Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Phys Med ; 126: 104830, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39357298

RESUMO

PURPOSE: Radiochromic EBT3 films are commonly used as dosimeter for clinical practice and research on radiotherapy. In principle, they are associated with a flatbed scanner to determine the optical density change, which can be correlated to the absorbed dose after calibration. Several approaches have been proposed to reduce the uncertainties during acquisition and to compensate the lighting inhomogeneities, thus improving the dose measurement. Those works have shown that good accuracy can be achieved for absorbed dose using EBT3 films, at the expense of complex data processing and time-consuming acquisition protocols. METHOD: We introduce the new method to determine the calibration curve based on the HSV color space analysis, which provides robustness and invariance to illumination changes. RESULTS: With this new approach, it allows to compute the calibration curve by performing only a single scan of film pieces regardless either the lateral positions or control points on the scanner bed. Using the hue channel in HSV color space, we prove that the dose can be accurately reconstructed with a much simpler protocol than when using RGB channels with blank scans rectification. Our HSV approach includes comparative gamma index for conventional film analysis. It achieves a gamma index (3%/3mm) over 99% when comparing measurement and AAA computation for a modulated beam. CONCLUSION: Compared to most existing approaches, our approach does not rely on complex mathematical reconstructions or additional scans. Instead, it uses another color model representation to rectify the scanner response, coping the dose measurement homogeneity problem over the scanner window. It facilitates the overall scan calibration to be much simpler, save time, and less manipulations, which also decreases the risk of human error.


Assuntos
Cor , Dosimetria Fotográfica , Calibragem , Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/instrumentação
2.
J Appl Clin Med Phys ; 25(10): e14481, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39133939

RESUMO

This investigation aimed to optimize gradient positioning for radiochromic film calibration to facilitate a uniform distribution of calibration points. The study investigated the influence of various parameters on gradient dose profiles generated by a physical wedge, assessing their impact on the field's dose dynamic range, a scalar quantity representing the span of absorbed doses. Numerical parameterization of the physical wedge profile was used to visualize and quantify the impact of field size, depth, and energy on the dynamic range of dose gradients. This concept enabled the optimization of the gradient positioning and estimation of the necessary number of exposures for the desired calibration dose range. An optimization algorithm based on histogram bin height minimization was developed and presented. The maximum dynamic range was achieved with a 20 × $\times$ 20 cm 2 $\textrm {cm}^{2}$ field size at 5 cm depth. Optimization of wedge gradient positioning yielded the most uniform dose distribution with 7 exposures for the [1,10] Gy range and 8 exposures for the [1,20] Gy range. Film calibration using gradients centered at 1.6, 3, 3.5, and 7 Gy central axis (CAX), obtained through optimized gradient positioning, was showcased. The presented work demonstrates the potential for an improved film calibration process, with efficient material utilization and enhanced dosimetric accuracy for clinical applications. While the method was described for the use of a physical wedge, the methodology can be easily extended to the use of a more convenient dynamic wedge.


Assuntos
Algoritmos , Dosimetria Fotográfica , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Calibragem , Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/instrumentação , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Imagens de Fantasmas , Radioterapia de Intensidade Modulada/métodos , Radioterapia de Intensidade Modulada/normas
3.
Biomed Phys Eng Express ; 10(5)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39094590

RESUMO

Purpose. Secondary skin collimation (SSC) is essential for shielding normal tissues near tumors during electron and orthovoltage radiation treatments. Traditional SSC fabrication methods, such as crafting in-house lead sheets, are labor-intensive and produce SSCs with low geometric accuracy. This study introduces a workflow that integrated 3D scanning and 3D printing technologies with an in-house mold process, enabling the production of patient-specific SSCs within six hours.Methods. An anthropomorphic head phantom was scanned with a handheld 3D scanner. The resulting scan data was imported into 3D modeling software for design. The completed model was exported to a 3D printer as a printable file. Subsequently, molten Cerrobend was poured into the mold and allowed to set, completing the SSC production. Geometric accuracy was assessed using CT images, and the shielding effectiveness was evaluated through film dosimetry.Results. The 3D printed mold achieved submillimeter accuracy (0.5 mm) and exhibited high conformity to the phantom surface. It successfully endured the weight and heat of the Cerrobend during pouring and curing. Dosimetric analysis conducted with radiochromic film demonstrated good agreement between the measured and expected attenuation values of the SSC slab, within ±3%.Conclusions. This study presents a proof of concept for novel mold room workflows that produce patient-specific SSCs within six hours, a significant improvement over the traditional SSC fabrication process, which takes 2-3 days. The submillimeter accuracy and versatility of 3D scanning and printing technologies afford greater design freedom and enhanced delivery accuracy for cases involving irregular geometries.


Assuntos
Imagens de Fantasmas , Impressão Tridimensional , Pele , Humanos , Tomografia Computadorizada por Raios X/métodos , Software , Cabeça , Desenho de Equipamento , Proteção Radiológica/métodos , Proteção Radiológica/instrumentação , Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/instrumentação
4.
Biomed Phys Eng Express ; 10(5)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38941982

RESUMO

Gafchromic film, a commercially available radiochromic film, has been developed and widely used as an effective tool for radiation dose verification and quality assurance in radiotherapy. However, the orientation effect in scanning a film remains a concern for practical application in beam profile monitoring. To resolve this issue, the authors introduced a novel method using an overhead scanner (OHS) coupled with a tracing light board instead of a conventional flatbed scanner (FBS) to read Gafchromic EBT3 films. We investigated the orientation effect of the EBT3 film with a regular hexagonal shape after irradiation with 5 Gy x-rays (160 kV, 6.3 mA) and compared the digitized images acquired using a commercially available OHS (CZUR Aura) and a conventional FBS (EPSON GT-X980). As a result, RGB color intensities acquired from the OHS showed significantly lower orientation effect of the color intensities of RGB components than those from FBS. This finding indicates the high potential of the proposed method for achieving more precise two-dimensional dosimetry. Further studies are required to confirm the effectiveness of this method under different irradiation conditions over a wider dose range.


Assuntos
Dosimetria Fotográfica , Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/instrumentação , Desenho de Equipamento , Humanos , Doses de Radiação , Cor , Dosagem Radioterapêutica
5.
J Appl Clin Med Phys ; 25(8): e14373, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38696704

RESUMO

PURPOSE: Lateral response artifact (LRA) is caused by the interaction between film and flatbed scanner in the direction perpendicular to the scanning direction. This can significantly affect the accuracy of patient-specific quality assurance (QA) in cases involving large irradiation fields. We hypothesized that by utilizing the central area of the flatbed scanner, where the magnitude of LRA is relatively small, the LRA could be mitigated effectively. This study proposes a practical solution using the image-stitching technique to correct LRA for patient-specific QA involving large irradiation fields. METHODS: Gafchromic™ EBT4 film and Epson Expression ES-G11000 flatbed scanner were used in this study. The image-stitching algorithm requires a spot between adjacent images to combine them. The film was scanned at three locations on a flatbed scanner, and these images were combined using the image-stitching technique. The combined film dose was then calculated and compared with the treatment planning system (TPS)-calculated dose using gamma analysis (3%/2 mm). Our proposed LRA correction was applied to several films exposed to 18 × 18 cm2 open fields at doses of 200, 400, and 600 cGy, as well as to four clinical Volumetric Modulated Arc Therapy (VMAT) treatment plans involving large fields. RESULTS: For doses of 200, 400, and 600 cGy, the gamma analysis values with and without LRA corrections were 95.7% versus 67.8%, 95.5% versus 66.2%, and 91.8% versus 35.9%, respectively. For the clinical VMAT treatment plan, the average pass rate ± standard deviation in gamma analysis was 94.1% ± 0.4% with LRA corrections and 72.5% ± 1.5% without LRA corrections. CONCLUSIONS: The effectiveness of our proposed LRA correction using the image-stitching technique was demonstrated to significantly improve the accuracy of patient-specific QA for VMAT treatment plans involving large irradiation fields.


Assuntos
Algoritmos , Artefatos , Dosimetria Fotográfica , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/métodos
6.
J Appl Clin Med Phys ; 25(7): e14325, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38467039

RESUMO

PURPOSE: The picket fence (PF) test is highly recommended for multi-leaf collimator (MLC) quality assurance. However, since the electronic portal imaging device (EPID) on the Elekta Unity only covers a small area, it is not feasible to perform the PF test for the entire MLC. Here, we propose a technique for the PF test by stitching two double-exposed films. METHODS: Two EBT3 films were used to encompass the entire MLC, with each one covering one half of the area. Two fields were employed to apply double exposure: a PF pattern consisting of 11 2 mm wide pickets and a 2.84 cm x 22 cm open field. The edges of the open field defined by the diaphragms were used to correct film rotation as well as align them horizontally. The PF pattern was also measured with the EPID where the pickets were used to align the films vertically. Individual leaf positions were detected on the merged film for quantitative analysis. Various MLC positioning errors were introduced to evaluate the technique's sensitivity. RESULTS: The merged films covered 72 leaf pairs properly (four leaf pairs on both sides were outside the treatment couch). With the EPID, the leaf positioning accuracy was -0.02 ± 0.07 mm (maximum: 0.29 mm) and the picket width variation was 0.00 ± 0.03 mm (maximum: 0.11 mm); with the films, the position accuracy and width variation were -0.03 ± 0.13 mm (maximum: 0.80 mm) and 0.00 ± 0.13 mm (maximum: 0.74 mm), respectively. The EPID was able to detect errors of 0.5 mm or above with submillimeter accuracy; the films were only able to detect errors > 1.0 mm. CONCLUSION: We developed a quantitative technique for the PF test on the Elekta Unity. The merged films covered nearly the entire MLC leaf banks. The technique exhibited clinically acceptable accuracy and sensitivity to MLC positioning errors.


Assuntos
Aceleradores de Partículas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Garantia da Qualidade dos Cuidados de Saúde/normas , Radioterapia de Intensidade Modulada/métodos , Aceleradores de Partículas/instrumentação , Imageamento por Ressonância Magnética/métodos , Dosimetria Fotográfica/métodos , Dosimetria Fotográfica/instrumentação , Imagens de Fantasmas , Neoplasias/radioterapia
7.
Med Phys ; 51(5): 3734-3745, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38224326

RESUMO

BACKGROUND: Cherenkov luminescence imaging has shown potential for relative dose distribution and field verification in radiation therapy. However, to date, limited research utilizing Cherenkov luminescence for absolute dose calibration has been conducted owing to uncertainties arising from camera positioning and tissue surface optical properties. PURPOSE: This paper introduces a novel approach to multispectral Cherenkov luminescence imaging combined with Fricke-xylenol orange gel (FXG) film, termed MCIFF, which can enable online full-field absolute dose measurement. By integrating these two approaches, MCIFF allows for calibration of the ratio between two spectral intensities with absorbed dose, thereby enabling absolute dose measurement. METHODS: All experiments are conducted on a Varian Clinac 23EX, utilizing an electron multiplying charge-coupled device (EMCCD) camera and a two-way image splitter for simultaneous capture of two-spectral Cherenkov imaging. In the first part of this study, the absorbance curves of the prepared FXG film, which receives different doses, are measured using a fluorescence spectrophotometer to verify the correlation between absorbance and dose. In the second part, the FXG film is positioned directly under the radiation beam to corroborate the dose measurement capacity of MCIFF across various beams. In the third part, the feasibility of MCIFF is tested in actual radiotherapy settings via a humanoid model, demonstrating its versatility with various radiotherapy materials. RESULTS: The results of this study indicate that the logarithmic ratios of spectral intensities at wavelengths of 550 ± 50 and 700 ± 100 nm accurately reflect variations in radiation dose (R2 > 0.96) across different radiation beams, particle energies, and dose rates. The slopes of the fitting lines remain consistent under varying beam conditions, with discrepancies of less than 8%. The optical profiles obtained using the MCIFF exhibit a satisfactory level of agreement with the measured results derived from the treatment planning system (TPS) and EBT3 films. Specifically, for photon beams, the lateral distances between the 80% and 20% isodose lines, referred to as the penumbra (P80-20) values, obtained through TPS, EBT3 films, and MCIFF, are determined as 0.537, 0.664, and 0.848 cm, respectively. Similarly, for electron beams, the P80-20 values obtained through TPS, EBT3 films, and MCIFF are found to be 0.432, 0.561, and 0.634 cm, respectively. Furthermore, imaging of the anthropomorphic phantom demonstrates the practical application of MCIFF in real radiotherapy environments. CONCLUSION: By combining an FXG film with Cherenkov luminescence imaging, MCIFF can calibrate Cherenkov luminescence to absorbed dose, filling the gap in online 2D absolute dose measurement methods in clinical practice, and providing a new direction for the clinical application of optical imaging to radiation therapy.


Assuntos
Dosimetria Fotográfica , Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Calibragem , Géis , Xilenos/química , Doses de Radiação , Sulfóxidos , Fenóis , Imagem Óptica/instrumentação
8.
Radiol Oncol ; 55(3): 369-378, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34384012

RESUMO

BACKGROUND: Radiochromic films have many applications in radiology and radiation therapy. Generally, the dosimetry system for radiochromic film dosimetry is composed of radiochromic films, flatbed scanner, and film analysis software. The purpose of this work is to present the effectiveness of a protocol for accurate radiochromic film dosimetry using Radiochromic.com as software for film analysis. MATERIALS AND METHODS: Procedures for image acquisition, lot calibration, and dose calculation are explained and analyzed. Radiochromic.com enables state-of-the-art models and corrections for radiochromic film dosimetry, such as the Multigaussian model for multichannel film dosimetry, and lateral, inter-scan, and re-calibration corrections of the response. RESULTS: The protocol presented here provides accurate dose results by mitigating the sources of uncertainty that affect radiochromic film dosimetry. CONCLUSIONS: Appropriate procedures for film and scanner handling in combination with Radiochromic.com as software for film analysis make easy and accurate radiochromic film dosimetry feasible.


Assuntos
Dosimetria Fotográfica/métodos , Software , Dosimetria Fotográfica/instrumentação , Humanos , Doses de Radiação , Incerteza
9.
Radiat Oncol ; 16(1): 117, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174932

RESUMO

BACKGROUND: The purpose of this study is to comprehensively evaluate the suitability of Gafchromic EBT3 and EBT-XD film for dosimetric quality assurance in 0.35 T MR-guided radiotherapy. METHODS: A 0.35 T magnetic field strength was utilized to evaluate magnetic field effects on EBT3 and EBT-XD Gafchromic films by studying the effect of film exposure time within the magnetic field using two timing sequences and film not exposed to MR, the effect of magnetic field exposure on the crystalline structure of the film, and the effect of orientation of the film with respect to the bore within the magnetic field. The orientation of the monomer crystal was qualitatively evaluated using scanning electron microscopy (SEM) compared to unirradiated film. Additionally, dosimetric impact was evaluated through measurements of a series of open field irradiations (0.83 × 0.83-cm2 to 19.92 × 19.92-cm2) and patient specific quality assurance measurements. Open fields were compared to planned dose and an independent dosimeter. Film dosimetry was applied to twenty conventional and twenty stereotactic body radiotherapy (SBRT) patient specific quality assurance cases. RESULTS: No visual changes in crystal orientation were observed in any evaluated SEM images nor were any optical density differences observed between films irradiated inside or outside the magnetic field for both EBT3 and EBT-XD film. At small field sizes, the average difference along dose profiles measured in film compared to the same points measured using an independent dosimeter and to predicted treatment planning system values was 1.23% and 1.56%, respectively. For large field sizes, the average differences were 1.91% and 1.21%, respectively. In open field tests, the average gamma pass rates were 99.8% and 97.2%, for 3%/3 mm and 3%/1 mm, respectively. The median (interquartile range) 3%/3 mm gamma pass rates in conventional QA cases were 98.4% (96.3 to 99.2%), and 3%/1 mm in SBRT QA cases were 95.8% (95.0 to 97.3%). CONCLUSIONS: MR exposure at 0.35 T had negligible effects on EBT3 and EBT-XD Gafchromic film. Dosimetric film results were comparable to planned dose, ion chamber and diode measurements.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasias/cirurgia , Aceleradores de Partículas/instrumentação , Garantia da Qualidade dos Cuidados de Saúde/normas , Humanos , Campos Magnéticos , Doses de Radiação , Radiocirurgia
10.
PLoS One ; 16(5): e0251441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019553

RESUMO

Generally, electron therapy is applied to tumors on or close to the skin surface. However, this causes a variety of skin-related side effects. To alleviate the risk of these side effects, clinical treatment uses skin dosimeters to verify the therapeutic dose. However, dosimeters suffer from poor accuracy, because their attachment sites are approximated with the help of naked eyes. Therefore, a dosimeter based on a flexible material that can adjust to the contours of the human body is required. In this study, the reproducibility, linearity, dose-rate dependence, and percentage depth ionization (PDI) of PbO and HgO film-based dosimeters are evaluated to explore their potential as large-scale flexible dosimeters. The results demonstrate that both dosimeters deliver impressive reproducibility (within 1.5%) and linearity (≥ 0.9990). The relative standard deviations of the dose-rate dependence of the PbO and HgO dosimeters were 0.94% and 1.16% at 6 MeV, respectively, and 1.08% and 1.25% at 9 MeV, respectively, with the PbO dosimeter outperforming the 1.1% of existing diodes. The PDI analysis of the PbO and HgO dosimeters returned values of 0.014 cm (-0.074 cm) and 0.051 cm (-0.016 cm), respectively at 6 MeV (9 MeV) compared to the thimble chamber and R50. Therefore, the maximum error of each dosimeter is within the allowable range of 0.1 cm. In short, the analysis reveals that the PbO dosimeter delivers a superior performance relative to its HgO counterpart and has strong potential for use as a surface dosimeter. Thus, flexible monoxide materials have the necessary qualities to be used for dosimeters that meet the requisite quality assurance standards and can satisfy a variety of radiation-related applications as flexible functional materials.


Assuntos
Elétrons/uso terapêutico , Dosimetria Fotográfica/métodos , Desenho de Equipamento , Dosimetria Fotográfica/instrumentação , Humanos , Chumbo/química , Compostos de Mercúrio/química , Neoplasias/terapia , Óxidos/química
11.
J Radiat Res ; 62(2): 319-328, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33479768

RESUMO

In this study, we evaluated the inter-unit variability of the lateral response artifact for multiple flatbed scanners, focusing on the dual-channel method, and investigated the correction method of the lateral non-uniformity. Four scanners with A3+ paper-size and five scanners with A4 paper-size were evaluated. To generate the dose-response curves, small pieces of the Gafchromic EBT3 and EBT-XD films were irradiated, and five of the pieces were repeatedly scanned by moving them on the scanner to evaluate the lateral non-uniformity. To calculate the dose distribution accounting for the lateral non-uniformity, linear functions of the correction factor, representing the difference between the pixel values at offset position and the scanner midline, were calculated for red and blue color channels at each lateral position. Large variations of the lateral non-uniformity among the scanners were observed, even for the same model of scanner. For high dose, red color showed pixel value profiles similar to symmetric curves, whereas the profiles for low dose were asymmetric. The peak positions changed with dose. With correction of the lateral non-uniformity, the dose profiles of the pyramidal dose distribution measured at various scanner positions and that calculated with a treatment planning system showed almost identical profile shapes at all high-, middle- and low-dose levels. The dual-channel method used in this study showed almost identical dose profiles measured with all A3+ and A4 paper-size scanners at any positions when the corrections were applied for each color channel.


Assuntos
Artefatos , Dosimetria Fotográfica/instrumentação , Relação Dose-Resposta à Radiação , Radioterapia de Intensidade Modulada
12.
Sci Rep ; 11(1): 684, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436878

RESUMO

Narrow band ultraviolet B (NB UVB) radiation doses are administered during phototherapy for various dermatological ailments. Precise quantification of these doses is vital because the absorbed irradiation can cause adverse photochemical reactions which can lead to potential phototherapeutic side effects. The paper presents development of diacetylene based dosimeter for the determination of therapeutic NB UVB doses during phototherapy. The amide terminated diacetylene analogues have been synthesized by tailoring them with different functional groups. The synthesized diacetylene monomers have been introduced in a polyvinyl alcohol binder solution to obtain a film dosimeter. The influence of different headgroups on the colorimetric response to UV radiation has been studied. Among all the synthesized diacetylene analogues, the naphthylamine substituted diacetylene exhibited excellent color transition from white to blue color at 100 mJ cm-2 NB UVB radiation dose. The developed amide films can be easily pasted on multiple sites of the patient's skin to monitor doses during phototherapy simultaneously at different anatomical regions. The digital image processing of the scanned images of the irradiated films facilitates rapid dose measurement which enables facile implementation of the developed film dosimeters and promising application in routine clinical dosimetry.


Assuntos
Dosimetria Fotográfica/instrumentação , Dermatopatias/radioterapia , Pele/efeitos da radiação , Terapia Ultravioleta/métodos , Irradiação Corporal Total/métodos , Acetileno/química , Dosimetria Fotográfica/métodos , Humanos , Doses de Radiação
13.
Z Med Phys ; 30(3): 227-235, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32475758

RESUMO

PURPOSE: New therapeutic options in radiotherapy (RT) are often explored in preclinical in-vivo studies using small animals. We report here on the feasibility of modern megavoltage (MV) linear accelerator (LINAC)-based RT for small animals using easy-to-use consumer 3D printing technology for dosimetric optimization and quality assurance (QA). METHODS: In this study we aimed to deliver 5×2Gy to the half-brain of a rat using a 4MV direct hemi-field X-ray beam. To avoid the beam's build-up in the target and optimize dosimetry, a 1cm thick, customized, 3D-printed bolus was used. A 1:1 scale copy of the rat was 3D printed based on the CT dataset as an end-to-end QA tool. The plan robustness to HU changes was verified. Thermoluminescent dosimeters (TLDs), for both MV irradiations and for kV imaging doses, and a gafchromic film were placed within the phantom for dose delivery verifications. The phantom was designed using a standard treatment planning software, and was irradiated at the LINAC with the target aligned using kV on-board imaging. RESULTS: The plan was robust (dose difference<1% for HU modification from 0 to 250). Film dosimetry showed a good concordance between planned and measured dose, with the steep dose gradient at the edge of the hemi-field properly aligned to spare the contralateral half-brain. In the treated region, the mean TLDs percentage dose differences (±2 SD) were 1.3% (±3.8%) and 0.9% (±1.7%) beneath the bolus. The mean (±2 SD) out-of-field dose measurements was 0.05Gy (±0.02Gy) for an expected dose of 0.04Gy. Imaging doses (2mGy) still spared the contralateral-brain. CONCLUSIONS: Use of consumer 3D-printers enables dosimetry optimization and QA assessment for small animals MV RT in preclinical studies using standard LINACS.


Assuntos
Dosimetria Fotográfica/instrumentação , Impressão Tridimensional , Animais , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Ratos , Software , Raios X
14.
PLoS One ; 15(5): e0233562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32437474

RESUMO

Radiochromic film (RCF) has several advantageous characteristics which make it an attractive dosimeter for many clinical tasks in radiation oncology. However, knowledge of and strict adherence to complicated protocols in order to produce accurate measurements can prohibit RCF from being widely adopted in the clinic. The purpose of this study was to outline some simple and straightforward RCF fundamentals in order to help clinical medical physicists perform accurate RCF measurements. We describe a process and methodology successfully used in our practice with the hope that it saves time and effort for others when implementing RCF in their clinics. Two RCF analysis software programs which differ in cost and complexity, the commercially available FilmQA Pro package and the freely available ImageJ software, were used to show the accuracy, consistency and limitations of each. The process described resulted in a majority of the measurements across a wide dose range to be accurate within ± 2% of the intended dose using either FilmQA Pro or ImageJ.


Assuntos
Dosimetria Fotográfica/métodos , Calibragem , Desenho de Equipamento , Dosimetria Fotográfica/instrumentação , Humanos , Doses de Radiação , Software
15.
Phys Med Biol ; 65(1): 015012, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31775123

RESUMO

Improvements in dosimetry in preclinical radiation research facilitate the application of results to the newest radiotherapy techniques, reducing gaps that hinder translation. Currently, guidelines for small-field kV photon dosimetry of small animal irradiators have not been published, and most of the publications are based on radiochromic film dosimetry. In this study, we evaluated the performance of four detectors, three ionization chambers (ICs): (PTW Advanced Markus, PTW Semiflex 31010, PTW PinPoint-3D 31016) and one solid-state detector (PTW 60017 unshielded Diode E) regarding their suitability for relative dosimetry of the small animal radiation research platform SARRP (220 kVp). The measurements were performed in a high-resolution 3D scanning phantom, centering the detectors in the field following the in-plane and cross-plane profiles method at two depths. Depth dose curves (PDDs) and profiles were measured in water for field sizes ranging from 40 × 40 mm2 to 5 × 5 mm2. Quantitative analysis was performed through global and local dose differences (DDs) between the PDDs and the Advanced Markus parallel plate IC data and through the gamma index (γ) criteria for profiles compared against data from EBT3 films provided by the manufacturer. Compared to the Advanced Markus IC, the PDD results suggest that PinPoint-3D is suitable for depth measurements at this beam quality, even near the surface, with agreements better than 1%. Semiflex 31010 was accurate to within 1.5% for measurements deeper than 5 mm. Diode E showed a dramatic DD and should not be recommended for the field sizes and kVp evaluated in this study. In agreement with γ analyses, PinPoint-3D and Diode E are good candidates for profile measurements of field sizes from 40 × 40 mm2 to 10 × 10 mm2. For 5 × 5 mm2 profiles, only Diode E showed good results, making it a recommended detector for profile measurements.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Imagens de Fantasmas , Fótons , Animais , Água/química
16.
Radiat Prot Dosimetry ; 186(2-3): 357-361, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31711200

RESUMO

In radiotherapy, radiochromic films can be used for verification of delivery of dose distributions calculated by treatment planning systems. The main objective of this work was to compare three different techniques for evaluation of dose distributions for prostate cancer treatment plans using radiochromic EBT3 films. These techniques are: red channel evaluation taking into account only a response of irradiated film (R), red channel evaluation taking into account a response of unirradiated and irradiated film (Rcor) and multichannel evaluation in FilmQA software (RGB). Also comparison between film and MatriXX measurement was performed. Comparison showed that gamma analysis passing rates strongly depend on evaluation technique and on a model of scanner for digitizing films. The highest gamma passing rates were obtained with red channel evaluation taking into account a response of unirradiated and irradiated film using Epson V750 scanner (Rcor) and multichannel evaluation in FilmQA using Epson 11000XL scanner.


Assuntos
Dosimetria Fotográfica/instrumentação , Dosimetria Fotográfica/métodos , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Algoritmos , Calibragem , Raios gama , Humanos , Masculino , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
17.
J Appl Clin Med Phys ; 20(12): 119-126, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31782897

RESUMO

PURPOSE: Radiation scattering from bone reconstruction materials can cause problems from prolonged healing to osteoradionecrosis. Glass fiber reinforced composite (FRC) has been introduced for bone reconstruction in craniofacial surgery but the effects during radiotherapy have not been previously studied. The purpose of this study was to compare the attenuation and back scatter caused by different reconstruction materials during radiotherapy, especially FRC with bioactive glass (BG) and titanium. METHODS: The effect of five different bone reconstruction materials on the surrounding tissue during radiotherapy was measured. The materials tested were titanium, glass FRC with and without BG, polyether ether ketone (PEEK) and bone. The samples were irradiated with 6 MV and 10 MV photon beams. Measurements of backscattering and dose changes behind the sample were made with radiochromic film and diamond detector dosimetry. RESULTS: An 18% dose enhancement was measured with a radiochromic film on the entrance side of irradiation for titanium with 6 MV energy while PEEK and FRC caused an enhancement of 10% and 4%, respectively. FRC-BG did not cause any measurable enhancement. The change in dose immediately behind the sample was also greatest with titanium (15% reduction) compared with the other materials (0-1% enhancement). The trend is similar with diamond detector measurements, titanium caused a dose enhancement of up to 4% with a 1 mm sample and a reduction of 8.5% with 6 MV energy whereas FRC, FRC-BG, PEEK or bone only caused a maximum dose reduction of 2.2%. CONCLUSIONS: Glass fiber reinforced composite causes less interaction with radiation than titanium during radiotherapy and could provide a better healing environment after bone reconstruction.


Assuntos
Osso e Ossos/efeitos da radiação , Anormalidades Craniofaciais/cirurgia , Vidro/efeitos da radiação , Teste de Materiais/métodos , Imagens de Fantasmas , Procedimentos de Cirurgia Plástica/métodos , Titânio/efeitos da radiação , Materiais Biocompatíveis , Dosimetria Fotográfica/instrumentação , Humanos , Fótons , Espalhamento de Radiação
18.
J Appl Clin Med Phys ; 20(11): 88-94, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31609090

RESUMO

PURPOSE: We introduce a technique that employs a 2D detector in transmission mode (TM) to verify dose maps at a depth of dmax in Solid Water. TM measurements, when taken at a different surface-to-detector distance (SDD), allow for the area at dmax (in which the dose map is calculated) to be adjusted. METHODS: We considered the detector prototype "MP512" (an array of 512 diode-sensitive volumes, 2 mm spatial resolution). Measurements in transmission mode were taken at SDDs in the range from 0.3 to 24 cm. Dose mode (DM) measurements were made at dmax in Solid Water. We considered radiation fields in the range from 2 × 2 cm2 to 10 × 10 cm2 , produced by 6 MV flattened photon beams; we derived a relationship between DM and TM measurements as a function of SDD and field size. The relationship was used to calculate, from TM measurements at 4 and 24 cm SDD, dose maps at dmax in fields of 1 × 1 cm2 and 4 × 4 cm2 , and in IMRT fields. Calculations were cross-checked (gamma analysis) with the treatment planning system and with measurements (MP512, films, ionization chamber). RESULTS: In the square fields, calculations agreed with measurements to within ±2.36%. In the IMRT fields, using acceptance criteria of 3%/3 mm, 2%/2 mm, 1%/1 mm, calculations had respective gamma passing rates greater than 96.89%, 90.50%, 62.20% (for a 4 cm SSD); and greater than 97.22%, 93.80%, 59.00% (for a 24 cm SSD). Lower rates (1%/1 mm criterion) can be explained by submillimeter misalignments, dose averaging in calculations, noise artifacts in film dosimetry. CONCLUSIONS: It is possible to perform TM measurements at the SSD which produces the best fit between the area at dmax in which the dose map is calculated and the size of the monitored target.


Assuntos
Algoritmos , Dosimetria Fotográfica/instrumentação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Humanos , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos
19.
Phys Med ; 66: 77-87, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31563728

RESUMO

OBJECTIVE: To assess the interactive Skin Dose Map® tool (SDMTool) integrated to the radiation dose management system (RDMS) DoseWatch® with Gafchromic® films for implementation in routine practice. METHODS: A retrospective dose estimation software SDMTool was used to calculate Peak Skin Dose (PSD) and display the patient skin dose distribution. PSD was calculated with a triangle mesh of 0.055 cm2 resolution on ICRP 110 male anthropomorphic phantom and with a square ROI of 1 cm2 on flat phantom. The tool uses Radiation Dose Structured Reports (RDSR) data to model exposure events and calculate the PSD per event. The PSD and the skin dose distribution estimated with SDMTool were evaluated in comparison with Gafchromic® films positioned under the PMMA phantom (20 cm) for 13 configurations. Measurements were performed on a Philips system. Statistical analysis were carried out to compare PSDFilm and PSDSDM. RESULTS: Average differences between PSDFilm and PSDSDM were 6% ±â€¯6% (range from -3% to 22%) for flat phantom and 5% ±â€¯7% (range from -3% to 25%) for ICRP phantom. Concordance was good between the measured PSDFilm and the estimated PSDSDM with Lin's coefficient estimation and 95% Confidence Interval of 0.979 [0.875; 0.984] for flat phantom and 0.977 [0.877; 0.985] for ICRP phantom. Dose map representations are concordant for 11 of the 13 tests on PMMA phantom. Disparities arose from the limitations of the RSDR format: table displacement during fluoroscopy events and the use of wedge filter. CONCLUSION: The results found in this experimental evaluation show that the SDMTool is a suitable alternative to Gafchromic® film to calculate PSD.


Assuntos
Dosimetria Fotográfica/instrumentação , Doses de Radiação , Pele/efeitos da radiação , Imagens de Fantasmas , Software
20.
Phys Med ; 65: 106-113, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31450120

RESUMO

PURPOSE: Microbeam radiation therapy is a developing technique that promises superior tumour control and better normal tissue tolerance using spatially fractionated X-ray beams only tens of micrometres wide. Radiochromic film dosimetry at micrometric scale was performed using a microdensitometer, but this instrument presents limitations in accuracy and precision, therefore the use of a microscope is suggested as alternative. The detailed procedures developed to use the two devices are reported allowing a comparison. METHODS: Films were irradiated with single microbeams and with arrays of 50 µm wide microbeams spaced by a 400 µm pitch, using a polychromatic beam with mean energy of 100 keV. The film dose measurements were performed using two independent instruments: a microdensitometer (MDM) and an optical microscope (OM). RESULTS: The mean values of the absolute dose measured with the two instruments differ by less than 5% but the OM provides reproducibility with a standard deviation of 1.2% compared to up to 7% for the MDM. The resolution of the OM was determined to be ~ 1 to 2 µm in both planar directions able to resolve pencil beams irradiation, while the MDM reaches at the best 20 µm resolution along scanning direction. The uncertainties related to the data acquisition are 2.5-3% for the OM and 9-15% for the MDM. CONCLUSION: The comparison between the two devices validates that the OM provides equivalent results to the MDM with better precision, reproducibility and resolution. In addition, the possibility to study dose distributions in two-dimensions over wider areas definitely sanctions the OM as substitute of the MDM.


Assuntos
Dosimetria Fotográfica/instrumentação , Microscopia/instrumentação , Microtecnologia/instrumentação , Dispositivos Ópticos , Calibragem , Processamento de Imagem Assistida por Computador , Razão Sinal-Ruído , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA