Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
JCI Insight ; 9(8)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483541

RESUMO

Glioblastoma (GBM) remains an incurable disease, requiring more effective therapies. Through interrogation of publicly available CRISPR and RNAi library screens, we identified the α-ketoglutarate dehydrogenase (OGDH) gene, which encodes an enzyme that is part of the tricarboxylic acid (TCA) cycle, as essential for GBM growth. Moreover, by combining transcriptome and metabolite screening analyses, we discovered that loss of function of OGDH by the clinically validated drug compound CPI-613 was synthetically lethal with Bcl-xL inhibition (genetically and through the clinically validated BH3 mimetic, ABT263) in patient-derived xenografts as well neurosphere GBM cultures. CPI-613-mediated energy deprivation drove an integrated stress response with an upregulation of the BH3-only domain protein, Noxa, in an ATF4-dependent manner, as demonstrated by genetic loss-of-function experiments. Consistently, silencing of Noxa attenuated cell death induced by CPI-613 in model systems of GBM. In patient-derived xenograft models of GBM in mice, the combination treatment of ABT263 and CPI-613 suppressed tumor growth and extended animal survival more potently than each compound on its own. Therefore, combined inhibition of Bcl-xL along with disruption of the TCA cycle might be a treatment strategy for GBM.


Assuntos
Compostos de Anilina , Caprilatos , Glioblastoma , Complexo Cetoglutarato Desidrogenase , Sulfetos , Sulfonamidas , Mutações Sintéticas Letais , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína bcl-X , Animais , Humanos , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Compostos de Anilina/farmacologia , Proteína bcl-X/metabolismo , Proteína bcl-X/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glioblastoma/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/tratamento farmacológico , Complexo Cetoglutarato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sulfonamidas/farmacologia
2.
Blood ; 137(7): 945-958, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33254233

RESUMO

Isocitrate dehydrogenase (IDH) mutations are common genetic alterations in myeloid disorders, including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Epigenetic changes, including abnormal histone and DNA methylation, have been implicated in the pathogenic build-up of hematopoietic progenitors, but it is still unclear whether and how IDH mutations themselves affect hematopoiesis. Here, we show that IDH1-mutant mice develop myeloid dysplasia in that these animals exhibit anemia, ineffective erythropoiesis, and increased immature progenitors and erythroblasts. In erythroid cells of these mice, D-2-hydroxyglutarate, an aberrant metabolite produced by the mutant IDH1 enzyme, inhibits oxoglutarate dehydrogenase activity and diminishes succinyl-coenzyme A (CoA) production. This succinyl-CoA deficiency attenuates heme biosynthesis in IDH1-mutant hematopoietic cells, thus blocking erythroid differentiation at the late erythroblast stage and the erythroid commitment of hematopoietic stem cells, while the exogenous succinyl-CoA or 5-ALA rescues erythropoiesis in IDH1-mutant erythroid cells. Heme deficiency also impairs heme oxygenase-1 expression, which reduces levels of important heme catabolites such as biliverdin and bilirubin. These deficits result in accumulation of excessive reactive oxygen species that induce the cell death of IDH1-mutant erythroid cells. Our results clearly show the essential role of IDH1 in normal erythropoiesis and describe how its mutation leads to myeloid disorders. These data thus have important implications for the devising of new treatments for IDH-mutant tumors.


Assuntos
Eritropoese/genética , Células-Tronco Hematopoéticas/metabolismo , Heme/biossíntese , Isocitrato Desidrogenase/genética , Mutação de Sentido Incorreto , Mutação Puntual , Pré-Leucemia/genética , Acil Coenzima A/biossíntese , Acil Coenzima A/deficiência , Anemia/genética , Animais , Medula Óssea/patologia , Eritroblastos/metabolismo , Técnicas de Introdução de Genes , Glutaratos/metabolismo , Heme/deficiência , Heme Oxigenase-1/metabolismo , Isocitrato Desidrogenase/fisiologia , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/patologia , Mielopoese/genética , Pré-Leucemia/metabolismo , Pré-Leucemia/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , Esplenomegalia/etiologia , Trombocitopenia/genética
3.
Cells ; 9(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053908

RESUMO

The mitochondrion has emerged as a promising therapeutic target for novel cancer treatments because of its essential role in tumorigenesis and resistance to chemotherapy. Previously, we described a natural compound, 10-((2,5-dihydroxybenzoyl)oxy)decyl) triphenylphosphonium bromide (GA-TPP+C10), with a hydroquinone scaffold that selectively targets the mitochondria of breast cancer (BC) cells by binding to the triphenylphosphonium group as a chemical chaperone; however, the mechanism of action remains unclear. In this work, we showed that GA-TPP+C10 causes time-dependent complex inhibition of the mitochondrial bioenergetics of BC cells, characterized by (1) an initial phase of mitochondrial uptake with an uncoupling effect of oxidative phosphorylation, as previously reported, (2) inhibition of Complex I-dependent respiration, and (3) a late phase of mitochondrial accumulation with inhibition of α-ketoglutarate dehydrogenase complex (αKGDHC) activity. These events led to cell cycle arrest in the G1 phase and cell death at 24 and 48 h of exposure, and the cells were rescued by the addition of the cell-penetrating metabolic intermediates l-aspartic acid ß-methyl ester (mAsp) and dimethyl α-ketoglutarate (dm-KG). In addition, this unexpected blocking of mitochondrial function triggered metabolic remodeling toward glycolysis, AMPK activation, increased expression of proliferator-activated receptor gamma coactivator 1-alpha (pgc1α) and electron transport chain (ETC) component-related genes encoded by mitochondrial DNA and downregulation of the uncoupling proteins ucp3 and ucp4, suggesting an AMPK-dependent prosurvival adaptive response in cancer cells. Consistent with this finding, we showed that inhibition of mitochondrial translation with doxycycline, a broad-spectrum antibiotic that inhibits the 28 S subunit of the mitochondrial ribosome, in the presence of GA-TPP+C10 significantly reduces the mt-CO1 and VDAC protein levels and the FCCP-stimulated maximal electron flux and promotes selective and synergistic cytotoxic effects on BC cells at 24 h of treatment. Based on our results, we propose that this combined strategy based on blockage of the adaptive response induced by mitochondrial bioenergetic inhibition may have therapeutic relevance in BC.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP , Apoptose/efeitos dos fármacos , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Doxiciclina/farmacologia , Sinergismo Farmacológico , Feminino , Gentisatos/química , Gentisatos/farmacologia , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Mitocôndrias/patologia , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Proteínas Quinases/genética , Ribossomos/efeitos dos fármacos
4.
Bioorg Med Chem Lett ; 29(17): 2498-2502, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31324513

RESUMO

Hexylselen is a novel submicromolar dual KGA/GDH inhibitor, which demonstrates potent inhibition of cancer cells with minimal toxicity. To further investigation its mechanism of action, we designed and synthesized its biotinylated derivative 2 as a novel probe. From commercially available starting material, 2 was obtained in 6 steps with 13.4% overall yield. It is notable that this practical synthetic route give a template for the preparation of unsymmetrical di-benzo[d][1,2]selenazol-3(2H)-ones. Based on probe 2, we developed a novel biomolecular interaction assay for convenient and reliable test of KGA allosteric inhibitors and confirmed that hexylselen as an allosteric inhibitor of KGA sharing the same binding pocket with BPTES but not with Ebselen via competitive experiments.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Selênio/química , Regulação Alostérica/efeitos dos fármacos , Azóis/química , Azóis/metabolismo , Biotinilação , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Glutamato Desidrogenase/antagonistas & inibidores , Glutamato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Cinética , Ligação Proteica
5.
Sci Rep ; 8(1): 10849, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-30022089

RESUMO

Persister cells constitute a small subpopulation of bacteria that display remarkably high antibiotic tolerance and for pathogens such as Staphylococcus aureus are suspected as culprits of chronic and recurrent infections. Persisters formed during exponential growth are characterized by low ATP levels but less is known of cells in stationary phase. By enrichment from a transposon mutant library in S. aureus we identified mutants that in this growth phase displayed enhanced persister cell formation. We found that inactivation of either sucA or sucB, encoding the subunits of the α-ketoglutarate dehydrogenase of the tricarboxylic acid cycle (TCA cycle), increased survival to lethal concentrations of ciprofloxacin by 10-100 fold as did inactivation of other TCA cycle genes or atpA encoding a subunit of the F1F0 ATPase. In S. aureus, TCA cycle activity and gene expression are de-repressed in stationary phase but single cells with low expression may be prone to form persisters. While ATP levels were not consistently affected in high persister mutants they commonly displayed reduced membrane potential, and persistence was enhanced by a protein motive force inhibitor. Our results show that persister cell formation in stationary phase does not correlate with ATP levels but is associated with low membrane potential.


Assuntos
Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Ciclo do Ácido Cítrico , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Farmacorresistência Bacteriana Múltipla , Regulação Bacteriana da Expressão Gênica , Potenciais da Membrana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
6.
Biochim Biophys Acta Bioenerg ; 1859(9): 925-931, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29777685

RESUMO

BACKGROUND AND PURPOSE: Based on the fact that traumatic brain injury is associated with mitochondrial dysfunction we aimed at localization of mitochondrial defect and attempted to correct it by thiamine. EXPERIMENTAL APPROACH: Interventional controlled experimental animal study was used. Adult male Sprague-Dawley rats were subjected to lateral fluid percussion traumatic brain injury. Thiamine was administered 1 h prior to trauma; cortex was extracted for analysis 4 h and 3 d after trauma. KEY RESULTS: Increased expression of inducible nitric oxide synthase (iNOS) and tumor necrosis factor receptor 1 (TNF-R1) by 4 h was accompanied by a decrease in mitochondrial respiration with glutamate but neither with pyruvate nor succinate. Assays of TCA cycle flux-limiting 2-oxoglutarate dehydrogenase complex (OGDHC) and functionally linked enzymes (glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, malate dehydrogenase and malic enzyme) indicated that only OGDHC activity was decreased. Application of the OGDHC coenzyme precursor thiamine rescued the activity of OGDHC and restored mitochondrial respiration. These effects were not mediated by changes in the expression of the OGDHC sub-units (E1k and E3), suggesting post-translational mechanism of thiamine effects. By the third day after TBI, thiamine treatment also decreased expression of TNF-R1. Specific markers of unfolded protein response did not change in response to thiamine. CONCLUSION AND IMPLICATIONS: Our data point to OGDHC as a major site of damage in mitochondria upon traumatic brain injury, which is associated with neuroinflammation and can be corrected by thiamine. Further studies are required to evaluate the pathological impact of these findings in clinical settings.


Assuntos
Biomarcadores/metabolismo , Lesões Encefálicas Traumáticas/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/fisiologia , Inflamação Neurogênica/prevenção & controle , Tiamina/farmacologia , Animais , Metabolismo Energético , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Masculino , Mitocôndrias/efeitos dos fármacos , Inflamação Neurogênica/etiologia , Inflamação Neurogênica/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Oxirredução , Ratos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Complexo Vitamínico B/farmacologia
7.
Oncotarget ; 7(18): 26400-21, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27027236

RESUMO

2-Oxoglutarate dehydrogenase (OGDH) of the tricarboxylic acid (TCA) cycle is often implied to be inactive in cancer, but this was not experimentally tested. We addressed the question through specific inhibition of OGDH by succinyl phosphonate (SP). SP action on different cancer cells was investigated using indicators of cellular viability and reactive oxygen species (ROS), metabolic profiling and transcriptomics. Relative sensitivity of various cancer cells to SP changed with increasing SP exposure and could differ in the ATP- and NAD(P)H-based assays. Glioblastoma responses to SP revealed metabolic sub-types increasing or decreasing cellular ATP/NAD(P)H ratio under OGDH inhibition. Cancer cell homeostasis was perturbed also when viability indicators were SP-resistant, e.g. in U87 and N2A cells. The transcriptomics database analysis showed that the SP-sensitive cells, such as A549 and T98G, exhibit the lowest expression of OGDH compared to other TCA cycle enzymes, associated with higher expression of affiliated pathways utilizing 2-oxoglutarate. Metabolic profiling confirmed the dependence of cellular SP reactivity on cell-specific expression of the pathways. Thus, oxidative decarboxylation of 2-oxoglutarate is significant for the interdependent homeostasis of NAD(P)H, ATP, ROS and key metabolites in various cancer cells. Assessment of cell-specific responses to OGDH inhibition is of diagnostic value for anticancer strategies.


Assuntos
Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Neoplasias/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Organofosfonatos/farmacologia , Succinatos/farmacologia
8.
Neurochem Int ; 96: 32-45, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26923918

RESUMO

Brain activities of the mitochondrial enzyme α-ketoglutarate dehydrogenase complex (KGDHC) are reduced in Alzheimer's disease and other age-related neurodegenerative disorders. The goal of the present study was to test the consequences of mild impairment of KGDHC on the structure, protein signaling and dynamics (mitophagy, fusion, fission, biogenesis) of the mitochondria. Inhibition of KGDHC reduced its in situ activity by 23-53% in human neuroblastoma SH-SY5Y cells, but neither altered the mitochondrial membrane potential nor the ATP levels at any tested time-points. The attenuated KGDHC activity increased translocation of dynamin-related protein-1 (Drp1) and microtubule-associated protein 1A/1B-light chain 3 (LC3) from the cytosol to the mitochondria, and promoted mitochondrial cytochrome c release. Inhibition of KGDHC also increased the negative surface charges (anionic phospholipids as assessed by Annexin V binding) on the mitochondria. Morphological assessments of the mitochondria revealed increased fission and mitophagy. Taken together, our results suggest the existence of the regulation of the mitochondrial dynamism including fission and fusion by the mitochondrial KGDHC activity via the involvement of the cytosolic and mitochondrial protein signaling molecules. A better understanding of the link among mild impairment of metabolism, induction of mitophagy/autophagy and altered protein signaling will help to identify new mechanisms of neurodegeneration and reveal potential new therapeutic approaches.


Assuntos
Doença de Alzheimer/enzimologia , Autofagia/fisiologia , Líquido Intracelular/enzimologia , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Doença de Alzheimer/patologia , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Humanos , Líquido Intracelular/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Organofosfonatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Succinatos/farmacologia
9.
FASEB J ; 28(4): 1682-97, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24391134

RESUMO

Substrate-level phosphorylation mediated by succinyl-CoA ligase in the mitochondrial matrix produces high-energy phosphates in the absence of oxidative phosphorylation. Furthermore, when the electron transport chain is dysfunctional, provision of succinyl-CoA by the α-ketoglutarate dehydrogenase complex (KGDHC) is crucial for maintaining the function of succinyl-CoA ligase yielding ATP, preventing the adenine nucleotide translocase from reversing. We addressed the source of the NAD(+) supply for KGDHC under anoxic conditions and inhibition of complex I. Using pharmacologic tools and specific substrates and by examining tissues from pigeon liver exhibiting no diaphorase activity, we showed that mitochondrial diaphorases in the mouse liver contribute up to 81% to the NAD(+) pool during respiratory inhibition. Under these conditions, KGDHC's function, essential for the provision of succinyl-CoA to succinyl-CoA ligase, is supported by NAD(+) derived from diaphorases. Through this process, diaphorases contribute to the maintenance of substrate-level phosphorylation during respiratory inhibition, which is manifested in the forward operation of adenine nucleotide translocase. Finally, we show that reoxidation of the reducible substrates for the diaphorases is mediated by complex III of the respiratory chain.


Assuntos
Trifosfato de Adenosina/metabolismo , Ciclo do Ácido Cítrico , Di-Hidrolipoamida Desidrogenase/metabolismo , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Acil Coenzima A/metabolismo , Animais , Columbidae , Di-Hidrolipoamida Desidrogenase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Hipóxia/metabolismo , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Hepáticas/fisiologia , Translocases Mitocondriais de ADP e ATP/metabolismo , Modelos Biológicos , Nitrilas/farmacologia , Oxirredução , Fosforilação Oxidativa , Especificidade por Substrato , Succinato-CoA Ligases/metabolismo , Desacopladores/farmacologia
10.
Neurobiol Aging ; 33(6): 1121.e13-24, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22169199

RESUMO

Understanding the molecular sequence of events that culminate in multiple abnormalities in brains from patients that died with Alzheimer's disease (AD) will help to reveal the mechanisms of the disease and identify upstream events as therapeutic targets. The activity of the mitochondrial α-ketoglutarate dehydrogenase complex (KGDHC) in homogenates from autopsy brain declines with AD. Experimental reductions in KGDHC in mouse models of AD promote plaque and tangle formation, the hallmark pathologies of AD. We hypothesize that deficits in KGDHC also lead to the abnormalities in endoplasmic reticulum (ER) calcium stores and cytosolic calcium following K(+) depolarization that occurs in cells from AD patients and transgenic models of AD. The activity of the mitochondrial enzyme KGDHC was diminished acutely (minutes), long-term (days), or chronically (weeks). Acute inhibition of KGDHC produced effects on calcium opposite to those in AD, while the chronic or long-term inhibition of KGDHC mimicked the AD-related changes in calcium. Divergent changes in proteins released from the mitochondria that affect endoplasmic reticulum calcium channels may underlie the selective cellular consequences of acute versus longer term inhibition of KGDHC. The results suggest that the mitochondrial abnormalities in AD can be upstream of those in calcium.


Assuntos
Doença de Alzheimer/enzimologia , Cálcio/fisiologia , Complexo Cetoglutarato Desidrogenase/deficiência , Mitocôndrias/enzimologia , Proteínas Mitocondriais/deficiência , Doença de Alzheimer/fisiopatologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética
11.
Structure ; 17(4): 568-78, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19368890

RESUMO

The OdhI protein is key regulator of the TCA cycle in Corynebacterium glutamicum. This highly conserved protein is found in GC rich Gram-positive bacteria (e.g., the pathogenic Mycobacterium tuberculosis). The unphosphorylated form of OdhI inhibits the OdhA protein, a key enzyme of the TCA cycle, whereas the phosphorylated form is inactive. OdhI is predicted to be mainly a single FHA domain, a module that mediates protein-protein interaction through binding of phosphothreonine peptides, with a disordered N-terminal extension substrate of the serine/threonine protein kinases. In this study, we solved the solution structure of the unphosphorylated and phosphorylated isoforms of the protein. We observed a major conformational change between the two forms characterized by the binding of the phosphorylated N-terminal part of the protein to its own FHA domain, consequently inhibiting it. This structural observation corresponds to a new autoinhibition mechanism described for a FHA domain protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/metabolismo , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação/genética , Corynebacterium glutamicum/enzimologia , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosforilação , Fosfotreonina/química , Fosfotreonina/metabolismo , Ligação Proteica/genética , Conformação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato/genética
12.
J Appl Toxicol ; 28(2): 175-82, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17582580

RESUMO

Although zinc (Zn) is a known environmental toxicant, its impact on the cellular energy-producing machinery is not well established. This study investigated the influence of this divalent metal on the oxidative ATP producing network in human hepatocellular carcinoma (HepG2) cells. Zn-challenged cells contained more oxidized proteins and lipids compared with control cells. Zn severely impeded mitochondrial functions by inhibiting aconitase, alpha-ketoglutarate dehydrogenase, isocitrate dehydrogenase-NAD+ dependent, succinate dehydrogenase and cytochrome C oxidase Zn-exposed cells had a disparate mitochondrial metabolism compared with the control cells and produced significantly less ATP. However, the expression of isocitrate dehydrogenase-NADP+ dependent was more prominent in cells treated with Zn. Hence, Zn-induced pathologies may be due to the inability of the mitochondria to generate energy effectively.


Assuntos
Trifosfato de Adenosina/metabolismo , Cloretos/toxicidade , Metabolismo Energético/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Inibidores Enzimáticos/toxicidade , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Compostos de Zinco/toxicidade , Aconitato Hidratase/antagonistas & inibidores , Aconitato Hidratase/metabolismo , Linhagem Celular Tumoral , Complexo IV da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/metabolismo , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Proteínas/metabolismo , Succinato Desidrogenase/antagonistas & inibidores , Succinato Desidrogenase/metabolismo
13.
Biochemistry ; 45(29): 8959-71, 2006 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-16846239

RESUMO

The anticancer drug cisplatin is nephrotoxic and neurotoxic. Previous data support the hypothesis that cisplatin is bioactivated to a nephrotoxicant. The final step in the proposed bioactivation is the formation of a platinum-cysteine S-conjugate followed by a pyridoxal 5'-phosphate (PLP)-dependent cysteine S-conjugate beta-lyase reaction. This reaction would generate pyruvate, ammonium, and a highly reactive platinum (Pt)-thiol compound in vivo that would bind to proteins. In this work, the cellular location and identity of the PLP-dependent cysteine S-conjugate beta-lyase were investigated. Pt was shown to bind to proteins in kidneys of cisplatin-treated mice. The concentration of Pt-bound proteins was higher in the mitochondrial fraction than in the cytosolic fraction. Treatment of the mice with aminooxyacetic acid (AOAA, a PLP enzyme inhibitor), which had previously been shown to block the nephrotoxicity of cisplatin, decreased the binding of Pt to mitochondrial proteins but had no effect on the amount of Pt bound to proteins in the cytosolic fraction. These data indicate that a mitochondrial enzyme catalyzes the PLP-dependent cysteine S-conjugate beta-lyase reaction. PLP-dependent mitochondrial aspartate aminotransferase (mitAspAT) is a mitochondrial enzyme that catalyzes beta-elimination reactions with cysteine S-conjugates of halogenated alkenes. We reasoned that the enzyme might also catalyze a beta-lyase reaction with the cisplatin-cysteine S-conjugate. In this study, mitAspAT was stably overexpressed in LLC-PK(1) cells. Cisplatin was significantly more toxic in confluent monolayers of LLC-PK(1) cells that overexpressed mitAspAT than in control cells containing vector alone. AOAA completely blocked the cisplatin toxicity in confluent mitAspAT-transfected cells. The Pt-thiol compound could rapidly bind proteins and inactivate enzymes in close proximity of the PLP-dependent cysteine S-conjugate beta-lyase. Treatment with 50 or 100 microM cisplatin for 3 h, followed by removal of cisplatin from the medium for 24 h, resulted in a pronounced loss of alpha-ketoglutarate dehydrogenase complex (KGDHC) activity in both mitAspAT-transfected cells and control cells. Exposure to 100 microM cisplatin resulted in a significantly greater loss of KGDHC activity in the cells overexpressing mitAspAT than in control cells. Aconitase activity was diminished in both cell types, but only at the higher level of exposure to cisplatin. AspAT activity was also significantly decreased by cisplatin treatment. By contrast, several other enzymes (both cytosolic and mitochondrial) involved in energy/amino acid metabolism were not significantly affected by cisplatin treatment in the LLC-PK(1) cells, whether or not mitAspAT was overexpressed. The susceptibility of KGDHC and aconitase to inactivation in kidney cells exposed to cisplatin metabolites may be due to the proximity of mitAspAT to KGDHC and aconitase in mitochondria. These findings support the hypothesis that a mitochondrial cysteine S-conjugate beta-lyase converts the cisplatin-cysteine S-conjugate to a toxicant, and the data are consistent with the hypothesis that mitAspAT plays a role in the bioactivation of cisplatin.


Assuntos
Cisplatino/toxicidade , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Rim/metabolismo , Platina/metabolismo , Animais , Aspartato Aminotransferase Mitocondrial/metabolismo , Rim/efeitos dos fármacos , Células LLC-PK1 , Masculino , Camundongos , Ácido Oxâmico/farmacologia , Suínos , Transfecção
14.
Biochemistry (Mosc) ; 70(7): 726-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16097935

RESUMO

The question of regulation of alpha-ketoglutarate dehydrogenase complex (KGDHC) has been considered in the biochemical literature very rarely. Moreover, such information is not usually accurate, especially in biochemical textbooks. From the mini-review of research works published during the last 25 years, the following basic view is clear: a) animal KGDHC is very sensitive to ADP, P(i), and Ca2+; b) these positive effectors increase manifold the affinity of KGDHC to alpha-ketoglutarate; c) KGDHC is inhibited by ATP, NADH, and succinyl-CoA; d) the ATP effect is realized in several ways, probably mainly via opposition versus ADP activation; e) NADH, besides inhibiting dihydrolipoamide dehydrogenase component competitively versus NAD+, decreases the affinity of alpha-ketoglutarate dehydrogenase to substrate and inactivates it; f) thioredoxin protects KGDHC from self-inactivation during catalysis; g) bacterial and plant KGDHC is activated by AMP instead of ADP. These main effects form the basis of short-term regulation of KGDHC.


Assuntos
Metabolismo Energético/fisiologia , Complexo Cetoglutarato Desidrogenase/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Humanos , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/efeitos dos fármacos , NAD/metabolismo , NAD/farmacologia
15.
J Neurochem ; 92(2): 302-10, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15663478

RESUMO

Abstract alpha-Ketoglutarate dehydrogenase (KGDHC) complex activity is diminished in a number of neurodegenerative disorders and its diminution in Alzheimer Disease (AD) is thought to contribute to the major loss of cerebral energy metabolism that accompanies this disease. The loss of KGDHC activity appears to be predominantly due to post-translation modifications. Thiamine deficiency also results in decreased KGDHC activity and a selective neuronal loss. Recently, myeloperoxidase has been identified in the activated microglia of brains from AD patients and thiamine-deficient animals. Myeloperoxidase produces a powerful oxidant, hypochlorous acid that reacts with amines to form chloramines. The aim of this study was to investigate the ability of hypochlorous acid and chloramines to inhibit the activity of KGDHC activity as a first step towards investigating the role of myeloperoxidase in AD. Hypochlorous acid and mono-N-chloramine both inhibited purified and cellular KGDHC and the order of inhibition of the purified complex was hypochlorous acid (1x) > mono-N-chloramine (approximately 50x) > hydrogen peroxide (approximately 1,500). The inhibition of cellular KGDHC occurred with no significant loss of cellular viability at all exposure times that were examined. Thus, hypochlorous acid and chloramines have the potential to inactivate a major target in neurodegeneration.


Assuntos
Cloraminas/metabolismo , Ácido Hipocloroso/metabolismo , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Peroxidase/metabolismo , Animais , Linhagem Celular Tumoral , Cloraminas/farmacologia , Ativação Enzimática/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Ácido Hipocloroso/farmacologia , Complexo Cetoglutarato Desidrogenase/química , Complexo Cetoglutarato Desidrogenase/metabolismo , Camundongos , Neuroblastoma/enzimologia , Oxidantes/farmacologia
16.
Ann Neurol ; 55(5): 645-53, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15122704

RESUMO

Wilson's disease results from mutations in the P-type Cu(2+)-ATPase causing Cu(2+) toxicity. We previously demonstrated that exposure of mixed neuronal/glial cultures to 20 microM Cu(2+) induced ATP loss and death that were attenuated by mitochondrial substrates, activators, and cofactors. Here, we show differential cellular sensitivity to Cu(2+) that was equalized to 5 microM in the presence of the copper exchanger/ionophore, disulfiram. Because Cu(2+) facilitates formation of oxygen radicals (ROS) which inhibit pyruvate dehydrogenase (PDH) and alpha-ketoglutarate dehydrogenase (KGDH), we hypothesized that their inhibition contributed to Cu(2+)-induced death. Toxic CU(2+) exposure was accompanied by early inhibition of neuronal and hepatocellular PDH and KGDH activities, followed by reduced mitochondrial transmembrane potential, DeltaPsi(M). Thiamine (1-6 mM), and dihydrolipoic acid (LA, 50 microM), required cofactors for PDH and KGDH, attenuated this enzymatic inhibition and subsequent death in all cell types. Furthermore, liver PDH and KGDH activities were reduced in the Atp7b mouse model of Wilson's disease prior to liver damage, and were partially restored by oral thiamine supplementation. These data support our hypothesis that Cu(2+)-induced ROS may inhibit PDH and KGDH resulting in neuronal and hepatocellular death. Therefore, thiamine or lipoic acid may constitute potential therapeutic agents for Wilson's disease.


Assuntos
Cobre/toxicidade , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Cetona Oxirredutases/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/genética , Animais , Proteínas de Transporte de Cátions/biossíntese , Proteínas de Transporte de Cátions/genética , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , ATPases Transportadoras de Cobre , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/toxicidade , Feminino , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Cetona Oxirredutases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/enzimologia
17.
J Neurosci Res ; 74(2): 309-17, 2003 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-14515360

RESUMO

Mitochondrial dysfunction has been implicated in cell death in many neurodegenerative diseases. Diminished activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a key and arguably rate-limiting enzyme of the Krebs cycle, occurs in these disorders and may underlie decreased brain metabolism. The present studies used alpha-keto-beta-methyl-n-valeric acid (KMV), a structural analogue of alpha-ketoglutarate, to inhibit KGDHC activity to test effects of reduced KGDHC on mitochondrial function and cell death cascades in PC12 cells. KMV decreased in situ KGDHC activity by 52 +/- 7% (1 hr) or 65 +/- 4% (2 hr). Under the same conditions, KMV did not alter the mitochondrial membrane potential (MMP), as assessed with a method that detects changes as small as 5%. KMV also did not alter production of reactive oxygen species (ROS). However, KMV increased lactate dehydrogenase (LDH) release from cells by 100 +/- 4.7%, promoted translocation of mitochondrial cytochrome c to the cytosol, and activated caspase-3. Inhibition of the mitochondrial permeability transition pore (MPTP) by cyclosporin A (CsA) partially blocked this KMV-induced change in cytochrome c (-40%) and LDH (-15%) release, and prevented necrotic cell death. Thus, impairment of this key mitochondrial enzyme in PC12 cells may lead to cytochrome c release and caspase-3 activation by partial opening of the MPTP before the loss of mitochondrial membrane potentials.


Assuntos
Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias/enzimologia , Doenças Neurodegenerativas/enzimologia , Neurônios/enzimologia , Animais , Caspase 3 , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Cromatina/efeitos dos fármacos , Cromatina/metabolismo , Ciclosporina/farmacologia , Citocromos c/metabolismo , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Cetoácidos/farmacologia , L-Lactato Desidrogenase/metabolismo , Metaloproteinases da Matriz/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Necrose , Doenças Neurodegenerativas/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Células PC12 , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
18.
J Biol Chem ; 278(47): 46432-9, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12963742

RESUMO

Age-related increases in brain monoamine oxidase B (MAO-B) and its ability to produce reactive oxygen species as a by-product of catalysis could contribute to neurodegeneration associated with Parkinson's disease. This may be via increased oxidative stress and/or mitochondrial dysfunction either on its own or through its interaction with endogenous or exogenous neurotoxic species. We have created genetically engineered dopaminergic PC12 cell lines with subtly increased levels of MAO-B mimicking those observed during normal aging. In our cells, increased MAO-B activity was found to result in increased H2O2 production. This was found to correlate with a decrease in mitochondrial complex I activity which may involve both direct oxidative damage to the complex itself as well as oxidative effects on the tricarboxylic acid cycle enzyme alpha-ketoglutarate dehydrogenase (KGDH) which provides substrate for the complex. Both complex I and KGDH activities have been reported to be decreased in the Parkinsonian brain. These in vitro events are reversible by catalase addition. Importantly, MAO-B elevation was found to abolish the spare KGDH threshold capacity, which can normally be significantly inhibited before it affects maximal mitochondrial oxygen consumption rates. Our data suggest that H2O2 production via subtle elevations in MAO-B levels can result in oxidative effects on KGDH that can compromise the ability of dopaminergic neurons to cope with increased energetic stress.


Assuntos
Respiração Celular , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Monoaminoxidase/metabolismo , Envelhecimento/metabolismo , Animais , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doenças Mitocondriais/etiologia , Monoaminoxidase/fisiologia , Oxirredução , Estresse Oxidativo , Células PC12 , Doença de Parkinson/etiologia , Ratos , Transfecção
19.
Biochemistry ; 42(14): 4235-42, 2003 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-12680778

RESUMO

In a previous study, we found that treatment of rat heart mitochondria with H(2)O(2) resulted in a decline and subsequent recovery in the rate of state 3 NADH-linked respiration. These effects were shown to be mediated by reversible alterations in NAD(P)H utilization and in the activities of specific Krebs cycle enzymes alpha-ketoglutarate dehydrogenase (KGDH) and succinate dehydrogenase. The purpose of the current study was to examine potential mechanism(s) by which H(2)O(2) reversibly alters KGDH activity. We report here that inactivation is not simply due to direct interaction of H(2)O(2) with KGDH. In addition, incubation of mitochondria with deferroxamine, an iron chelator, or 1,3-dimethyl-2-thiourea, an oxygen radical scavenger, prior to addition of H(2)O(2) did not alter the rate or extent of inactivation. Thus, inactivation does not appear to involve a more potent oxygen radical formed upon metal-catalyzed oxidation. Inactive KGDH from H(2)O(2)-treated mitochondria was reactivated with dithiothreitol, implicating oxidation of a protein sulfhydryl(s). However, the thioredoxin system had no effect, indicating that enzyme inactivation is not due to the formation of intra- or intermolecular disulfide(s) or a sulfenic acid. Upon incubation of mitochondria with H(2)O(2), reduced GSH levels fell rapidly prior to enzyme inactivation but recovered at the same time as enzyme activity. Importantly, treatment of inactive KGDH with glutaredoxin facilitated the GSH-dependent recovery of KGDH activity. Glutaredoxin is characterized as a specific and efficient catalyst of protein deglutathionylation. Thus, the results of the current study indicate that KGDH activity appears to be modulated through enzymatic glutathionylation and deglutathionylation. These studies demonstrate a novel mechanism by which KGDH activity and mitochondrial function can be modulated by redox status.


Assuntos
Glutationa/metabolismo , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Mitocôndrias Cardíacas/metabolismo , Animais , Peróxido de Hidrogênio/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Oxirredução , Ratos , Ratos Sprague-Dawley , Tiorredoxinas/metabolismo , terc-Butil Hidroperóxido/farmacologia
20.
Biochim Biophys Acta ; 1637(1): 119-26, 2003 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-12527416

RESUMO

Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (P<0.005), and diminish the bradykinin (BK)-induced calcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.


Assuntos
Cálcio/metabolismo , Fura-2/análogos & derivados , Complexo Cetoglutarato Desidrogenase/antagonistas & inibidores , Mitocôndrias/metabolismo , Cálcio/análise , Cátions Bivalentes , Grupo dos Citocromos c/análise , Grupo dos Citocromos c/biossíntese , Inibidores Enzimáticos/farmacologia , Corantes Fluorescentes , Humanos , Cetoácidos/farmacologia , Potenciais da Membrana , Mitocôndrias/química , Neuroblastoma , Doenças Neurodegenerativas/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA