Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Neurol ; 94(5): 969-986, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37526361

RESUMO

OBJECTIVE: GM2 gangliosidosis is usually fatal by 5 years of age in its 2 major subtypes, Tay-Sachs and Sandhoff disease. First reported in 1881, GM2 gangliosidosis has no effective treatment today, and children succumb to the disease after a protracted neurodegenerative course and semi-vegetative state. This study seeks to further develop adeno-associated virus (AAV) gene therapy for human translation. METHODS: Cats with Sandhoff disease were treated by intracranial injection of vectors expressing feline ß-N-acetylhexosaminidase, the enzyme deficient in GM2 gangliosidosis. RESULTS: Hexosaminidase activity throughout the brain and spinal cord was above normal after treatment, with highest activities at the injection sites (thalamus and deep cerebellar nuclei). Ganglioside storage was reduced throughout the brain and spinal cord, with near complete clearance in many regions. While untreated cats with Sandhoff disease lived for 4.4 ± 0.6 months, AAV-treated cats lived to 19.1 ± 8.6 months, and 3 of 9 cats lived >21 months. Correction of the central nervous system was so effective that significant increases in lifespan led to the emergence of otherwise subclinical peripheral disease, including megacolon, enlarged stomach and urinary bladder, soft tissue spinal cord compression, and patellar luxation. Throughout the gastrointestinal tract, neurons of the myenteric and submucosal plexuses developed profound pathology, demonstrating that the enteric nervous system was inadequately treated. INTERPRETATION: The vector formulation in the current study effectively treats neuropathology in feline Sandhoff disease, but whole-body targeting will be an important consideration in next-generation approaches. ANN NEUROL 2023;94:969-986.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Criança , Animais , Gatos , Humanos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Doença de Sandhoff/veterinária , Insuficiência de Múltiplos Órgãos/terapia , Vetores Genéticos , Sistema Nervoso Central/patologia , Terapia Genética
2.
Curr Gene Ther ; 22(3): 262-276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34530708

RESUMO

BACKGROUND: GM2 gangliosidosis is a neurodegenerative, lysosomal storage disease caused by the deficiency of ß-hexosaminidase A enzyme (Hex A), an α/ß-subunit heterodimer. A novel variant of the human hexosaminidase α-subunit, coded by HEX M, has previously been shown to form a stable homodimer, Hex M, that hydrolyzes GM2 gangliosides (GM2) in vivo. MATERIALS & METHODS: The current study assessed the efficacy of intravenous (IV) delivery of a self-complementary adeno-associated virus serotype 9 (scAAV9) vector incorporating the HEXM transgene, scAAV9/HEXM, including the outcomes based on the dosages provided to the Sandhoff (SD) mice. Six-week-old SD mice were injected with either 2.5E+12 vector genomes (low dose, LD) or 1.0E+13 vg (high dose, HD). We hypothesized that when examining the dosage comparison for scAAV9/HEXM in adult SD mice, the HD group would have more beneficial outcomes than the LD cohort. Assessments included survival, behavioral outcomes, vector biodistribution, and enzyme activity within the central nervous system. RESULTS: Toxicity was observed in the HD cohort, with 8 of 14 mice dying within one month of the injection. As compared to untreated SD mice, which have typical survival of 16 weeks, the LD cohort and the remaining HD mice had a significant survival benefit with an average/median survival of 40.6/34.5 and 55.9/56.7 weeks, respectively. Significant behavioral, biochemical and molecular benefits were also observed. The second aim of the study was to investigate the effects of IV mannitol infusions on the biodistribution of the LD scAAV9/HEXM vector and the survival of the SD mice. Increases in both the biodistribution of the vector as well as the survival benefit (average/median of 41.6/49.3 weeks) were observed. CONCLUSION: These results demonstrate the potential benefit and critical limitations of the treatment of GM2 gangliosidosis using IV delivered AAV vectors.


Assuntos
Gangliosidoses GM2 , Doença de Sandhoff , Animais , Hexosaminidases , Humanos , Camundongos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Distribuição Tecidual , beta-N-Acetil-Hexosaminidases/genética
3.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201771

RESUMO

GM2 gangliosidosis disorders are a group of neurodegenerative diseases that result from a functional deficiency of the enzyme ß-hexosaminidase A (HexA). HexA consists of an α- and ß-subunit; a deficiency in either subunit results in Tay-Sachs Disease (TSD) or Sandhoff Disease (SD), respectively. Viral vector gene transfer is viewed as a potential method of treating these diseases. A recently constructed isoenzyme to HexA, called HexM, has the ability to effectively catabolize GM2 gangliosides in vivo. Previous gene transfer studies have revealed that the scAAV9-HEXM treatment can improve survival in the murine SD model. However, it is speculated that this treatment could elicit an immune response to the carrier capsid and "non-self"-expressed transgene. This study was designed to assess the immunocompetence of TSD and SD mice, and test the immune response to the scAAV9-HEXM gene transfer. HexM vector-treated mice developed a significant anti-HexM T cell response and antibody response. This study confirms that TSD and SD mouse models are immunocompetent, and that gene transfer expression can create an immune response in these mice. These mouse models could be utilized for investigating methods of mitigating immune responses to gene transfer-expressed "non-self" proteins, and potentially improve treatment efficacy.


Assuntos
Dependovirus/genética , Gangliosídeo G(M2)/metabolismo , Vetores Genéticos/administração & dosagem , Imunidade/imunologia , Doença de Sandhoff/imunologia , Doença de Tay-Sachs/imunologia , Cadeia alfa da beta-Hexosaminidase/genética , Animais , Modelos Animais de Doenças , Feminino , Terapia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia
4.
Gene Ther ; 28(3-4): 142-154, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32884151

RESUMO

Sandhoff disease (SD) is an autosomal recessive lysosomal storage disease caused by defects in the ß-subunit of ß-N-acetylhexosaminidase (Hex), the enzyme that catabolizes GM2 ganglioside. Hex deficiency causes neuronal storage of GM2 and related glycoconjugates, resulting in progressive neurodegeneration and death, typically in infancy. No effective treatment exists for human patients. Adeno-associated virus (AAV) gene therapy led to improved clinical outcome and survival of SD cats treated before the onset of disease symptoms. Most human patients are diagnosed after clinical disease onset, so it is imperative to test AAV-gene therapy in symptomatic SD cats to provide a realistic indication of therapeutic benefits that can be expected in humans. In this study, AAVrh8 vectors injected into the thalamus and deep cerebellar nuclei of symptomatic SD cats resulted in widespread central nervous system enzyme distribution, although a substantial burden of storage material remained. Cats treated in the early symptomatic phase showed delayed disease progression and a significant survival increase versus untreated cats. Treatment was less effective when administered later in the disease course, although therapeutic benefit was still possible. Results are encouraging for the treatment of human patients and provide support for the development AAV-gene therapy for human SD.


Assuntos
Doença de Sandhoff , Animais , Gatos , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética , Vetores Genéticos/genética , Humanos , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , beta-N-Acetil-Hexosaminidases/genética
5.
J Orthop Res ; 38(12): 2580-2591, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32678923

RESUMO

Sandhoff disease (SD) is caused by decreased function of the enzyme ß-N-acetylhexosaminidase, resulting in accumulation of GM2 ganglioside in tissues. Neural tissue is primarily affected and individuals with the infantile form of the disease generally do not survive beyond 4 years of age. Current treatments address neurometabolic deficits to improve lifespan, however, this extended lifespan allows clinical disease to become manifest in other tissues, including the musculoskeletal system. The impact of SD on bone and joint tissues has yet to be fully determined. In a feline model of infantile SD, animals were treated by intracranial injection of adeno-associated virus vectors to supply the central nervous system with corrective levels of hexosaminidase, resulting in a twofold to threefold increase in lifespan. As treated animals aged, signs of musculoskeletal disease were identified. The present study characterized bone and joint lesions from affected cats using micro-computed tomography and histology. All affected cats had similar lesions, whether or not they were treated. SD cats displayed a significant reduction in metaphyseal trabecular bone and markedly abnormal size and shape of epiphyses. Abnormalities increased in severity with age and appear to be due to alteration in the function of chondrocytes within epiphyseal cartilage, particularly the articular-epiphyseal complex. Older cats developed secondary osteoarthritic changes. The changes identified are similar to those seen in humans with mucopolysaccharidoses. Statement of clinical significance: the lesions identified will have significant implications on the quality of life of individuals whose lifespans are extended due to treatments for the primary neurological effects of SD.


Assuntos
Lâmina de Crescimento/fisiopatologia , Doença de Sandhoff/fisiopatologia , Animais , Gatos , Modelos Animais de Doenças , Terapia Genética , Lâmina de Crescimento/diagnóstico por imagem , Lâmina de Crescimento/crescimento & desenvolvimento , Lâmina de Crescimento/patologia , Doença de Sandhoff/diagnóstico por imagem , Doença de Sandhoff/patologia , Doença de Sandhoff/terapia , Microtomografia por Raio-X
6.
Mol Ther ; 28(10): 2150-2160, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32592687

RESUMO

The GM2 gangliosidoses, Tay-Sachs disease (TSD) and Sandhoff disease (SD), are fatal lysosomal storage disorders caused by mutations in the HEXA and HEXB genes, respectively. These mutations cause dysfunction of the lysosomal enzyme ß-N-acetylhexosaminidase A (HexA) and accumulation of GM2 ganglioside (GM2) with ensuing neurodegeneration, and death by 5 years of age. Until recently, the most successful therapy was achieved by intracranial co-delivery of monocistronic adeno-associated viral (AAV) vectors encoding Hex alpha and beta-subunits in animal models of SD. The blood-brain barrier crossing properties of AAV9 enables systemic gene therapy; however, the requirement of co-delivery of two monocistronic AAV vectors to overexpress the heterodimeric HexA protein has prevented the use of this approach. To address this need, we developed multiple AAV constructs encoding simultaneously HEXA and HEXB using AAV9 and AAV-PHP.B and tested their therapeutic efficacy in 4- to 6-week-old SD mice after systemic administration. Survival and biochemical outcomes revealed superiority of the AAV vector design using a bidirectional CBA promoter with equivalent dose-dependent outcomes for both capsids. AAV-treated mice performed normally in tests of motor function, CNS GM2 ganglioside levels were significantly reduced, and survival increased by >4-fold with some animals surviving past 2 years of age.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Doença de Sandhoff/terapia , Animais , Gerenciamento Clínico , Modelos Animais de Doenças , Gangliosídeo G(M2)/metabolismo , Expressão Gênica , Predisposição Genética para Doença , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Camundongos , Mutação , Doença de Sandhoff/genética , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/metabolismo , Doença de Tay-Sachs/terapia , Transgenes , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
7.
J Gene Med ; 22(9): e3205, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32335981

RESUMO

BACKGROUND: Tay-Sachs and Sandhoff disease are debilitating genetic diseases that affect the central nervous system leading to neurodegeneration through the accumulation of GM2 gangliosides. There are no cures for these diseases and treatments do not alleviate all symptoms. Hematopoietic stem cell gene therapy offers a promising treatment strategy for delivering wild-type enzymes to affected cells. By genetically modifying hematopoietic stem cells to express wild-type HexA and HexB, systemic delivery of functional enzyme can be achieved. METHODS: Primary human hematopoietic stem/progenitor cells and Tay-Sachs affected cells were used to evaluate the functionality of the vector. An immunodeficient and humanized mouse model of Sandhoff disease was used to evaluate whether the HexA/HexB lentiviral vector transduced cells were able to improve the phenotypes associated with Sandhoff disease. An immunodeficient NOD-RAG1-/-IL2-/- (NRG) mouse model was used to evaluate whether the HexA/HexB vector transduced human CD34+ cells were able to engraft and undergo normal multilineage hematopoiesis. RESULTS: HexA/HexB lentiviral vector transduced cells demonstrated strong expression of HexA and HexB and restored enzyme activity in Tay-Sachs affected cells. Upon transplantation into a humanized Sandhoff disease mouse model, improved motor and behavioral skills were observed. Decreased GM2 gangliosides were observed in the brains of HexA/HexB vector transduced cell transplanted mice. Increased peripheral blood levels of HexB was also observed in transplanted mice. Normal hematopoiesis in the peripheral blood and various lymphoid organs was also observed in transplanted NRG mice. CONCLUSIONS: These results highlight the potential use of stem cell gene therapy as a treatment strategy for Tay-Sachs and Sandhoff disease.


Assuntos
Antígenos CD34/genética , Atividade Motora/genética , Doença de Sandhoff/genética , Doença de Tay-Sachs/genética , Animais , Comportamento Animal/fisiologia , Modelos Animais de Doenças , Vetores Genéticos/farmacologia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Interleucina-2/genética , Lentivirus/genética , Camundongos , Camundongos Endogâmicos NOD , Doença de Sandhoff/patologia , Doença de Sandhoff/terapia , Doença de Tay-Sachs/patologia , Doença de Tay-Sachs/terapia , Cadeia alfa da beta-Hexosaminidase/genética , Cadeia beta da beta-Hexosaminidase/genética
8.
Mol Ther ; 27(8): 1495-1506, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31208914

RESUMO

Neuronopathic glycosphingolipidoses are a sub-group of lysosomal storage disorders for which there are presently no effective therapies. Here, we evaluated the potential of substrate reduction therapy (SRT) using an inhibitor of glucosylceramide synthase (GCS) to decrease the synthesis of glucosylceramide (GL1) and related glycosphingolipids. The substrates that accumulate in Sandhoff disease (e.g., ganglioside GM2 and its nonacylated derivative, lyso-GM2) are distal to the drug target, GCS. Treatment of Sandhoff mice with a GCS inhibitor that has demonstrated CNS access (Genz-682452) reduced the accumulation of GL1 and GM2, as well as a variety of disease-associated substrates in the liver and brain. Concomitant with these effects was a significant decrease in the expression of CD68 and glycoprotein non-metastatic melanoma B protein (Gpnmb) in the brain, indicating a reduction in microgliosis in the treated mice. Moreover, using in vivo imaging, we showed that the monocytic biomarker translocator protein (TSPO), which was elevated in Sandhoff mice, was normalized following Genz-682452 treatment. These positive effects translated in turn into a delay (∼28 days) in loss of motor function and coordination, as measured by rotarod latency, and a significant increase in longevity (∼17.5%). Together, these results support the development of SRT for the treatment of gangliosidoses, particularly in patients with residual enzyme activity.


Assuntos
Carbamatos/farmacologia , Inibidores Enzimáticos/farmacologia , Glucosiltransferases/antagonistas & inibidores , Quinuclidinas/farmacologia , Doença de Sandhoff/enzimologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Ligantes , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Espectrometria de Massas , Camundongos , Camundongos Knockout , Imagem Molecular , Receptores de GABA/metabolismo , Doença de Sandhoff/diagnóstico , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Esfingolipídeos/metabolismo , Cadeia beta da beta-Hexosaminidase/genética , Cadeia beta da beta-Hexosaminidase/metabolismo
9.
Curr Gene Ther ; 18(2): 68-89, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29618308

RESUMO

Tay-Sachs disease, caused by impaired ß-N-acetylhexosaminidase activity, was the first GM2 gangliosidosis to be studied and one of the most severe and earliest lysosomal diseases to be described. The condition, associated with the pathological build-up of GM2 ganglioside, has acquired almost iconic status and serves as a paradigm in the study of lysosomal storage diseases. Inherited as a classical autosomal recessive disorder, this global disease of the nervous system induces developmental arrest with regression of attained milestones; neurodegeneration progresses rapidly to cause premature death in young children. There is no effective treatment beyond palliative care, and while the genetic basis of GM2 gangliosidosis is well established, the molecular and cellular events, from diseasecausing mutations and glycosphingolipid storage to disease manifestations, remain to be fully delineated. Several therapeutic approaches have been attempted in patients, including enzymatic augmentation, bone marrow transplantation, enzyme enhancement, and substrate reduction therapy. Hitherto, none of these stratagems has materially altered the course of the disease. Authentic animal models of GM2 gangliodidosis have facilitated in-depth evaluation of innovative applications such as gene transfer, which in contrast to other interventions, shows great promise. This review outlines current knowledge pertaining the pathobiology as well as potential innovative treatments for the GM2 gangliosidoses.


Assuntos
Transplante de Medula Óssea , Terapia de Reposição de Enzimas , Terapia Genética , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Doença de Tay-Sachs/genética , Doença de Tay-Sachs/terapia , Animais , Modelos Animais de Doenças , Glicoesfingolipídeos/metabolismo , Humanos , Lactente , Lisossomos/enzimologia , Lisossomos/genética , Lisossomos/patologia , Camundongos , Mutação , Doenças Raras , Doença de Sandhoff/enzimologia , Doença de Sandhoff/patologia , Doença de Tay-Sachs/enzimologia , Doença de Tay-Sachs/patologia , beta-N-Acetil-Hexosaminidases/genética
10.
Neuroscience ; 340: 117-125, 2017 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-27793778

RESUMO

Sandhoff disease (SD) is a lysosomal storage disorder characterized by the absence of hydrolytic enzyme ß-N-acetylhexosaminidase (Hex), which results in storage of GM2 ganglioside in neurons and unremitting neurodegeneration. Neuron loss initially affects fine motor skills, but rapidly progresses to loss of all body faculties, a vegetative state, and death by five years of age in humans. A well-established feline model of SD allows characterization of the disease in a large animal model and provides a means to test the safety and efficacy of therapeutic interventions before initiating clinical trials. In this study, we demonstrate a robust central nervous system (CNS) inflammatory response in feline SD, primarily marked by expansion and activation of the microglial cell population. Quantification of major histocompatibility complex II (MHC-II) labeling revealed significant up-regulation throughout the CNS with areas rich in white matter most severely affected. Expression of the leukocyte chemokine macrophage inflammatory protein-1 alpha (MIP-1α) was also up-regulated in the brain. SD cats were treated with intracranial delivery of adeno-associated viral (AAV) vectors expressing feline Hex, with a study endpoint 16weeks post treatment. AAV-mediated gene delivery repressed the expansion and activation of microglia and normalized MHC-II and MIP-1α levels. These data reiterate the profound inflammatory response in SD and show that neuroinflammation is abrogated after AAV-mediated restoration of enzymatic activity.


Assuntos
Encéfalo/imunologia , Terapia Genética , Doença de Sandhoff/imunologia , Doença de Sandhoff/terapia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Astrócitos/imunologia , Astrócitos/patologia , Encéfalo/patologia , Gatos , Dependovirus/genética , Modelos Animais de Doenças , Genes MHC da Classe II/fisiologia , Vetores Genéticos , Gliose/imunologia , Gliose/patologia , Gliose/terapia , Imuno-Histoquímica , Microglia/imunologia , Microglia/patologia , Neurônios/imunologia , Neurônios/patologia , Reação em Cadeia da Polimerase , Doença de Sandhoff/patologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Hum Gene Ther ; 27(7): 497-508, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27199088

RESUMO

GM2 gangliosidosis is a group of neurodegenerative diseases caused by ß-hexosaminidase A (HexA) enzyme deficiency. There is currently no cure. HexA is composed of two similar, nonidentical subunits, α and ß, which must interact with the GM2 activator protein (GM2AP), a substrate-specific cofactor, to hydrolyze GM2 ganglioside. Mutations in either subunit or the activator can result in the accumulation of GM2 ganglioside within neurons throughout the central nervous system. The resulting neuronal cell death induces the primary symptoms of the disease: motor impairment, seizures, and sensory impairments. This study assesses the long-term effects of gene transfer in a Sandhoff (ß-subunit knockout) mouse model. The study utilized a modified human ß-hexosaminidase α-subunit (µ-subunit) that contains critical sequences from the ß-subunit that enables formation of a stable homodimer (HexM) and interaction with GM2AP to hydrolyze GM2 ganglioside. We investigated a self-complementary adeno-associated viral (scAAV) vector expressing HexM, through intravenous injections of the neonatal mice. We monitored one cohort for 8 weeks and another cohort long-term for survival benefit, behavioral, biochemical, and molecular analyses. Untreated Sandhoff disease (SD) control mice reached a humane endpoint at approximately 15 weeks, whereas treated mice had a median survival age of 40 weeks, an approximate 2.5-fold survival advantage. On behavioral tests, the treated mice outperformed their knockout age-matched controls and perform similarly to the heterozygous controls. Through the enzymatic and GM2 ganglioside analyses, we observed a significant decrease in the GM2 ganglioside level, even though the enzyme levels were not significantly increased. Molecular analyses revealed a global distribution of the vector between brain and spinal cord regions. In conclusion, the neonatal delivery of a novel viral vector expressing the human HexM enzyme is effective in ameliorating the SD mouse phenotype for long-term. Our data could have implications not only for treatment of SD but also for Tay-Sachs disease (α-subunit deficiency) and similar brain disorders.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/administração & dosagem , Hexosaminidases/genética , Mutação/genética , Doença de Sandhoff/terapia , Animais , Animais Recém-Nascidos , Comportamento Animal , Modelos Animais de Doenças , Camundongos , Fenótipo , Doença de Sandhoff/enzimologia , Doença de Sandhoff/genética
12.
Mol Genet Metab ; 116(1-2): 80-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25971245

RESUMO

Sandhoff disease (SD) is a fatal neurodegenerative disease caused by a mutation in the enzyme ß-N-acetylhexosaminidase. Children with infantile onset SD develop seizures, loss of motor tone and swallowing problems, eventually reaching a vegetative state with death typically by 4years of age. Other symptoms include vertebral gibbus and cardiac abnormalities strikingly similar to those of the mucopolysaccharidoses. Isolated fibroblasts from SD patients have impaired catabolism of glycosaminoglycans (GAGs). To evaluate mucopolysaccharidosis-like features of the feline SD model, we utilized radiography, MRI, echocardiography, histopathology and GAG quantification of both central nervous system and peripheral tissues/fluids. The feline SD model exhibits cardiac valvular and structural abnormalities, skeletal changes and spinal cord compression that are consistent with accumulation of GAGs, but are much less prominent than the severe neurologic disease that defines the humane endpoint (4.5±0.5months). Sixteen weeks after intracranial AAV gene therapy, GAG storage was cleared in the SD cat cerebral cortex and liver, but not in the heart, lung, skeletal muscle, kidney, spleen, pancreas, small intestine, skin, or urine. GAG storage worsens with time and therefore may become a significant source of pathology in humans whose lives are substantially lengthened by gene therapy or other novel treatments for the primary, neurologic disease.


Assuntos
Terapia Genética , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/uso terapêutico , Adenoviridae/genética , Estruturas Animais/patologia , Animais , Gatos , Modelos Animais de Doenças , Vetores Genéticos , Humanos , Mucopolissacaridoses/genética , Mucopolissacaridoses/patologia , Mucopolissacaridoses/terapia , Fenótipo , Doença de Sandhoff/fisiopatologia , Doença de Sandhoff/urina
13.
ASN Neuro ; 7(2)2015.
Artigo em Inglês | MEDLINE | ID: mdl-25873306

RESUMO

Sandhoff disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the gene for the ß-subunit of ß-N-acetylhexosaminidase (Hex), resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2, primarily in the central nervous system. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, we treated presymptomatic SD cats with AAVrh8 vectors expressing feline Hex in the thalamus combined with intracerebroventricular (Thal/ICV) injections. Treated animals showed clearly improved neurologic function and quality of life, manifested in part by prevention or attenuation of whole-body tremors characteristic of untreated animals. Hex activity was significantly elevated, whereas storage of GM2 and GA2 was significantly decreased in tissue samples taken from the cortex, cerebellum, thalamus, and cervical spinal cord. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic potential of AAV for feline SD and suggests a similar potential for human SD patients.


Assuntos
Dependovirus/genética , Terapia Genética/métodos , Proteínas de Homeodomínio/genética , Lisossomos/metabolismo , Doença de Sandhoff/terapia , Animais , Encéfalo/patologia , Encéfalo/fisiopatologia , Gatos , Sistema Nervoso Central/metabolismo , Cerebrosídeos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Gangliosídeo G(M2)/metabolismo , Gangliosídeos/metabolismo , Vetores Genéticos , Proteínas de Homeodomínio/metabolismo , Qualidade de Vida , Doença de Sandhoff/patologia , Doença de Sandhoff/fisiopatologia , Doença de Sandhoff/psicologia , Índice de Gravidade de Doença , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Sulfoglicoesfingolipídeos/metabolismo , Resultado do Tratamento
14.
Mol Ther ; 23(3): 414-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25515709

RESUMO

G(M2) gangliosidoses are severe neurodegenerative disorders resulting from a deficiency in ß-hexosaminidase A activity and lacking effective therapies. Using a Sandhoff disease (SD) mouse model (Hexb(-/-)) of the G(M2) gangliosidoses, we tested the potential of systemically delivered adeno-associated virus 9 (AAV9) expressing Hexb cDNA to correct the neurological phenotype. Neonatal or adult SD and normal mice were intravenously injected with AAV9-HexB or -LacZ and monitored for serum ß-hexosaminidase activity, motor function, and survival. Brain G(M2) ganglioside, ß-hexosaminidase activity, and inflammation were assessed at experimental week 43, or an earlier humane end point. SD mice injected with AAV9-LacZ died by 17 weeks of age, whereas all neonatal AAV9-HexB-treated SD mice survived until 43 weeks (P < 0.0001) with only three exhibiting neurological dysfunction. SD mice treated as adults with AAV9-HexB died between 17 and 35 weeks. Neonatal SD-HexB-treated mice had a significant increase in brain ß-hexosaminidase activity, and a reduction in G(M2) ganglioside storage and neuroinflammation compared to adult SD-HexB- and SD-LacZ-treated groups. However, at 43 weeks, 8 of 10 neonatal-HexB injected control and SD mice exhibited liver or lung tumors. This study demonstrates the potential for long-term correction of SD and other G(M2) gangliosidoses through early rAAV9 based systemic gene therapy.


Assuntos
Dependovirus/genética , Gangliosídeo G(M2)/metabolismo , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Doença de Sandhoff/terapia , Cadeia beta da beta-Hexosaminidase/genética , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/enzimologia , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Vetores Genéticos/efeitos adversos , Inflamação/genética , Inflamação/mortalidade , Inflamação/patologia , Inflamação/terapia , Injeções Intravenosas , Óperon Lac , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/patologia , Lisossomos/enzimologia , Lisossomos/patologia , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Doença de Sandhoff/genética , Doença de Sandhoff/mortalidade , Doença de Sandhoff/patologia , Análise de Sobrevida , Cadeia beta da beta-Hexosaminidase/metabolismo
15.
Gene Ther ; 22(2): 181-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25474439

RESUMO

Sandhoff disease (SD) is caused by deficiency of N-acetyl-ß-hexosaminidase (Hex) resulting in pathological accumulation of GM2 ganglioside in lysosomes of the central nervous system (CNS) and progressive neurodegeneration. Currently, there is no treatment for SD, which often results in death by the age of five years. Adeno-associated virus (AAV) gene therapy achieved global CNS Hex restoration and widespread normalization of storage in the SD mouse model. Using a similar treatment approach, we sought to translate the outcome in mice to the feline SD model as an important step toward human clinical trials. Sixteen weeks after four intracranial injections of AAVrh8 vectors, Hex activity was restored to above normal levels throughout the entire CNS and in cerebrospinal fluid, despite a humoral immune response to the vector. In accordance with significant normalization of a secondary lysosomal biomarker, ganglioside storage was substantially improved, but not completely cleared. At the study endpoint, 5-month-old AAV-treated SD cats had preserved neurological function and gait compared with untreated animals (humane endpoint, 4.4±0.6 months) demonstrating clinical benefit from AAV treatment. Translation of widespread biochemical disease correction from the mouse to the feline SD model provides optimism for treatment of the larger human CNS with minimal modification of approach.


Assuntos
Terapia Genética , Doença de Sandhoff/terapia , Animais , Gatos , Dependovirus/genética , Dependovirus/imunologia , Progressão da Doença , Gangliosídeos/metabolismo , Vetores Genéticos , Humanos , Imunidade Humoral , Injeções Intraventriculares , Doença de Sandhoff/patologia , Transdução Genética , Resultado do Tratamento , beta-N-Acetil-Hexosaminidases/biossíntese , beta-N-Acetil-Hexosaminidases/genética
16.
Hum Mol Genet ; 23(3): 730-48, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24057669

RESUMO

The GM2 gangliosidoses are progressive neurodegenerative disorders due to defects in the lysosomal ß-N-acetylhexosaminidase system. Accumulation of ß-hexosaminidases A and B substrates is presumed to cause this fatal condition. An authentic mouse model of Sandhoff disease (SD) with pathological characteristics resembling those noted in infantile GM2 gangliosidosis has been described. We have shown that expression of ß-hexosaminidase by intracranial delivery of recombinant adeno-associated viral vectors to young adult SD mice can prevent many features of the disease and extends lifespan. To investigate the nature of the neurological injury in GM2 gangliosidosis and the extent of its reversibility, we have examined the evolution of disease in the SD mouse; we have moreover explored the effects of gene transfer delivered at key times during the course of the illness. Here we report greatly increased survival only when the therapeutic genes are expressed either before the disease is apparent or during its early manifestations. However, irrespective of when treatment was administered, widespread and abundant expression of ß-hexosaminidase with consequent clearance of glycoconjugates, α-synuclein and ubiquitinated proteins, and abrogation of inflammatory responses and neuronal loss was observed. We also show that defects in myelination occur in early life and cannot be easily resolved when treatment is given to the adult brain. These results indicate that there is a limited temporal opportunity in which function and survival can be improved-but regardless of resolution of the cardinal pathological features of GM2 gangliosidosis, a point is reached when functional deterioration and death cannot be prevented.


Assuntos
Encéfalo/enzimologia , Vetores Genéticos/farmacologia , Doença de Sandhoff/genética , Doença de Sandhoff/patologia , Doença de Sandhoff/terapia , Doença de Tay-Sachs/patologia , beta-N-Acetil-Hexosaminidases/genética , Animais , Encéfalo/efeitos dos fármacos , Dependovirus/genética , Modelos Animais de Doenças , Gangliosídeo G(M2)/genética , Gangliosídeo G(M2)/metabolismo , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Injeções Intralesionais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doença de Sandhoff/mortalidade , Ubiquitina/metabolismo , alfa-Sinucleína/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
17.
Hum Mol Genet ; 22(19): 3960-75, 2013 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-23727835

RESUMO

Sandhoff disease (SD) is a lysosomal storage disorder caused by a lack of a functional ß-subunit of the ß-hexosaminidase A and B enzymes, leading to the accumulation of gangliosides in the central nervous system (CNS). The Hexb-/- mouse model of SD shows a progressive neurodegenerative phenotype similar to the human equivalent. Previous studies have revealed that Hexb-/- mice suffer from chronic neuroinflammation characterized by microglial activation and expansion. Tumor necrosis factor-α (TNFα), a key modulator of the CNS immune response in models of neurodegeneration, is a hallmark of this activation. In this study, we explore the role of TNFα in the development and progression of SD in mice, by creating a Hexb-/- Tnfα-/- double-knockout mouse. Our results revealed that the double-knockout mice have an ameliorated disease course, with an extended lifespan, enhanced sensorimotor coordination and improved neurological function. TNFα-deficient SD mice also show decreased levels of astrogliosis and reduced neuronal cell death, with no alterations in neuronal storage of gangliosides. Interestingly, temporal microglia activation appears similar between the Hexb-/- Tnfα-/- and SD mice. Evidence is provided for the TNFα activation of the JAK2/STAT3 pathway as a mechanism for astrocyte activation in the disease. Bone marrow transplantation experiments reveal that both CNS-derived and bone marrow-derived TNFα have a pathological effect in SD mouse models, with CNS-derived TNFα playing a larger role. This study reveals TNFα as a neurodegenerative cytokine mediating astrogliosis and neuronal cell death in SD and points to TNFα as a potential therapeutic target to attenuate neuropathogenesis.


Assuntos
Doença de Sandhoff/metabolismo , Doença de Sandhoff/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/fisiologia , Animais , Transplante de Medula Óssea , Encéfalo/metabolismo , Morte Celular , Modelos Animais de Doenças , Feminino , Gangliosídeos/metabolismo , Gliose/genética , Gliose/patologia , Humanos , Camundongos , Camundongos Knockout , Microglia/metabolismo , Doença de Sandhoff/genética , Doença de Sandhoff/terapia , Transdução de Sinais , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
18.
Mol Ther ; 21(7): 1306-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23689599

RESUMO

Salutary responses to adeno-associated viral (AAV) gene therapy have been reported in the mouse model of Sandhoff disease (SD), a neurodegenerative lysosomal storage disease caused by deficiency of ß-N-acetylhexosaminidase (Hex). While untreated mice reach the humane endpoint by 4.1 months of age, mice treated by a single intracranial injection of vectors expressing human hexosaminidase may live a normal life span of 2 years. When treated with the same therapeutic vectors used in mice, two cats with SD lived to 7.0 and 8.2 months of age, compared with an untreated life span of 4.5 ± 0.5 months (n = 11). Because a pronounced humoral immune response to both the AAV1 vectors and human hexosaminidase was documented, feline cDNAs for the hexosaminidase α- and ß-subunits were cloned into AAVrh8 vectors. Cats treated with vectors expressing feline hexosaminidase produced enzymatic activity >75-fold normal at the brain injection site with little evidence of an immune infiltrate. Affected cats treated with feline-specific vectors by bilateral injection of the thalamus lived to 10.4 ± 3.7 months of age (n = 3), or 2.3 times as long as untreated cats. These studies support the therapeutic potential of AAV vectors for SD and underscore the importance of species-specific cDNAs for translational research.


Assuntos
Doenças do Gato/enzimologia , Doenças do Gato/terapia , Doença de Sandhoff/enzimologia , Doença de Sandhoff/terapia , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Doenças do Gato/genética , Gatos , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética/métodos , Vetores Genéticos/genética , Doença de Sandhoff/genética , beta-N-Acetil-Hexosaminidases/genética
19.
Neurochem Res ; 37(6): 1335-43, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22367451

RESUMO

Sandhoff Disease (SD) involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the ß-subunit gene of ß-hexosaminidase A and B (Hexb gene). Substrate reduction therapy, utilizing imino sugar N-butyldeoxygalactonojirimycin (NB-DGJ), reduces ganglioside biosynthesis and levels of stored GM2 in SD mice. Intracranial transplantation of Neural Stem Cells (NSCs) can provide enzymatic cross correction, to help reduce ganglioside storage and extend life. Here we tested the effect of NSCs and NB-DGJ, alone and together, on brain ß-hexosaminidase activity, GM2, and GA2 content in juvenile SD mice. The SD mice received either cerebral NSC transplantation at post-natal day 0 (p-0), intraperitoneal injection of NB-DGJ (500 mg/kg/day) from p-9 to p-15, or received dual treatments. The brains were analyzed at p-15. ß-galactosidase staining confirmed engraftment of lacZ-expressing NSCs in the cerebral cortex. Compared to untreated and sham-treated SD controls, NSC treatment alone provided a slight increase in Hex activity and significantly decreased GA2 content. However, NSCs had no effect on GM2 content when analyzed at p-15. NB-DGJ alone had no effect on Hex activity, but significantly reduced GM2 and GA2 content. Hex activity was slightly elevated in the NSC + drug-treated mice. GM2 and GA2 content in the dual treated mice were similar to that of the NB-DGJ treated mice. These data indicate that NB-DGJ alone was more effective in targeting storage in juvenile SD mice than were NSCs alone. No additive or synergistic effect between NSC and drug was found in these juvenile SD mice.


Assuntos
1-Desoxinojirimicina/análogos & derivados , Células-Tronco Neurais/transplante , Doença de Sandhoff/terapia , 1-Desoxinojirimicina/uso terapêutico , Animais , Gangliosídeo G(M2) , Hexosaminidase B/metabolismo , Camundongos , Doença de Sandhoff/tratamento farmacológico , beta-N-Acetil-Hexosaminidases/genética
20.
Hum Mol Genet ; 20(22): 4371-80, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21852247

RESUMO

Sandhoff disease, a GM2 gangliosidosis caused by a deficiency in ß-hexosaminidase, is characterized by progressive neurodegeneration. Although loss of neurons in association with lysosomal storage of glycosphingolipids occurs in patients with this disease, the molecular pathways that lead to the accompanying neurological defects are unclear. Using an authentic murine model of GM2 gangliosidosis, we examined the pattern of neuronal loss in the central nervous system and investigated the effects of gene transfer using recombinant adeno-associated viral vectors expressing ß-hexosaminidase subunits (rAAV2/1-Hex). In 4-month-old Sandhoff mice with neurological deficits, cells staining positively for the apoptotic signature in the TUNEL reaction were found in the ventroposterior medial and ventroposterior lateral (VPM/VPL) nuclei of the thalamus. There was progressive loss of neuronal density in this region with age. Comparable loss of neuronal density was identified in the lateral vestibular nucleus of the brainstem and a small but statistically significant loss was present in the ventral spinal cord. Loss of neurons was not detected in other regions that were analysed. Administration of rAAV2/1-Hex into the brain of Sandhoff mice prevented the decline in neuronal density in the VPM/VPL. Preservation of neurons in the VPM/VPL was variable at the humane endpoint in treated animals, but correlated directly with increased lifespan. Loss of neurons was localized to only a few regions in the Sandhoff brain and was prevented by rAAV-mediated transfer of ß-hexosaminidase gene function at considerable distances from the site of vector administration.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Dependovirus/genética , Vetores Genéticos/genética , Neurônios/patologia , Doença de Sandhoff/terapia , beta-N-Acetil-Hexosaminidases/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Marcação In Situ das Extremidades Cortadas , Camundongos , Neurônios/metabolismo , Doença de Sandhoff/enzimologia , Doença de Sandhoff/metabolismo , beta-N-Acetil-Hexosaminidases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA