Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Toxicol Lett ; 389: 11-18, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813191

RESUMO

To date, long-term rodent carcinogenesis assays are the only assays recognized by regulators to assess non-genotoxic carcinogens, but their reliability has been questioned. In vitro cell transformation assays (CTAs) could represent an interesting alternative to animal models as it has the advantage of detecting both genotoxic and non-genotoxic transforming chemicals. Among them, Bhas 42 CTA uses a cell line that has been transfected with the oncogenic sequence v-Ha-ras. This sequence confers an "initiated" status to these cells and makes them particularly sensitive to non-genotoxic agents. In a previous work, transcriptomic analysis revealed that the treatment of Bhas 42 cells with transforming silica (nano)particles and 12-O-tetradecanoylphorbol-13-acetate (TPA) commonly modified the expression of 12 genes involved in cell proliferation and adhesion. In the present study, we assess whether this signature would be the same for four other soluble transforming agents, i.e. mezerein, methylarsonic acid, cholic acid and quercetin. The treatment of Bhas 42 cells for 48 h with mezerein modified the expression of the 12 genes of the signature according to the same profile as that of the TPA. However, methylarsonic acid and cholic acid gave an incomplete signature with changes in the expression of only 7 and 5 genes, respectively. Finally, quercetin treatment induced no change in the expression of all genes but exhibited higher cytotoxicty. These results suggest that among the transforming agents tested, some may share similar mechanisms of action leading to cell transformation while others may activate different additional pathways involved in such cellular process. More transforming and non-transforming agents and gene markers should be tested in order to try to identify a relevant gene signature to predict the transforming potential of non-genotoxic agents.


Assuntos
Hidroxianisol Butilado , Transcriptoma , Animais , Camundongos , Hidroxianisol Butilado/toxicidade , Reprodutibilidade dos Testes , Quercetina , Testes de Carcinogenicidade/métodos , Células 3T3 BALB , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/induzido quimicamente , Carcinógenos/toxicidade , Acetato de Tetradecanoilforbol/farmacologia , Ácido Cólico/toxicidade
2.
J Sci Food Agric ; 103(13): 6150-6166, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37127924

RESUMO

Butylated hydroxyanisole (BHA) is mainly used as a food additive due to its antioxidant properties, which prevent or delay oxidation reactions and extend the storage life of products. The widespread use of BHA has led to its extensive presence in various environmental matrices and human tissues. Food intake is the main route of human exposure to BHA. Under different conditions, BHA can produce different metabolites, with tert-butyl hydroquinone (TBHQ) being one of the major products. Several studies have shown that BHA could cause thyroid system damage, metabolic and growth disorders, neurotoxicity, and carcinogenesis. Mechanisms such as endocrine disruption, genotoxicity, disturbances of energy metabolism, reactive oxygen species (ROS) production, signaling pathways, and imbalances in calcium homeostasis appear to be associated with the toxic effects of BHA. Avoiding the toxic effects of BHA to the maximum extent possible is a top priority. Finding safe, non-toxic and environmentally friendly alternatives to BHA should be the focus of subsequent research. In all, this review summarized the current situation related to BHA and might make recommendations for future research directions. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Hidroxianisol Butilado , Humanos , Hidroxianisol Butilado/toxicidade , Antioxidantes/metabolismo , Oxirredução , Aditivos Alimentares/toxicidade , Espécies Reativas de Oxigênio
3.
Drug Chem Toxicol ; 45(4): 1899-1906, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34013795

RESUMO

Butylated hydroxyanisole (BHA) and the chemically similar butylated hydroxytoluene (BHT) are widely used as antioxidants. Toxicity of BHA and BHT has been reported under in vitro and in vivo experimental conditions. However, the mechanism of BHA-induced toxic effects in cells is unclear. In this study, the cytotoxic effects of BHA and differences in cell death mechanism for BHA and BHT were investigated in rat thymocytes by flow cytometric analysis using a fluorescent probe. We observed a significant increase in propidium iodide fluorescence in the population of cells treated with 100 µM and 300 µM BHA (dead cells). Thymocytes treated with 100 µM BHA showed increased intracellular Ca2+ and Zn2+ levels and depolarized cell membranes. BHA (30-100 µM) decreased non-protein thiol content of cells, indicating decreased glutathione content. Co-stimulation with 100 µM BHA and 300 µM H2O2 acted synergistically to increase cell lethality. Moreover, BHA significantly increased caspase-3 activity and the number of annexin-V-positive cells in a concentration-dependent manner, indicating apoptosis. However, BHT reduced caspase-3 activity and increased the number of annexin-V-negative dead cells, indicating non-apoptotic cell death. Our results reveal the toxicity of BHA could be attributed to increased levels of intracellular Ca2+ and Zn2+, resulting in an increased vulnerability of rat thymocytes to oxidative stress. In addition, we demonstrate that whereas BHA induced apoptosis, BHT induced non-apoptotic cell death in rat thymocytes. Therefore, these results may support the safety of BHA, but also demonstrate the importance of performing toxicity evaluation at the cellular level besides the tissue level.


Assuntos
Hidroxianisol Butilado , Hidroxitolueno Butilado , Animais , Anexinas , Antioxidantes/farmacologia , Apoptose , Hidroxianisol Butilado/metabolismo , Hidroxianisol Butilado/toxicidade , Hidroxitolueno Butilado/metabolismo , Hidroxitolueno Butilado/toxicidade , Cálcio/metabolismo , Caspase 3/metabolismo , Peróxido de Hidrogênio/metabolismo , Ratos , Zinco/metabolismo
4.
Food Chem ; 353: 129488, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714793

RESUMO

Synthetic phenolic antioxidants can interact with peroxides produced by food. This paper reviews correlation between BHA, BHT and TBHQ metabolism and harms they cause and provides a theoretical basis for rational use of BHA, BHT and TBHQ in food, and also put some attention on the transformation and metabolic products of PG. We introduce BHA, BHT, TBHQ, PG and their possible metabolic pathways, and discuss possible harms and their specific mechanisms responsible. Excessive addition or incorrect use of synthetic phenolic antioxidants results in carcinogenicity, cytotoxicity, oxidative stress induction and endocrine disrupting effects, which warrant attention. BHA carcinogenicity is related to production of metabolites TBHQ and TQ, and cytotoxic effect of BHA is the main cause of apoptosis induction. BHT carcinogenicity depends on DNA damage degree, and tumour promotion is mainly related to production of quinone methylation metabolites. TBHQ carcinogenicity is related to induction of metabolite TQ and enzyme CYP1A1.


Assuntos
Antioxidantes/síntese química , Fenóis/química , Animais , Antioxidantes/metabolismo , Antioxidantes/toxicidade , Apoptose/efeitos dos fármacos , Hidroxianisol Butilado/química , Hidroxianisol Butilado/metabolismo , Hidroxianisol Butilado/toxicidade , Hidroxitolueno Butilado/química , Hidroxitolueno Butilado/metabolismo , Hidroxitolueno Butilado/toxicidade , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Aditivos Alimentares/toxicidade , Humanos , Hidroquinonas/química , Hidroquinonas/metabolismo , Hidroquinonas/toxicidade
5.
Regul Toxicol Pharmacol ; 121: 104887, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33556417

RESUMO

Tumor data from rodent bioassays are used for cancer hazard classification with wide-ranging consequences. This paper presents a case study of the synthetic antioxidant butylated hydroxyanisole (BHA), which IARC classified as Group 2B ("possibly carcinogenic to humans") on the basis of forestomach tumors in rodents following chronic dietary exposure to high levels. IARC later determined that the mechanism by which BHA induces forestomach tumors is not relevant to humans; however, the classification has not been revoked. BHA was listed on California Proposition 65 as a direct consequence of the IARC classification, and there is widespread concern among consumers regarding the safety of BHA driven by the perception that it is a carcinogen. While many regulatory agencies have established safe exposure limits for BHA, the IARC classification and Proposition 65 listing resulted in the addition of BHA to lists of substances banned from children's products and products seeking credentials such as EPA's Safer Choice program, as well as mandatory product labeling. Classifications have consequences that many times pre-empt the ability to conduct an exposure-based risk-based assessment., It is imperative to consider human relevance of both the endpoint and exposure conditions as fundamental to hazard identification.


Assuntos
Antioxidantes/classificação , Hidroxianisol Butilado/classificação , Carcinógenos/classificação , Aditivos Alimentares/classificação , Animais , Antioxidantes/toxicidade , Hidroxianisol Butilado/toxicidade , Carcinógenos/toxicidade , Aditivos Alimentares/toxicidade , Abastecimento de Alimentos , Humanos , Medição de Risco
6.
G3 (Bethesda) ; 9(3): 639-650, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30647105

RESUMO

Living organisms encounter various perturbations, and response mechanisms to such perturbations are vital for species survival. Defective stress responses are implicated in many human diseases including cancer and neurodegenerative disorders. Phenol derivatives, naturally occurring and synthetic, display beneficial as well as detrimental effects. The phenol derivatives in this study, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and bisphenol A (BPA), are widely used as food preservatives and industrial chemicals. Conflicting results have been reported regarding their biological activity and correlation with disease development; understanding the molecular basis of phenol action is a key step for addressing issues relevant to human health. This work presents the first comparative genomic analysis of the genetic networks for phenol stress response in an evolutionary context of two divergent yeasts, Schizosaccharomyces pombe and Saccharomyces cerevisiae Genomic screening of deletion strain libraries of the two yeasts identified genes required for cellular response to phenol stress, which are enriched in human orthologs. Functional analysis of these genes uncovered the major signaling pathways involved. The results provide a global view of the biological events constituting the defense process, including cell cycle arrest, DNA repair, phenol detoxification by V-ATPases, reactive oxygen species alleviation, and endoplasmic reticulum stress relief through ergosterol and the unfolded protein response, revealing novel roles for these cellular pathways.


Assuntos
Redes Reguladoras de Genes , Fenóis/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Schizosaccharomyces/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/toxicidade , Hidroxianisol Butilado/farmacologia , Hidroxianisol Butilado/toxicidade , Hidroxitolueno Butilado/farmacologia , Hidroxitolueno Butilado/toxicidade , Pontos de Checagem do Ciclo Celular , Reparo do DNA , Estresse do Retículo Endoplasmático , Genômica , Fenóis/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Schizosaccharomyces/fisiologia , Resposta a Proteínas não Dobradas
7.
J Appl Toxicol ; 38(7): 944-957, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29460325

RESUMO

The estrogenic and anti-estrogenic effects of butylparaben (BuPB), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and propyl gallate (PG) were evaluated for individual compounds as well as for binary mixtures, using an estrogen-dependent reporter gene assay in T47D-Kbluc breast cancer cells and an estrogen-dependent proliferation assay in MCF-7 breast cancer cells. In terms of estrogenicity the potency of the selected compounds increased from BHA < PG < BuPB in the luciferase assay (with BHT showing no significant estrogenic activity), while in the proliferation assay the following order was observed: BHT < BHA < BuPB (with PG showing no significant estrogenic activity). Non-monotonic dose-response curves were obtained for BuPB (in both assays) and PG (in the luciferase assay), respectively. In the presence of estradiol, a significant anti-estrogenic activity was observed in both cell lines for PG, BuPB and BHA, while BHT showed weak anti-estrogenic activity only in T47D-Kbluc cells. The evaluation of binary mixtures confirmed the endocrine disruptive potential of the compounds, their individual potency being correlated with that of the mixtures. All mixtures were able to reduce the estradiol-induced luminescence or cell proliferation, an effect that was accurately predicted by the dose addition mathematical model, suggesting the same (or at least partially overlapping) modes of action for the tested compounds. The results of the present study emphasize the importance of a cumulative risk assessment of endocrine disruptors.


Assuntos
Hidroxianisol Butilado/toxicidade , Hidroxitolueno Butilado/toxicidade , Proliferação de Células/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Moduladores de Receptor Estrogênico/toxicidade , Estrogênios/toxicidade , Parabenos/toxicidade , Galato de Propila/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Estradiol/farmacologia , Feminino , Humanos , Concentração Inibidora 50 , Células MCF-7 , Modelos Biológicos , Medição de Risco
8.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 47(1): 39-42, 2016 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-27062779

RESUMO

OBJECTIVE: To investigate the neurotoxic effect of benzo[α]pryene (B[α]P) and protective effect of butylated hydroxyl anisole (BHA) on learning and memory in hippocampus of rats. METHODS: Ninety male, SD rats were randomly divided into blank control group, solvent control group, B[α]P exposed group [(2 mg/(kg x d)], BRA group [50 mg/(kg x d)] and B[α]P + BHA combined group. Rats were given the appropriate dose oral treatment according to body mass and group (the same volume of saline and peanut oil were given to blank and solvent control group, respectively) for 90 d. After 90 d exposer, Morris water maze (MWM) was conducted to estimate rats' learning and memory ability. The level of malonaldehyde (MDA), superoxide dismutase (SOD) activity, Na(+)-K(+)-ATPase and Ca(2+)-Mg(2+)-ATPase activity and Ca2+ concentration were measured after rats were sacrificed and brain tissue were removed. RESULTS: Behavioral test results showed that the escape latency of B[α]P exposed group were significantly increased than other groups (P < 0.05); however, the number of crossing platform (4.13 ± 0.78) were decreased significant. The level of MDA [( 2.46 ± 0.39) nmol/mg prot.] and Ca2+ concentration [(146.3 ± 16.68) nmol/L] in the B[α]P exposed group increased significant, while the activity of Na(+)-K(+)-ATPase and SOD [(76.1 ± 11.42) nmol/mg prot.] were significantly decreased. Compared with B[α]P group, each index in B[α]P+ BHA combined group improved significantly (P < 0.05), besides, there were no statistically difference when compared with solvent control group. CONCLUSION: The neurotoxic effect of B[α]P may be related to the decrease of ATPase activity and the increase of Ca2+ concentration in hippocampus, while BHA can prevent these damages.


Assuntos
Benzo(a)pireno/toxicidade , Hidroxianisol Butilado/toxicidade , Hipocampo/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Animais , ATPase de Ca(2+) e Mg(2+)/metabolismo , Masculino , Malondialdeído/metabolismo , Óleo de Amendoim , Óleos de Plantas , Ratos , Ratos Sprague-Dawley , ATPase Trocadora de Sódio-Potássio/metabolismo , Superóxido Dismutase/metabolismo
9.
Toxicol In Vitro ; 32: 269-77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26812027

RESUMO

The individual and combined (binary mixtures) (anti)androgenic effect of butylparaben (BuPB), butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and propyl gallate (PG) was evaluated using the MDA-kb2 cell line. Exposing these cells to AR agonists results in the expression of the reporter gene (encoding for luciferase) and luminescence can be measured in order to monitor the activity of the reporter protein. In case of the evaluation of the anti-androgenic effect, the individual test compounds or binary mixtures were tested in the presence of a fixed concentration of a strong AR agonist (1000 pM 5-alpha-dihydrotestosterone; DHT). Cell viability was assessed using a resazurin based assay. For PG, this is the first report in the literature concerning its (anti)androgenic activity. In case of both individual and mixture testing none of the compounds or binary combinations showed androgenic activity. When tested in the presence of DHT, BuPB, BHA and BHT proved to be weak anti-androgens and this was confirmed during the evaluation of binary mixtures (BuPB+BHA, BuPB+BHT and BHA+BHT). Besides performing the in vitro testing of the binary combinations, two mathematical models (dose addition and response addition) were evaluated in terms of accuracy of prediction of the anti-androgenic effect of the selected binary mixtures. The dose addition model guaranteed a good correlation between the experimental and predicted data. However, no estimation was possible in case of mixtures containing PG, due to the lack of effect of the compound in case of the individual testing.


Assuntos
Antagonistas de Androgênios/toxicidade , Disruptores Endócrinos/toxicidade , Aditivos Alimentares/toxicidade , Conservantes Farmacêuticos/toxicidade , Androgênios/farmacologia , Antioxidantes/toxicidade , Hidroxianisol Butilado/toxicidade , Hidroxitolueno Butilado/toxicidade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cosméticos , Di-Hidrotestosterona/farmacologia , Genes Reporter , Humanos , Luciferases/genética , Luciferases/metabolismo , Parabenos/toxicidade , Galato de Propila/toxicidade , Receptores Androgênicos/metabolismo
10.
Toxicol Mech Methods ; 23(4): 273-80, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23193990

RESUMO

We investigated the prooxidant effects of bisphenol A (BPA) phenoxyl radicals in comparison with the phenoxyl radicals of 3-tert-butyl-4-hydroxyanisole (BHA), 2,6-di-tert-butyl-methylphenol (BHT) and 4-tert-butylphenol (TBP). The phenoxyl radicals, generated in situ by 1-electron oxidation of the corresponding phenol, were allowed to react with reduced nicotinamide adenine dinucleotide phosphate (NADPH) and rifampicin. The antioxidant activity of various phenols was examined based on the reduction of 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH). It was found that the prooxidant activity of BPA phenoxyl radicals far exceeded those of BHA and BHT of phenoxyl radicals. Unlike Trolox, BPA showed minimal DPPH scavenging activity. The strong prooxidant properties of BPA phenoxyl radicals propelled us to study the markers of cellular oxidative stress in GT1-7 hypothalamic neurons exposed to BPA. It was observed that neuronal cells exposed to BPA had increased generation of intracellular peroxides and mitochondrial superoxide ([Formula: see text]). The formation of peroxides and [Formula: see text] were time- and dose-dependent and that co-incubation with N-acetyl-l-cysteine or Trolox greatly lowered their levels. The results of the present study are consistent with emerging evidence that human populations (non-institutionalized) having higher levels of urinary BPA also have increased levels of oxidative stress markers and are prone to higher risk of cardiovascular diseases, diabetes and abnormalities in hepatic enzymes.


Assuntos
Compostos Benzidrílicos/toxicidade , Radicais Livres/toxicidade , Oxidantes/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fenóis/toxicidade , Animais , Compostos Benzidrílicos/química , Compostos de Bifenilo/química , Hidroxianisol Butilado/química , Hidroxianisol Butilado/toxicidade , Hidroxitolueno Butilado , Técnicas de Cultura de Células , Linhagem Celular , Radicais Livres/química , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , NADP/química , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oxidantes/química , Oxirredução , Peróxidos/metabolismo , Fenóis/química , Picratos/química , Rifampina/química , Superóxidos/metabolismo
11.
Mol Pharmacol ; 82(4): 601-13, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22740640

RESUMO

Previously we demonstrated that aldehyde dehydrogenase (ALDH) 1a1 is the major ALDH expressed in mouse liver and is an effective catalyst in metabolism of lipid aldehydes. Quantitative real-time polymerase chain reaction analysis revealed a ≈2.5- to 3-fold induction of the hepatic ALDH1A1 mRNA in mice administered either acrolein (5 mg/kg acrolein p.o.) or butylated hydroxylanisole (BHA) (0.45% in the diet) and of cytosolic NAD⁺-dependent ALDH activity. We observed ≈2-fold increases in ALDH1A1 mRNA levels in both Nrf2⁺/⁺ and Nrf2⁻/⁻ mice treated with BHA compared with controls, suggesting that BHA-induced expression is independent of nuclear factor E2-related factor 2 (Nrf2). The levels of activator protein-1 (AP-1) mRNA and protein, as well as the amount of phosphorylated c-Jun were significantly increased in mouse liver or Hepa1c1c7 cells treated with either BHA or acrolein. With use of luciferase reporters containing the 5'-flanking sequence of Aldh1a1 (-1963/+27), overexpression of c-Jun resulted in an ≈4-fold induction in luciferase activity, suggesting that c-Jun transactivates the Aldh1a1 promoter as a homodimer and not as a c-Jun/c-Fos heterodimer. Promoter deletion and mutagenesis analyses demonstrated that the AP-1 site at position -758 and possibly -1069 relative to the transcription start site was responsible for c-Jun-mediated transactivation. Electrophoretic mobility shift assay analysis with antibodies against c-Jun and c-Fos showed that c-Jun binds to the proximal AP-1 site at position -758 but not at -1069. Recruitment of c-Jun to this proximal AP-1 site by BHA was confirmed by chromatin immunoprecipitation analysis, indicating that recruitment of c-Jun to the mouse Aldh1a1 gene promoter results in increased transcription. This mode of regulation of an ALDH has not been described before.


Assuntos
Aldeído Desidrogenase/metabolismo , Fator de Transcrição AP-1/metabolismo , Acroleína/toxicidade , Aldeído Desidrogenase/genética , Família Aldeído Desidrogenase 1 , Animais , Hidroxianisol Butilado/toxicidade , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Fator 2 Relacionado a NF-E2/genética , Proteínas Nucleares/metabolismo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/metabolismo , Retinal Desidrogenase , Fator de Transcrição AP-1/genética , Transcrição Gênica
12.
Crit Rev Food Sci Nutr ; 49(1): 1-27, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18949596

RESUMO

Fats impart taste and texture to the product but it is susceptible to oxidation leading to the development of rancidity and off-flavor. Since ancient times it has been in practice to use antioxidants in foods. Discovery of synthetic antioxidants has revolutionized the use of antioxidants in food. The effect of these antioxidants in bakery products were reviewed and found to be effective in enhancing the shelf life. Animal experimental studies have shown that some of the synthetic antioxidants had toxigenic, mutagenic, and carcinogenic effects. Hence there is an increasing demand for the use of natural antioxidants in foods, especially in bakery products. Some of the natural antioxidants such as alpha-tocopherol, beta-carotene, and ascorbic acid were already used in bakery products. These natural antioxidants are found to be effective in enhancing the shelf life of bakery products but not to the extent of synthetic antioxidants. Baking processing steps may lower the antioxidative activity but techniques such as encapsulation of antioxidants can retain their activity. Antioxidative activity of the plant extracts such as garcinia, curcumin, vanillins, and mint were reviewed but studies on their role in bakery products were limited or very few. Hence there is a wide scope for study under this direction in depth.


Assuntos
Antioxidantes/análise , Pão/análise , Análise de Alimentos , Antioxidantes/classificação , Hidroxianisol Butilado/análise , Hidroxianisol Butilado/toxicidade , Hidroxitolueno Butilado/análise , Hidroxitolueno Butilado/toxicidade , Interações Medicamentosas , Grão Comestível/química , Fabaceae/química , Aditivos Alimentares/análise , Manipulação de Alimentos , Frutas/química , Peroxidação de Lipídeos
13.
Toxicol Pathol ; 36(3): 420-7, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18441256

RESUMO

Butylated hydroxyanisole (BHA) and 1,2-bis(2-pyridyl)ethylene (2PY-e) are phase II drug metabolizing enzyme inducers which cause hepatomegaly without hepatocyte hypertrophy and induce glutathione S-transferase Yp (GST Yp, pi-class GST), which is known as a tumor marker. To evaluate the relationship between GST Yp induction and hepatocyte proliferation, male F344/DuCrj rats were treated with BHA, 2PY-e, or phenobarbital (PB) for three or seven days. All three chemicals caused increases in liver weight after three and seven days. Immunohistochemical examinations revealed that BHA and 2PY-e induced GST Yp in the hepatocytes of the periportal and centrilobular areas at three and seven days, respectively, whereas PB did not. Significant increases in the BrdU labeling indices were found in the livers of rats in each of the three-day treatment groups, but the labeling index of rat livers treated with BHA was decreased to the control level at seven days, although the high labeling indices of 2PY-e and PB persisted at seven days. Double immunostaining confirmed that BrdU-positive nuclei corresponded to GST Yp-positive hepatocytes in both BHA and 2PY-e treated rats. These results suggest that the GST Yp induction caused by BHA or 2PY-e has some kind of relationship with hepatocyte proliferation.


Assuntos
Hidroxianisol Butilado/toxicidade , Proliferação de Células/efeitos dos fármacos , Etilenos/toxicidade , Glutationa Transferase/biossíntese , Hepatócitos/citologia , Fígado/efeitos dos fármacos , Fenobarbital/farmacologia , Piridinas/toxicidade , Animais , Bromodesoxiuridina/metabolismo , Indução Enzimática , Técnica Indireta de Fluorescência para Anticorpo , Hepatócitos/enzimologia , Isoenzimas , Fígado/enzimologia , Fígado/patologia , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344
14.
Cell Biol Toxicol ; 23(3): 189-99, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17149658

RESUMO

Butylated hydroxyanisole (BHA) is perhaps the most extensively used synthetic antioxidant in the food and cosmetic industry, although considerable controversy exists in the literature regarding the safety of this compound. Most in vitro studies describing the effects of BHA have been performed in cancer cells, but it is unclear whether normal cells are equally susceptible to BHA exposure. The present study investigate the toxic potential of BHA in mammalian cells, using biochemical and morphological parameters, which reveal interference with structures essential for cell survival, proliferation and/or function. Cell growth inhibition was assessed by using colorimetric assays, whereas cellular alterations after BHA exposure, were evaluated using conventional light and fluorescence microscopy. Low doses of BHA exerted a significant cytotoxic effect, associated with loss of mitochondrial function. As the concentration of BHA was increased, morphological alterations in critical subcellular targets such as lysosomes, mitochondria and actin cytoskeleton, were observed. In parallel, BHA induced an irreversible loss of cell proliferative capacity, preceding apoptosis induction. Thus, the dose-dependent activity of BHA on Vero cells appears to be cytotoxic as well as cytostatic. Our observations, although simplified with respect to the in vivo situations, allowed the assessment of the specific damage at the cellular level, and provide some clue about the effects of BHA in non-tumoral mammalian cells.


Assuntos
Antioxidantes/toxicidade , Hidroxianisol Butilado/toxicidade , Actinas/metabolismo , Animais , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Hidroxianisol Butilado/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/patologia , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células Vero
16.
Anticancer Res ; 23(6C): 4693-701, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14981915

RESUMO

The cytotoxicity and apoptosis-inducing activity of butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), and 2-tert-butyl-4-methylphenol (BMP) and the mixture of BHA and BHT (BHA/BHT) (1:1, molar ratio) were investigated, using human promeylocytic leukemia cell lines (HL-60) and human squamous cell carcinoma cell lines (HSC-2). The 50% cytotoxic concentration (CC50) declined in the order of BHA, BHT (0.2-0.3 mM) > BHA/BHT (0.04-0.07 mM) > BMP (0.02-0.05 mM). The addition of antioxidants (N-acetyl-Lcysteine, sodium ascorbate, catalase) reduced the cytotoxicity of BHA/BHT or BMP against HSC-2 cells, but not that of BHA or BHT, whereas the addition of NADH, a quinone reductase to BMP, enhanced the cytotoxicity. These findings suggested that the cytotoxicity of BHA/BHT and BMP might be caused by reactive intermediates. BHA-induced cytotoxicity was enhanced by horseradish peroxidases, suggesting that BHA was oxidizable and produced cytotoxic BHA radicals. Internucleosomal DNA fragmentation of HL-60 cells was preferably induced by BHA/BHT and BMP, followed by BHA. The MnSOD mRNA expression in HL-60 cells assayed by reverse transcriptase-polymerase chain reaction was highly inhibited by BHA/BHT or BMP, accompanied by the change in the electrophoretic mobility of MnSOD on polyacryamide gel. These compounds activated caspase-3, 8 and 9 in HL-60 cells. Activations of caspases, particularly caspase-3, declined in the order of BHA/BHT > BHA > BMP > BHT. The most cytotoxic BMP activated caspase-3 activity to the least extent, possibly in part due to the occurrence of necrosis. The great cytotoxicity and apoptosis induction by BHA/BHT may be due to reactive intermediates derived from the interaction between BHA phenoxyl radical and BHT or BHT phenoxyl radical.


Assuntos
Apoptose/efeitos dos fármacos , Hidroxianisol Butilado/toxicidade , Hidroxitolueno Butilado/toxicidade , Carcinógenos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , NAD/farmacologia , Antioxidantes/toxicidade , Carcinoma de Células Escamosas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HL-60 , Humanos , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , Superóxido Dismutase/genética , Células Tumorais Cultivadas
17.
Carcinogenesis ; 23(10): 1729-35, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12376483

RESUMO

Human beings are exposed to a multitude of carcinogens in their environment, and most cancers are considered to be chemically induced. Here we examined differences in genetic alterations in rat forestomach tumors induced by repeated exposure to a genotoxic carcinogen, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) or N-methylnitrosourethane (MNUR), and chronic treatment with a non-genotoxic carcinogen, butylated hydroxyanisole (BHA) or caffeic acid (CA). A total of 132, 6-week-old male F344 rats were employed. Forty rats were treated with MNNG by intragastric administration at a dose of 20 mg/kg body wt once a week for 32 weeks, and 20 rats received 20 p.p.m. MNUR in their drinking water for 48 weeks. Further groups of 20 animals were administered 2% BHA or 2% CA in the diet for 104 weeks. The remaining rats were maintained without any supplement as controls. Multiple forestomach tumors were observed in all rats of the MNNG-, MNUR-, BHA- and CA-treated groups. Histopathologically, MNUR- and CA-treated groups showed almost the same pattern. On polymerase chain reaction-single strand conformation polymorphism analysis, H-ras and p53 gene mutations were observed at high and relatively low frequencies, respectively, in forestomach tumors induced by MNNG and MNUR. Most H-ras gene mutations were G-->A transitions in codons 7 and 12 of exon 1. On the other hand, forestomach tumors due to the non-genotoxic carcinogens, BHA and CA, had almost no mutations of the H-ras and p53 genes. Moreover, relative overexpression of cyclin D1 and p53 was detected in forestomach tumors induced by the genotoxic carcinogens, while their non-genotoxic counterparts had a tendency to show low expression of those molecules. Mutations of the beta-catenin gene were not detected in any group. The present study demonstrates that rat forestomach tumors induced by genotoxic and non-genotoxic carcinogens have different underlying genetic alterations, even if their pathological features are similar.


Assuntos
Carcinógenos/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mutagênicos/toxicidade , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Animais , Sequência de Bases , Hidroxianisol Butilado/toxicidade , Primers do DNA , Modelos Animais de Doenças , Humanos , Masculino , Metilnitronitrosoguanidina/toxicidade , Nitrosometiluretano/toxicidade , Reação em Cadeia da Polimerase , Polimorfismo Conformacional de Fita Simples , Ratos , Ratos Endogâmicos F344 , Neoplasias Gástricas/induzido quimicamente
18.
Toxicol Lett ; 133(2-3): 171-9, 2002 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-12119125

RESUMO

We examined the food additive, butylated hydroxyanisole (BHA), for its capacity to modulate the cytotoxic effects of Delta(9)-tetrahydrocannabinol (THC). THC was not cytotoxic when added to cultures of A549 lung tumor cells at concentrations<5 microg/ml, but induced cell necrosis at higher levels with an LC(50)=16-18 microg/ml. BHA alone, at concentrations of 10-200 microM, produced limited cell toxicity but significantly enhanced the necrotic death resulting from concurrent exposure to THC. In the presence of BHA at 200 microM, the LC(50) for THC decreased to 10-12 microg/ml. Similar results were obtained with smoke extracts prepared from marijuana cigarettes, but not with extracts from tobacco or placebo marijuana cigarettes (containing no THC). Two different mechanisms for this synergistic cytotoxicity were investigated. Experiments were repeated in the presence of either diphenyleneiodonium or dicumarol as inhibitors of the redox cycling pathway. Neither of these compounds protected cells from the effects of combined THC and BHA, but rather enhanced necrotic cell death. Measurements of cellular ATP revealed that both THC and BHA reduced ATP levels in A549 cells, consistent with toxic effects on mitochondrial electron transport. The combination was synergistic in this respect, reducing ATP levels to <15% of control. Exposure to marijuana smoke in conjunction with BHA, a common food additive, may promote deleterious health effects in the lung.


Assuntos
Hidroxianisol Butilado/toxicidade , Dronabinol/toxicidade , Conservantes de Alimentos/toxicidade , Alucinógenos/toxicidade , Trifosfato de Adenosina/metabolismo , Cannabis/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Corantes , NAD(P)H Desidrogenase (Quinona)/metabolismo , NADPH-Ferri-Hemoproteína Redutase/metabolismo , Espécies Reativas de Oxigênio , Alcatrões/toxicidade , Nicotiana/química
20.
Food Chem Toxicol ; 38(11): 977-83, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11038234

RESUMO

The effects of butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) on the N-acetyltransferase (NAT) activity and DNA adduct formation in PC-3 cells (human prostate tumor) was studied. PC-3 cells were placed into tissue culture flasks and grown in an incubator as cytosols and intact cells. The BHA or BHT were added to the cytosols and intact cells. The NAT activity in cytosol and intact PC-3 cells were measured by HPLC assaying exhibited for the amounts of N-acetyl-2-aminofluorene and N-acetyl-p-aminobenzoic acid, 2-aminofluorene and p-aminobenzoic acid. The NAT activity in PC-3 cells and cytosols were inhibited by BHA or BHT in a dose-dependent manner; that is, the higher the concentrations of BHA or BHT the higher inhibition of NAT activity. The NAT values of K(m) and V(max) from PC-3 cells were also decreased by BHA or BHT in both cytosols and intact cells. The data also demonstrated concomitant exposure to BHA or BHT decreased AF-DNA adduct formation which was seen in the PC-3 cells. In addition, the formation of DNA adduct was decreased after BHA or BHT exposure. These findings suggested the usefulness of using human cultured PC-3 cells for assessing arylamine-induced DNA adduct formation. Furthermore, the findings illustrate how effectively BHA or BHT reduce the adduct formation.


Assuntos
Arilamina N-Acetiltransferase/metabolismo , Hidroxianisol Butilado/toxicidade , Hidroxitolueno Butilado/toxicidade , Adutos de DNA/efeitos dos fármacos , Dano ao DNA , DNA/efeitos dos fármacos , Neoplasias da Próstata/enzimologia , Citosol/efeitos dos fármacos , Citosol/enzimologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Fluorenos/metabolismo , Fluorenos/toxicidade , Humanos , Masculino , Neoplasias da Próstata/genética , Células Tumorais Cultivadas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA