B. anthracis spore proteins inhibit complement activation. However, the mechanism through which the B. anthracis capsule imparts a survival advantage to the active bacteria has not been demonstrated till date. Thus, to evaluate the role of the PGA capsule in evading host immunity, we have undertaken the present head-to-head comparative study of the phagocytosis and complement activation of non-encapsulated and encapsulated B. anthracis strains. The encapsulated virulent strain exhibited resistance toward complement-dependent and complement-independent bacterial phagocytosis by human macrophages. The non-encapsulated Sterne strain was highly susceptible to phagocytosis by THP-1 macrophages, after incubation with normal human serum (NHS), heat-inactivated serum, and serum-free media, thus indicating that the capsule inhibited both complement-dependent and complement-independent opsonic phagocytosis. An increased binding of C3b and its subsequent activation to C3c and C3dg, which functionally act as potent opsonins, were observed with the non-encapsulated Sterne strain compared with the encapsulated strain. Other known mediators of complement fixation, IgG, C-reactive protein (CRP), and serum amyloid P component (SAP), also bound more prominently with the non-encapsulated Sterne strain. Studies with complement pathway-specific, component-deficient serum demonstrated that the classical pathway was primarily involved in mediating C3b binding on the non-encapsulated bacteria. Both strains equally bound the complement regulatory proteins C4BP and factor H. Importantly, we demonstrated that the negative charge of the PGA capsule was responsible for the differential binding of the complement proteins between the non-encapsulated and encapsulated strains. At lower pH closer to the isoelectric point of PGA, the neutralization of the negative charge was associated with an increased binding of C3b and IgG with the encapsulated B. anthracis strain. Overall, our data have demonstrated that the B. anthracis capsule inhibits complement fixation and opsonization resulting in reduced phagocytosis by macrophages, thus allowing the bacterial pathogen to evade host immunity.


Assuntos
Antraz/imunologia , Bacillus anthracis/fisiologia , Macrófagos/imunologia , Ácido Poliglutâmico/análogos & derivados , Antígenos de Bactérias/imunologia , Bacillus anthracis/patogenicidade , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Ativação do Complemento , Complemento C3b/metabolismo , Humanos , Evasão da Resposta Imune , Proteínas Opsonizantes/metabolismo , Fagocitose , Ácido Poliglutâmico/metabolismo , Ligação Proteica , Células THP-1 , Virulência
11.
Front Immunol ; 11: 609941, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505398

RESUMO

Monoclonal antibodies directed against the CD20 surface antigen on B cells are widely used in the therapy of B cell malignancies. Upon administration, the antibodies bind to CD20 expressing B cells and induce their depletion via cell- and complement-dependent cytotoxicity or by induction of direct cell killing. The three antibodies currently most often used in the clinic are Rituximab (RTX), Ofatumumab (OFA) and Obinutuzumab (OBI). Even though these antibodies are all of the human IgG1 subclass, they have previously been described to vary considerably in the effector functions involved in therapeutic B cell depletion, especially in regards to complement activation. Whereas OFA is known to strongly induce complement-dependent cytotoxicity, OBI is described to be far less efficient. In contrast, the role of complement in RTX-induced B cell depletion is still under debate. Some of this dissent might come from the use of different in vitro systems for characterization of antibody effector functions. We therefore set out to systematically compare antibody as well as C1q binding and complement-activation by RTX, OFA and OBI on human B cell lines that differ in expression levels of CD20 and complement-regulatory proteins as well as human primary B cells. Applying real-time interaction analysis, we show that the overall strength of C1q binding to live target cells coated with antibodies positively correlated with the degree of bivalent binding for the antibodies to CD20. Kinetic analysis revealed that C1q exhibits two binding modes with distinct affinities and binding stabilities, with exact numbers varying both between antibodies and cell lines. Furthermore, complement-dependent cell killing by RTX and OBI was highly cell-line dependent, whereas the superior complement-dependent cytotoxicity by OFA was independent of the target B cells. All three antibodies were able to initiate deposition of C3b on the B cell surface, although to varying extent. This suggests that complement activation occurs but might not necessarily lead to induction of complement-dependent cytotoxicity. This activation could, however, initiate complement-dependent phagocytosis as an alternative mechanism of therapeutic B cell depletion.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antígenos CD20/metabolismo , Antineoplásicos Imunológicos/farmacologia , Linfócitos B/efeitos dos fármacos , Ativação do Complemento/efeitos dos fármacos , Complemento C1q/metabolismo , Linfoma de Células B/tratamento farmacológico , Rituximab/farmacologia , Anticorpos Monoclonais Humanizados/metabolismo , Afinidade de Anticorpos , Especificidade de Anticorpos , Antígenos CD20/imunologia , Antineoplásicos Imunológicos/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos B/patologia , Sítios de Ligação de Anticorpos , Complemento C3b/metabolismo , Citotoxicidade Imunológica/efeitos dos fármacos , Humanos , Células K562 , Cinética , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Fagocitose/efeitos dos fármacos , Ligação Proteica , Rituximab/metabolismo
12.
J Cell Biochem ; 121(1): 183-199, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31172552

RESUMO

Our current understanding of phagocytosis is largely derived from studies of individual receptor-ligand interactions and their downstream signaling pathways. Because phagocytes are exposed to a variety of ligands on heterogeneous target particles in vivo, it is important to observe the engagement of multiple receptors simultaneously and the triggered involvement of downstream signaling pathways. Potential crosstalk between the two well-characterized opsonic receptors, FcγR and CR3, was briefly explored in the early 1970s, where macrophages were challenged with dual-opsonized targets. However, subsequent studies on receptor crosstalk were primarily restricted to using single opsonins on different targets, typically at saturating opsonin conditions. Beyond validating these initial explorations on receptor crosstalk, we identify the early signaling mechanisms that underlie the binding and phagocytosis during the simultaneous activation of both opsonic receptors, through the presence of a dual-opsonized target (immunoglobulin G [IgG] and C3bi), compared with single receptor activation. For this purpose, we used signaling protein inhibitor studies as well as live cell brightfield and fluorescent imaging to fully understand the role of tyrosine kinases, F-actin dynamics and internalization kinetics for FcγR and CR3. Importantly, opsonic receptors were studied together and in isolation, in the context of sparsely opsonized targets. We observed enhanced particle binding and a synergistic effect on particle internalization during the simultaneous activation of FcγR and CR3 engaged with sparsely opsonized targets. Inhibition of early signaling and cytoskeletal molecules revealed a differential involvement of Src kinase for FcγR- vs CR3- and dual receptor-mediated phagocytosis. Src activity recruits Syk kinase and we observed intermediate levels of Syk phosphorylation in dual-opsonized particles compared with those opsonized with IgG or C3bi alone. These results likely explain the intermediate levels of F-actin that is recruited to sites of dual-opsonized particle uptake and the notoriously delayed internalization of C3bi-opsonized targets by macrophages.


Assuntos
Complemento C3b/metabolismo , Macrófagos/metabolismo , Proteínas Opsonizantes/metabolismo , Fagocitose , Actinas/metabolismo , Animais , Transporte Biológico , Células da Medula Óssea/citologia , Citoesqueleto/metabolismo , Feminino , Imunoglobulina G/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Fagossomos/metabolismo , Fosforilação , Ligação Proteica , Células RAW 264.7 , Transdução de Sinais
13.
Pediatr Blood Cancer ; 67(3): e28070, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31774252

RESUMO

BACKGROUND: Transplant-associated thrombotic microangiopathy (TA-TMA) occurs after hematopoietic stem cell transplantation (HSCT) and is characterized by microvascular thrombosis and end-organ injury particularly of the kidneys. TA-TMA is challenging to diagnose and treat, which can lead to long-term complications and death in patients with severe disease. Studies have shown that genetic abnormalities of the alternative complement pathway (AP) are associated with TA-TMA. We hypothesized that patients with TA-TMA may generate elevated levels of the AP activation product, Ba, compared with HSCT patients without TA-TMA. PROCEDURE: We longitudinally measured plasma levels of complement activation products C3a, Ba, and C5a in 14 HSCT patients: 7 with TA-TMA and 7 without TA-TMA. We assessed renal function by calculating estimated glomerular filtration rate (eGFR) and correlated the extent of AP activation with renal dysfunction in both patient populations. RESULTS: The median days from HSCT to study enrollment were 154 (39-237) in the TA-TMA group and 84 (39-253) in the HSCT group without TA-TMA. Median Ba levels (ng/mL) at enrollment were 1096.9 (826.5-1562.0) in the TA-TMA group and 725.7 (494.7-818.9) in the HSCT group without TA-TMA (P = 0.007). Over the study duration, Ba levels inversely correlated with eGFR. There were no differences in C3a, C5a, or sC5b9 levels between the two populations at any measured interval. CONCLUSIONS: We conclude in this preliminary study that Ba protein may serve as a marker for TA-TMA, and furthermore, that components generated in the early phase of AP activation may be involved in the pathogenesis of renal endothelial injury in TA-TMA.


Assuntos
Biomarcadores/metabolismo , Complemento C3b/metabolismo , Fator B do Complemento/metabolismo , Via Alternativa do Complemento , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Microangiopatias Trombóticas/diagnóstico , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Pré-Escolar , Ativação do Complemento , Feminino , Seguimentos , Humanos , Estudos Longitudinais , Masculino , Prognóstico , Microangiopatias Trombóticas/etiologia , Microangiopatias Trombóticas/metabolismo , Adulto Jovem
14.
Molecules ; 24(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847255

RESUMO

Acanthamoeba are a free-living protozoan whose pathogenic strain can cause severe human diseases, such as granulomatous encephalitis and keratitis. As such, the pathogenic mechanism between humans and Acanthamoeba is still unknown. In our previous study, we identified the secreted Acanthamoeba M28 aminopeptidase (M28AP) and then suggested that M28AP can degrade human C3b and iC3b for inhibiting the destruction of Acanthamoeba spp. with the human immune response. We constructed the produced the recombinant M28AP from a CHO cell, which is a mammalian expression system, to characterize the biochemical properties of Acanthamoeba M28AP. The recombinant M28AP more rapidly hydrolyzed Leu-AMC than Arg-AMC and could be inhibited by EDTA treatment. We show that recombinant M28AP can be delivered into the individual cell line and cause cell line apoptosis in a co-culture model. In conclusion, we successfully investigated the potential molecular characteristics of M28AP.


Assuntos
Acanthamoeba/enzimologia , Aminopeptidases/metabolismo , Complemento C3b/química , Células Epiteliais/citologia , Acanthamoeba/patogenicidade , Aminopeptidases/genética , Animais , Apoptose , Células CHO , Células Cultivadas , Técnicas de Cocultura , Complemento C3b/metabolismo , Cricetulus , Ácido Edético/farmacologia , Células Epiteliais/parasitologia , Humanos , Hidrólise , Proteólise , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Ratos , Proteínas Recombinantes/metabolismo
15.
Proc Natl Acad Sci U S A ; 116(48): 24214-24220, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31723045

RESUMO

Although CRIg was originally identified as a macrophage receptor for binding complement C3b/iC3b in vitro, recent studies reveal that CRIg functions as a pattern recognition receptor in vivo for Kupffer cells (KCs) to directly bind bacterial pathogens in a complement-independent manner. This raises the critical question of whether CRIg captures circulating pathogens through interactions with complement in vivo under flow conditions. Furthermore, the role of CRIg during parasitic infection is unknown. Taking advantage of intravital microscopy and using African trypanosomes as a model, we studied the role of CRIg in intravascular clearance of bloodborne parasites. Complement C3 is required for intravascular clearance of African trypanosomes by KCs, preventing the early mortality of infected mice. Moreover, antibodies are essential for complement-mediated capture of circulating parasites by KCs. Interestingly, reduced antibody production was observed in the absence of complement C3 during infection. We further demonstrate that CRIg but not CR3 is critically involved in KC-mediated capture of circulating parasites, accounting for parasitemia control and host survival. Of note, CRIg cannot directly catch circulating parasites and antibody-induced complement activation is indispensable for CRIg-mediated parasite capture. Thus, we provide evidence that CRIg, by interacting with complement in vivo, plays an essential role in intravascular clearance of bloodborne parasites. Targeting CRIg may be considered as a therapeutic strategy.


Assuntos
Complemento C3b/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Parasitemia/parasitologia , Receptores de Complemento/fisiologia , Tripanossomíase Africana/sangue , Animais , Complemento C3b/imunologia , Microscopia Intravital , Células de Kupffer/imunologia , Células de Kupffer/parasitologia , Antígeno de Macrófago 1/metabolismo , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/patogenicidade , Trypanosoma congolense/patogenicidade , Tripanossomíase Africana/mortalidade , Tripanossomíase Africana/parasitologia
16.
Front Immunol ; 10: 2209, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572401

RESUMO

Complement split products (CSPs), such as the fragments C4d and C3d, which are generated as a consequence of complement regulatory processes, are established markers for disease activity in autoimmunity or antibody-mediated graft rejection. Since immunoglobulin-like transcript 4 (ILT4) was previously shown to interact with soluble CSPs, but not with CSPs covalently-bound to target surfaces following classical complement activation, the present study aimed to identify novel cellular receptors interacting with covalently-deposited CSPs. By applying an unbiased screening approach using a cDNA mammalian expression library generated from human monocyte-derived dendritic cells and probed with recombinant human C4d, we identified neuropilin-1 (NRP1) as a novel receptor for C4d, C3d, and iC3b. NRP1, a highly conserved type 1 transmembrane protein, plays important roles in the development of the nervous and cardiovascular system as well as in tumorigenesis through interaction with its established binding partners, such as vascular endothelial growth factor (VEGF) and semaphorin 3A (Sema3A). NRP1 is also expressed on immune cells and serves as a marker for murine Tregs. Although NRP1 contains domains homologous to ones found in some complement proteins, it has not been linked to the complement system. We demonstrate that binding of C4d to NRP1 expressing cells was dose-dependent and saturable, and had a KD value of 0.71 µM. Importantly, and in contrast to ILT4, NRP1 interacted with CSPs that were covalently bound to target surfaces in the course of complement activation, therefore representing a classical complement receptor. The binding site of CSPs was mapped to the b1 domain of the coagulation factor V/VIII homology domain of NRP1. Taken together, our results demonstrate a novel role for NRP1 as a receptor for CSPs deposited on surfaces during complement activation. Further work is required to elucidate the functional consequences of the NRP1-CSP interactions in immunity.


Assuntos
Proteínas do Sistema Complemento/metabolismo , Neuropilina-1/metabolismo , Receptores de Complemento/metabolismo , Semaforina-3A/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Linhagem Celular Tumoral , Ativação do Complemento , Complemento C3b/metabolismo , Complemento C3d/metabolismo , Complemento C4b/metabolismo , Humanos , Células Jurkat , Camundongos , Fragmentos de Peptídeos/metabolismo , Ligação Proteica
17.
Int J Biol Macromol ; 133: 391-411, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30974145

RESUMO

Previously, we have identified the C3dg protein as an important player in the pathogenesis of atopic dermatitis (AD). In this study, we aimed to identify critical factors associated with C3dg in human keratinocytes based on high-throughput screening (HTS) approaches. We overexpressed C3dg in HaCaT human keratinocytes and conducted serial HTS studies, including RNA sequencing analysis integrated with antibody-chip arrays and implementation of bioinformatics algorithms (PPI mappings). Cumulatively, these approaches identified several novel C3dg-associated genes and proteins that are thought to be significantly involved in skin diseases including AD. These novel genes and proteins included LPA, PROZ, BLK, CLDN11, and FGF22, which are believed to play important roles in C3dg-associated skin functions in keratinocytes, as well as genes related to the two important pathways of systemic lupus erythematosus and Staphylococcus aureus infection. In particular, FGF22 is a unique gene that was detected and validated in all methods applied in this study. By integrating the datasets obtained from these HTS studies and utilizing the strengths of each method, we obtained new insights into the functional role of C3dg in keratinocytes. The approach used here contributes to clinical understanding of C3dg-associated applications and may also be applicable to treatment of AD.


Assuntos
Anticorpos/metabolismo , Complemento C3b/genética , Complemento C3b/metabolismo , Biologia Computacional , Queratinócitos/metabolismo , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Análise Serial de Proteínas , Análise de Sequência de RNA , Algoritmos , Células Hep G2 , Humanos
18.
FASEB J ; 33(3): 4448-4457, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30566365

RESUMO

Group B Streptococcus (GBS) colonizes the human lower intestinal and genital tracts and constitutes a major threat to neonates from pregnant carrier mothers and to adults with underlying morbidity. The pathogen expresses cell-surface virulence factors that enable cell adhesion and penetration and that counteract innate and adaptive immune responses. Among these, the complement interfering protein (CIP) was recently described for its capacity to interact with the human C4b ligand and to interfere with the classical- and lectin-complement pathways. In the present study, we provide evidence that CIP can also interact with C3, C3b, and C3d. Immunoassay-based competition experiments showed that binding of CIP to C3d interferes with the interaction between C3d and the complement receptor 2/cluster of differentiation 21 (CR2/CD21) receptor on B cells. By B-cell intracellular signaling assays, CIP was confirmed to down-regulate CR2/CD21-dependent B-cell activation. The CIP domain involved in C3d binding was mapped via hydrogen deuterium exchange-mass spectrometry. The data obtained reveal a new role for this GBS polypeptide at the interface between the innate and adaptive immune responses, adding a new member to the growing list of virulence factors secreted by gram-positive pathogens that incorporate multiple immunomodulatory functions.-Giussani, S., Pietrocola, G., Donnarumma, D., Norais, N., Speziale, P., Fabbrini, M., Margarit, I. The Streptococcus agalactiae complement interfering protein combines multiple complement-inhibitory mechanisms by interacting with both C4 and C3 ligands.


Assuntos
Proteínas de Bactérias/metabolismo , Complemento C3d/antagonistas & inibidores , Complemento C4/antagonistas & inibidores , Streptococcus agalactiae/patogenicidade , Fatores de Virulência/metabolismo , Sequência de Aminoácidos , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Proteínas de Bactérias/farmacologia , Sítios de Ligação , Sinalização do Cálcio , Linhagem Celular Tumoral , Complemento C3b/antagonistas & inibidores , Complemento C3b/metabolismo , Complemento C3d/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Ativação Linfocitária/efeitos dos fármacos , Espectrometria de Massas , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptores de Complemento 3d/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/metabolismo , Ressonância de Plasmônio de Superfície , Virulência , Fatores de Virulência/farmacologia
19.
Free Radic Biol Med ; 129: 237-246, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30253188

RESUMO

Complement Factor H (CFH) is an important inhibitor of the alternate complement pathway in Bruch's membrane (BM), located between the choriocapillaris and the retinal pigment epithelium. Furthermore dysfunction of its activity as occurs with certain polymorphisms is associated with an increased risk of age related macular degeneration (AMD). The retina is a site of high generation of reactive oxygen species (ROS) and dysfunction of redox homeostasis in this milieu also contributes to AMD pathogenesis. In this study we wanted to explore if CFH exists in distinct redox forms and whether these species have unique protective biological functions. CFH can be reduced by the naturally occurring thioredoxin - 1 in CFH domains 1-4, 17-20. We found a duality of function between the oxidised and reduced forms of CFH. The oxidised form was more efficient in binding to C3b and lipid peroxidation by-products that are known to accumulate in the retinae and activate the alternate complement pathway. Oxidised CFH enhances Factor I mediated cleavage of C3 and C3b whereas the reduced form loses this activity. In the setting of oxidative stress (hydrogen peroxide)-mediated death of human retinal pigment epithelial cells as can occur in AMD, the free thiol form of CFH offers a protective function compared to the oxidised form. We found for the first time using a novel ELISA system we have developed for free thiol CFH, that both redox forms of CFH are found in the human plasma. Furthermore there is a distinct ratio of these redox forms in plasma depending if an individual has early or late AMD, with individuals with early AMD having higher levels of the free thiol form compared to late AMD.


Assuntos
Complemento C3b/metabolismo , Fator I do Complemento/metabolismo , Degeneração Macular/genética , Espécies Reativas de Oxigênio/metabolismo , Idoso , Lâmina Basilar da Corioide/imunologia , Lâmina Basilar da Corioide/patologia , Estudos de Casos e Controles , Linhagem Celular , Ativação do Complemento/genética , Complemento C3b/genética , Fator H do Complemento/genética , Fator H do Complemento/metabolismo , Fator I do Complemento/genética , Via Alternativa do Complemento/genética , Células Epiteliais/citologia , Células Epiteliais/imunologia , Feminino , Expressão Gênica , Humanos , Peroxidação de Lipídeos , Degeneração Macular/imunologia , Degeneração Macular/patologia , Masculino , Oxirredução , Ligação Proteica , Proteólise , Espécies Reativas de Oxigênio/imunologia , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/patologia , Fatores de Tempo
20.
Nat Commun ; 9(1): 3398, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139996

RESUMO

Streptococcus pneumoniae evades C3-mediated opsonization and effector functions by expressing an immuno-protective polysaccharide capsule and Factor H (FH)-binding proteins. Here we use super-resolution microscopy, mutants and functional analysis to show how these two defense mechanisms are functionally and spatially coordinated on the bacterial cell surface. We show that the pneumococcal capsule is less abundant at the cell wall septum, providing C3/C3b entry to underlying nucleophilic targets. Evasion of C3b deposition at division septa and lateral amplification underneath the capsule requires localization of the FH-binding protein PspC at division sites. Most pneumococcal strains have one PspC protein, but successful lineages in colonization and disease may have two, PspC1 and PspC2, that we show affect virulence differently. We find that spatial localization of these FH-recruiting proteins relative to division septa and capsular layer is instrumental for pneumococci to resist complement-mediated opsonophagocytosis, formation of membrane-attack complexes, and for the function as adhesins.


Assuntos
Proteínas de Bactérias/metabolismo , Divisão Celular , Complemento C3b/metabolismo , Fator H do Complemento/metabolismo , Streptococcus pneumoniae/citologia , Streptococcus pneumoniae/metabolismo , Células A549 , Sequência de Aminoácidos , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/química , Adesão Celular , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Humanos , Modelos Biológicos , Mutação/genética , Proteínas Opsonizantes/metabolismo , Fagocitose , Ligação Proteica , Sinais Direcionadores de Proteínas , Streptococcus pneumoniae/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA