Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 329
Filtrar
1.
Food Res Int ; 186: 114306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729707

RESUMO

The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.


Assuntos
Aminoácidos , Aminas Biogênicas , Queijo , Proteólise , Queijo/microbiologia , Queijo/análise , Aminoácidos/análise , Aminoácidos/metabolismo , Aminas Biogênicas/análise , Microbiologia de Alimentos , Manipulação de Alimentos/métodos , Leuconostoc/metabolismo , Leuconostoc/crescimento & desenvolvimento , Lactobacillus/metabolismo , Lactobacillus/crescimento & desenvolvimento , Nitrogênio/análise , Qualidade dos Alimentos , Fermentação
2.
Sci Rep ; 12(1): 1432, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082322

RESUMO

Faecal (FM) and colon mucosal associated microbiota (MAM) were studied in a model of colorectal cancer (CRC), the Apc-mutated Pirc rats, and in age-paired wt F344 rats. Principal Coordinates Analysis indicated that samples' distribution was driven by age, with samples of young rats (1 month old; without tumours) separated from older ones (11-month-old; bearing tumours). Diversity analysis showed significant differences between FM and MAM in older Pirc rats, and between MAM of both Pirc and wt rats and the tumour microbiota, enriched in Enterococcus, Escherichia/Shigella, Proteus and Bifidobacteriaceae. In young animals, Pirc FM was enriched in the genus Delftia, while wt FM was enriched in Lactobacillus and Streptococcus. Some CRC biomarkers and faecal short chain fatty acids (SCFAs) were also measured. Colon proliferation and DClK1 expression, a pro-survival mucosal marker, were higher in Pirc than in wt rats, while the mucin MUC2, was lower in Pirc rats. Branched SCFAs were higher in Pirc than in wt animals. By Spearman analysis CRC biomarkers correlated with FM (in both young and old rats) and with MAM (in young rats), suggesting a specific relationship between the gut microbiota profile and these functional mucosal parameters deserving further investigation.


Assuntos
Biomarcadores Tumorais/genética , Carcinogênese/genética , Colo/microbiologia , Neoplasias do Colo/genética , Quinases Semelhantes a Duplacortina/genética , Mucina-2/genética , Fatores Etários , Animais , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/isolamento & purificação , Biomarcadores Tumorais/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Colo/metabolismo , Neoplasias do Colo/metabolismo , Neoplasias do Colo/microbiologia , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Quinases Semelhantes a Duplacortina/metabolismo , Enterococcus/crescimento & desenvolvimento , Enterococcus/isolamento & purificação , Escherichia/crescimento & desenvolvimento , Escherichia/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Regulação da Expressão Gênica , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Masculino , Mucina-2/metabolismo , Análise de Componente Principal , Proteus/crescimento & desenvolvimento , Proteus/isolamento & purificação , Ratos , Ratos Endogâmicos F344 , Shigella/crescimento & desenvolvimento , Shigella/isolamento & purificação , Streptococcus/crescimento & desenvolvimento , Streptococcus/isolamento & purificação
3.
Food Funct ; 12(21): 10423-10431, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34596192

RESUMO

Yeast mannans from Saccharomyces cerevisiae (123.2 kDa, 40.5 kDa and 21.3 kDa) were prepared. The scavenging abilities of Fe2+, OH˙, and O2˙- and protective capacities against lipid peroxidation and oxidative DNA damage increased with the reduction of the molecular weights of yeast mannans. The highest scavenging abilities of Fe2+, OH˙ and O2˙- (25.32%, 70.8%, and 61.5%) were observed with YM-90, and it showed an anti-lipid peroxidation capacity of 65.82%, which was much stronger than that of vitamin C (VC), with a thiobarbituric acid-reactive substance (TBARS) inhibition rate of 80.41%. However, the highest DPPH scavenging rate (88.7%) was exhibited by YM-30. In addition, the growth-promoting effect of yeast mannans on Lactobacillus strains was further confirmed, and a 54.2% increment of Lactobacillus plantarum ZWR5 cell viability was achieved by YM-90. The results indicated the potential industrial applications of this yeast mannan technology in therapeutic and nutraceutical production.


Assuntos
Antioxidantes/metabolismo , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Mananas/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequestradores de Radicais Livres/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peso Molecular , Estresse Oxidativo/efeitos dos fármacos
4.
PLoS One ; 16(2): e0247044, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33577600

RESUMO

OBJECTIVE: To evaluate the effect of medical cannabis consumption on oral flora and saliva. DESIGN: A clinical prospective study, at the rheumatology clinic of the Nazareth Hospital in Nazareth, recruiting consecutively patients approved for medical cannabis, evaluating their saliva flow, pH and microbial load of Streptococcus mutans and Lactobacillus, prior to and under medical cannabis treatment. METHODS: Patients recently licensed for medical cannabis treatment, were recruited just prior to starting medical cannabis consumption (week 0), 1 and 4 weeks later, patients provided 5-minute time saliva samples, which were measured for their volume and pH, and cultured on a special microbial kit, evaluating the growth of Streptococcus mutans and Lactobacillus. RESULTS: Out of 16 patients enrolled, 14 were female and had fibromyalgia. The mean age of the patients was 52.8±12.9 years. The mean saliva flow at week 0, week 1 and week 4 were 5.38±3.36 ml/5-minutes, 6 (p = 0.769) and 5.45 (p = 0.391), respectively, and for saliva pH were 6.28, 5.94 (p = 0.51) and 5.5 (p = 0.07) respectively also. The mean Streptococcus mutans growth score at weeks 0, 1 and 4 was1.8±0.75, 1.6±0.83 (p = 0.234), and 2.4±0.84 (p = 0.058), respectively. The mean Lactobacilli growth score at weeks 0, 1 and 4 was 2.59±0.88, 3.1±0.69 (p = 0.033) and 3.3±0.67 (p = 0.025), respectively. CONCLUSIONS: The results of this study show that medical cannabis consumption has no significant effect on saliva volume or pH, but it may be associated with changes in salivary levels of oral microbes such as Streptococcus mutans and Lactobacilli.


Assuntos
Lactobacillus/efeitos dos fármacos , Maconha Medicinal/farmacologia , Saliva/efeitos dos fármacos , Saliva/microbiologia , Streptococcus mutans/efeitos dos fármacos , Adulto , Feminino , Humanos , Concentração de Íons de Hidrogênio , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Saliva/química , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/isolamento & purificação
5.
J Sci Food Agric ; 101(6): 2491-2499, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33063324

RESUMO

BACKGROUND: Codonopsis pilosula and C. tangshen are both plants widely used in traditional Chinese medicine. Polysaccharides, which are their primary active components, are thought to be important in their extensive use. In this study, two neutral polysaccharide fractions of C. pilosula (CPPN) and C. tangshen (CTPN) were obtained by fractionation on a DEAE-Sepharose column and characterized. RESULTS: It was confirmed that the neutral polymers CPPN and CTPN were ß-(2,1)-linked inulin-type fructans with non-reducing terminal glucose, and degree of polymerization (DP) of 19.6 and 25.2, respectively. The antioxidant and prebiotic activities in vitro were assayed based on IPEC-J2 cell lines and five strains of Lactobacillus. Results indicated that the effects of CPPN and CTPN were increased antioxidant defense in intestinal epithelial cells through enhanced cell viability, improved expression of total antioxidant capacity, glutathione peroxidase, superoxide dismutase and catalase, and reduced levels of malondialdehyde and lactic dehydrogenase. The prebiotic activity of CPPN and CTPN was demonstrated by the promoting effect on Lactobacillus proliferation in vitro. The different biological activities obtained between the two fractions are probably due to the different DP and thus molecular weights of CPPN and CTPN. CONCLUSION: The inulin fractions from C. pilosula and C. tangshen were natural sources of potential intestinal antioxidants as well as prebiotics, which will be valuable in further studies and new applications of inulin-containing health products. © 2020 Society of Chemical Industry.


Assuntos
Antioxidantes/química , Codonopsis/química , Medicamentos de Ervas Chinesas/química , Frutanos/química , Inulina/química , Prebióticos/análise , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Codonopsis/classificação , Medicamentos de Ervas Chinesas/isolamento & purificação , Medicamentos de Ervas Chinesas/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Frutanos/isolamento & purificação , Frutanos/farmacologia , Humanos , Inulina/isolamento & purificação , Inulina/farmacologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Estresse Oxidativo/efeitos dos fármacos , Polimerização
6.
Bull Exp Biol Med ; 170(1): 49-52, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33222085

RESUMO

We studied the effects of IL-1ß, IL-8, TNFα, and prostaglandin E2α in concentrations typically observed in health and during inflammation on the growth of vaginal microbiota and its resistance to factors inhibiting the synthesis of proteins, nucleic acids, and peptidoglycans. An increase in the cytokine levels, characteristic of inflammation, inhibits the growth of Lactobacillus population and improves its resistance to adverse factors. The growth of the population of opportunistic microorganisms (S. aureus, E. coli) is stimulated under these conditions, while their resistance to adverse factors decreases. Hence, it seems that the cytokines regulate the behavior of the host cells and of its bacterial symbionts.


Assuntos
Dinoprostona/farmacologia , Mediadores da Inflamação/farmacologia , Interleucina-1beta/farmacologia , Interleucina-8/farmacologia , Microbiota/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Vaginose Bacteriana/microbiologia , Líquidos Corporais/microbiologia , Estudos de Casos e Controles , Dinoprostona/imunologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Feminino , Interações Hospedeiro-Patógeno , Humanos , Inflamação , Mediadores da Inflamação/imunologia , Interleucina-1beta/imunologia , Interleucina-8/imunologia , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Microbiota/imunologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Fator de Necrose Tumoral alfa/imunologia , Vagina/imunologia , Vagina/microbiologia , Vaginose Bacteriana/imunologia
7.
Clin Epigenetics ; 12(1): 180, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33228781

RESUMO

BACKGROUND: The composition of the microbiome plays an important role in human health and disease. Whether there is a direct association between the cervicovaginal microbiome and the host's epigenome is largely unexplored. RESULTS: Here we analyzed a total of 448 cervicovaginal smear samples and studied both the DNA methylome of the host and the microbiome using the Illumina EPIC array and next-generation sequencing, respectively. We found that those CpGs that are hypo-methylated in samples with non-lactobacilli (O-type) dominating communities are strongly associated with gastrointestinal differentiation and that a signature consisting of 819 CpGs was able to discriminate lactobacilli-dominating (L-type) from O-type samples with an area under the receiver operator characteristic curve (AUC) of 0.84 (95% CI = 0.77-0.90) in an independent validation set. The performance found in samples with more than 50% epithelial cells was further improved (AUC 0.87) and in women younger than 50 years of age was even higher (AUC 0.91). In a subset of 96 women, the buccal but not the blood cell DNA showed the same trend as the cervicovaginal samples in discriminating women with L- from O-type cervicovaginal communities. CONCLUSIONS: These findings strongly support the view that the epithelial epigenome plays an essential role in hosting specific microbial communities.


Assuntos
Colo do Útero/microbiologia , Epigenoma/genética , Microbiota/genética , Vagina/microbiologia , Adulto , Ilhas de CpG , Metilação de DNA , Células Epiteliais/metabolismo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Pessoa de Meia-Idade , Valor Preditivo dos Testes
8.
Gut Microbes ; 12(1): 1-9, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32844722

RESUMO

BACKGROUND: Recent findings by Tang et al. (2020) show dietary restriction (30%, 2 weeks) prevents methotrexate-induced mortality by modulation of the microbiota, specifically the expansion of Lactobacillus. While fundamentally insightful, upscaling this schedule is a major obstacle to clinical uptake. Here, we evaluate a safe and clinically achievable schedule of pre-therapy fasting for 48 h on microbiota composition, body composition and intestinal proliferation, and assess its impact on the severity of methotrexate-induced gastrointestinal mucositis using a validated preclinical rat model. METHODS: Age- and weight-matched male Wistar rats were treated with a sublethal dose of 45 mg/kg methotrexate with or without pre-therapy fasting. The impact of acute fasting on epithelial proliferation, body composition and the microbiota was assessed using plasma citrulline, Ki67 immunohistochemistry, miniSpec and 16S rRNA sequencing. The severity of gastrointestinal mucositis was evaluated using plasma citrulline and body weight. RESULTS: Whilst pre-therapy fasting slowed epithelial proliferation and increased microbial diversity and richness, it also induced significant weight loss and was unable to attenuate the severity of mucositis in both age- and weight-matched groups. In contrast to Tang et al., we saw no expansion of Lactobacillus following acute fasting. CONCLUSIONS: Our findings suggest that the beneficial effects of acute fasting are masked by the detrimental effects on body weight and composition and lacking influence on Lactobacillus. Future studies should consider alternative fasting schedules or aim to induce comparable microbial and mucosal manipulation without compromising body composition using clinically feasible methods of dietary or microbial intervention.


Assuntos
Jejum , Metotrexato/toxicidade , Mucosite/induzido quimicamente , Mucosite/prevenção & controle , Animais , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Proliferação de Células , Citrulina/sangue , Enterócitos/fisiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Mucosa Intestinal/patologia , Jejuno/patologia , Lactobacillus/crescimento & desenvolvimento , Masculino , Ratos , Ratos Wistar , Redução de Peso
9.
Food Chem ; 333: 127527, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32683263

RESUMO

The aim of this study was to develop a novel fermented soybean food (FSF) using selected Bacillus subtilis GD1, Bacillus subtilis N4, Bacillus velezensis GZ1, Lactobacillus delbrueckii subsp. bulgaricus and Hansenula anomala, as well as to assess its antioxidant and anti-fatigue activity. These Bacillus strains had excellent enzyme producing and soybean transformation capacity. FSF showed the highest peptide, total phenol, total flavonoid content, antioxidant activity, and suitable organic acid and biological amine content. In intense exercise mice, FSF treatment markedly increased hepatic glycogen level, decreased metabolite accumulation, improved the activities of antioxidant enzymes and decreased malondialdehyde (MDA) level in serum and liver, respectively. Furthermore, FSF treatment increased nuclear factor-erythroid 2-related factor 2 (Nrf2) and antioxidant response element (ARE)-dependent gene expression. Together, the selection of microbial starter culture and mixed culture fermentation are essential for the effective enrichment of bioactive compounds, and FSF has stronger antioxidant and anti-fatigue activity.


Assuntos
Antioxidantes/metabolismo , Bacillus/metabolismo , Alimentos Fermentados/análise , Glycine max/metabolismo , Lactobacillus/metabolismo , Pichia/metabolismo , Animais , Antioxidantes/farmacologia , Bacillus/crescimento & desenvolvimento , Nitrogênio da Ureia Sanguínea , Fadiga/metabolismo , Fadiga/patologia , Flavonoides/análise , Glicogênio/metabolismo , Lactobacillus/crescimento & desenvolvimento , Fígado/metabolismo , Masculino , Malondialdeído/sangue , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/análise , Condicionamento Físico Animal , Pichia/crescimento & desenvolvimento , Glycine max/química
10.
Oncology ; 98(9): 593-602, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32604093

RESUMO

BACKGROUND: Colorectal cancer is the second leading cause of cancer-related death worldwide. In recent years, researchers have focussed on the role of the intestinal microbiota in both the prevention and the treatment of colorectal cancer. SUMMARY: The evidence in the literature supports that there is a fragile balance between different species of bacteria in the human gut. A disturbance of this balance towards increased levels of the bacteria Fusobacterium nucleatum and Bacteroides fragilis is associated with an increased risk of colorectal cancer. The mechanisms involved include the release of toxins which activate inflammation and the regulation of specific miRNAs (with an increase in the expression of oncogenic miRNAs and a decrease in the expression of tumour suppressor miRNAs), thereby increasing cell proliferation and leading to tumorigenesis. On the other hand, Lactobacillus and Bifidobacterium have a protective effect against the development of colorectal cancer through mechanisms that involve an increase in the levels of anticarcinogenic metabolites such as butyrate and a decrease in the activity of proinflammatory pathways. Even though preliminary studies support that the use of probiotics in the prevention and management of colorectal cancer is promising, more research is needed in this field. Key Message: The association between the intestinal microbiota, diet and colorectal cancer remains an active area of research with expected future applications in the use of probiotics for the prevention and management of this significant disease.


Assuntos
Neoplasias Colorretais/dietoterapia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/fisiologia , Animais , Bacteroides fragilis/crescimento & desenvolvimento , Bifidobacterium/crescimento & desenvolvimento , Neoplasias Colorretais/prevenção & controle , Fusobacterium nucleatum/crescimento & desenvolvimento , Humanos , Lactobacillus/crescimento & desenvolvimento
11.
Food Chem ; 332: 127382, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32619943

RESUMO

Sea buckthorn (Hippophaë rhamnoides L.) berries have high biological value as a rich source of phenolic compounds, fatty acids and vitamins A, C, E. Due to the high organic acid content and sour taste, the fruits are rarely used in juice production. Therefore, the study aimed to determine the metabolic activity of Lactobacillus plantarum, Lactobacillus plantarum subsp. argentoratensis and Oenococcus oeni strains along with the dynamics of changes in organic acids, sugars, phenolic compounds, and antioxidant activity during 72-h fermentation of 100% sea buckthorn and mixed with apple (1:1) juices. The strongest malolactic conversion was in mixed juices (to 75.0%). The most efficient strains were L. plantarum DSM 10492, 20174 and 6872. L. plantarum strains caused an increase in flavonols and antioxidant activity of sea buckthorn-apple juices. The results can be used to select conditions and strains in industrial-scale fermentation, to produce novel sea buckthorn products and increase their consumption.


Assuntos
Antioxidantes/química , Sucos de Frutas e Vegetais/análise , Ácido Láctico/metabolismo , Malatos/metabolismo , Fenóis/metabolismo , Açúcares/metabolismo , Fermentação , Flavonóis/química , Flavonóis/metabolismo , Frutas/química , Frutas/metabolismo , Hippophae/química , Hippophae/metabolismo , Concentração de Íons de Hidrogênio , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Malus/química , Malus/metabolismo , Oenococcus/crescimento & desenvolvimento , Oenococcus/metabolismo , Fenóis/química
12.
Food Microbiol ; 91: 103550, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32539976

RESUMO

Degradation of undesirable biogenic amines (BAs) in foodstuffs by microorganisms is considered one of the most effective ways of eliminating their toxicity. In this study, we designed two sets of primers for the detection and quantification of the multicopper oxidase gene (MCO), which encodes an enzyme involved in BAs degradation, and endogenous (glyceraldehyde-3-phosphate dehydrogenase) gene (GAPDH) in Lactobacillus casei group by real-time PCR (qPCR). We tested 15 Lactobacillus strains in the screening assays (thus, MCO gene possessing assay (PCR) and monitoring of BAs degradation by HPLC-UV), in which Lactobacillus casei CCDM 198 exhibited the best degradation abilities. For this strain, we monitored the expression of the target gene (MCO) in time (qPCR), the effect of redox treatments (cysteine, ascorbic acid) on the expression of the gene, and the ability to degrade BAs not only in a modified MRS medium (MRS/2) but also in a real food sample (milk). Moreover, decarboxylase activity (ability to form BAs) of this strain was excluded. According to the results, CCDM 198 significantly (P < 0.05) reduced BAs (putrescine, histamine, tyramine, cadaverine), up to 25% decline in 48 h. The highest level of relative expression of MCO (5.21 ± 0.14) was achieved in MRS/2 media with cysteine.


Assuntos
Proteínas de Bactérias/genética , Aminas Biogênicas/metabolismo , Lacticaseibacillus casei/metabolismo , Oxirredutases/genética , Animais , Ácido Ascórbico/análise , Ácido Ascórbico/metabolismo , Proteínas de Bactérias/metabolismo , Aminas Biogênicas/análise , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Cisteína/análise , Cisteína/metabolismo , Regulação Bacteriana da Expressão Gênica , Gliceraldeído-3-Fosfato Desidrogenases/genética , Lactobacillus/enzimologia , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Lacticaseibacillus casei/enzimologia , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/crescimento & desenvolvimento , Leite/química , Oxirredutases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
J Sci Food Agric ; 100(6): 2554-2567, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31975408

RESUMO

BACKGROUND: Carapax Trionycis is the shell of the soft-shelled turtle. It is rich in minerals, amino acid, peptides, and other nutrients. Current processing and consumption of soft-shelled turtle leads to the waste of huge quantities of Carapax Trionycis in the form of spent materials. In this study, the bioavailability, prebiotic activity, and physicochemical properties of Carapax Trionycis using different processing methods were investigated. The vinegar-quenched Carapax Trionycis (V-CT), fine powders (D0.18, D0.10), and superfine powders (D0.05, D0.025) of Carapax Trionycis were prepared by the vinegar-quenching method, common grinding, and the superfine grinding method. RESULTS: The average particle sizes of D0.18, D0.10, D0.05, and D0.025 were 147.82, 77.35, 36.65, and 2.24 µm, respectively. Superfine grinding changed the surface morphology of Carapax Trionycis and promoted the release of active ingredients. D0.025 had the highest polypeptide (8.15%), polysaccharide (1.21%), total free amino acid (232.36 mg 100 g-1 ) and water-soluble extract content (10.74%), and showed the highest calcium release rate (55.64%) after in vitro digestion. The apparent permeability (PAPP ) of the resulting Carapax Trionycis samples in the dialysis tubing model and the everted intestinal sac model increased significantly with the decrease in the Carapax Trionycis particle sizes. Furthermore, the five Carapax Trionycis samples significantly stimulated the growth of the tested probiotics and increased lactic acids production after 48 h fermentation compared to the control. The Carapax Trionycis powder prepared by superfine grinding displayed better prebiotic activity than other samples as it significantly induced a greater proliferation of probiotic bacteria and higher production of lactic acid, as well as greater release of free calcium. CONCLUSIONS: The results showed that Carapax Trionycis superfine powder D0.025 had the highest active ingredient content, calcium bioavailability, and prebiotic activity. Our approach of developing Carapax Trionycis superfine powder as natural calcium supplement or potential prebiotic would therefore broaden the scope of soft-shelled turtle processing waste utilization in an eco-friendly, cost-effective, and sustainable approach in the future. © 2020 Society of Chemical Industry.


Assuntos
Exoesqueleto/química , Disponibilidade Biológica , Prebióticos/análise , Tartarugas , Animais , Cálcio/química , Digestão , Resíduos Industriais , Absorção Intestinal , Lactobacillus/crescimento & desenvolvimento , Masculino , Tamanho da Partícula , Pós/química , Probióticos , Ratos Sprague-Dawley
14.
Int J Food Microbiol ; 313: 108379, 2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31675541

RESUMO

Lactobacillus algidus is a meat spoilage bacterium often dominating the bacterial communities on chilled, packaged meat. Yet, L. algidus strains are rarely recovered from meat, and only few studies have focused on this species. The main reason limiting detailed studies on L. algidus is related to its poor growth on the media routinely used for culturing food spoilage bacteria. Thus, our study sought to develop reliable culture media for L. algidus to enable its recovery from meat, and to allow subculturing and phenotypic analyses of the strains. We assessed the growth of meat-derived L. algidus strains on common culture media and their modifications, and explored the suitability of potential media for the recovery of L. algidus from meat. Moreover, we determined whether 12 meat-derived L. algidus strains selected from our culture collection produce biogenic amines that may compromise safety or quality of meat, and finally, sequenced de novo and annotated the genomes of two meat-derived L. algidus strains to uncover genes and metabolic pathways relevant for phenotypic traits observed. MRS agar supplemented with complex substances (peptone, meat and yeast extract, liver digest) supported the growth of L. algidus, and allowed the recovery of new L. algidus isolates from meat. However, most strains grew poorly on standard MRS agar and on general-purpose media. In MRS broth, most strains grew well but a subset of strains required supplementation of MRS broth with additional cysteine. Supplementation of MRS broth with catalase allowed growth in aerated cultures suggesting that the strains produced hydrogen peroxide when grown aerobically. The strains tested (n = 12) produced ornithine from arginine and putrescine from agmatine, and two strains produced tyramine from tyrosine. Our findings reveal that L. algidus populations are underestimated if routine culture protocols are applied, and prompt concerns that L. algidus may generate tyramine or putrescine in meat or fermented meat products.


Assuntos
Lactobacillus/crescimento & desenvolvimento , Produtos da Carne/microbiologia , Animais , Aminas Biogênicas/análise , Aminas Biogênicas/metabolismo , Bovinos , Meios de Cultura/metabolismo , Fermentação , Lactobacillus/metabolismo , Produtos da Carne/análise , Putrescina/análise , Putrescina/metabolismo , Suínos
15.
J Med Food ; 23(2): 114-124, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31747353

RESUMO

As the functions of Lactobacilli become better understood, there are increasing numbers of applications for Lactobacillus products. Previously, we have demonstrated that Lactobacillus rhamnosus GG (LGG) can prevent alcoholic liver injury. LGG granules were produced by fluid bed granulation with a media composed of starch, skimmed milk powder, whey powder, microcrystalline cellulose and maltose, and LGG fermented liquid that comprised 30-50% of the total weight. We found LGG granules dose-dependently protected against chronic alcoholic liver disease. When alcohol was consumed for 8 weeks with LGG treatment during the last 2 weeks, we demonstrated that the dose dependence of LGG granules can improve alcohol-induced liver injury through decreasing the levels of lipopolysaccharide and tumor necrosis factor-α in serum and prevent liver steatosis by suppressing triglyceride, free fatty acid, and malondialdehyde production in liver. Alcohol feeding caused a decline in the number of both Lactobacillus and Bifidobacterium, with a proportional increase in the number of Clostridium perfringens in ileum, and expansion of the Gram-negative bacteria Proteobacteria, Campylobacterales, and Helicobacter in cecum. However, LGG granule treatment restored the content of these microorganisms. In conclusion, LGG granule supplementation can improve the intestinal microbiota, reduce the number of gram-negative bacteria, and ameliorate alcoholic liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas/microbiologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/terapia , Microbioma Gastrointestinal/fisiologia , Intestinos/microbiologia , Lacticaseibacillus rhamnosus/fisiologia , Probióticos/uso terapêutico , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Bifidobacterium/crescimento & desenvolvimento , Campylobacterales/crescimento & desenvolvimento , Clostridium perfringens/crescimento & desenvolvimento , Microbioma Gastrointestinal/genética , Helicobacter/crescimento & desenvolvimento , Íleo/microbiologia , Lactobacillus/crescimento & desenvolvimento , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteobactérias/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Triglicerídeos/sangue , Fator de Necrose Tumoral alfa/sangue
16.
Trials ; 20(1): 580, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601229

RESUMO

BACKGROUND: Recently factors in the relationship between gut microbiota, obesity, diabetes and the metabolic syndrome have been suggested in the development and progression of nonalcoholic steatohepatitis (NASH). In this sense, this work aims to evaluate the effects of probiotic supplementation on intestinal microbiota modulation, degree of hepatic steatosis and fibrosis, inflammation, gut permeability, and body composition. METHODS: This double-blind, randomized clinical trial will include adult outpatients with a diagnosis of NASH confirmed by biopsy with or without transient elastography. All patients will undergo a complete anamnesis to investigate their alcohol consumption, previous history, medications, nutritional assessment (dietary intake and body composition), sarcopenia, physical activity level and physical and functional capacity, cardiovascular risk, biochemical parameters for assessment of inflammatory status, lipid profile, hepatic function, gut permeability, and assessment of microbiota. These procedures will be performed at baseline and repeated after 24 weeks (at the end of the study). Through the process of randomization, patients will be allocated to receive treatment A or treatment B. Both patients and researchers involved will be blinded (double-blind study). The intervention consists of treatment with a probiotic mix (Lactobacillus acidophillus + Bifidobacterium lactis + Lactobacillus rhamnosus + Lactobacillus paracasei, 1 x 109 CFU for each) and the placebo which is identical in all its characteristics and packaging. Patients will be instructed to consume two sachets/day during 24 weeks and to report any symptoms or side effects related to the use of the sachets. Adherence control will be carried out through the patient's notes on a form provided, and also by checking the number of sachets used. DISCUSSION: The final results of study will be analyzed and disseminated in 2020. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03467282 . Registered on 15 March 2018.


Assuntos
Bifidobacterium animalis/crescimento & desenvolvimento , Microbioma Gastrointestinal , Lactobacillus/crescimento & desenvolvimento , Hepatopatia Gordurosa não Alcoólica/terapia , Probióticos/uso terapêutico , Brasil , Método Duplo-Cego , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/microbiologia , Probióticos/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Tempo , Resultado do Tratamento
17.
Molecules ; 24(14)2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31319614

RESUMO

Kefir is a homemade, natural fermented product comprised of a probiotic bacteria and yeast complex. Kefir consumption has been associated with many advantageous properties to general health, including as an antioxidative, anti-obesity, anti-inflammatory, anti-microbial, and anti-tumor moiety. This beverage is commonly found and consumed by people in the United States of America, China, France, Brazil, and Japan. Recently, the consumption of kefir has been popularized in other countries including Malaysia. The microflora in kefir from different countries differs due to variations in culture conditions and the starter media. Thus, this study was aimed at isolating and characterizing the lactic acid bacteria that are predominant in Malaysian kefir grains via macroscopic examination and 16S ribosomal RNA gene sequencing. The results revealed that the Malaysian kefir grains are dominated by three different strains of Lactobacillus strains, which are Lactobacillus harbinensis, Lactobacillusparacasei, and Lactobacillus plantarum. The probiotic properties of these strains, such as acid and bile salt tolerances, adherence ability to the intestinal mucosa, antibiotic resistance, and hemolytic test, were subsequently conducted and extensively studied. The isolated Lactobacillus spp. from kefir H maintained its survival rate within 3 h of incubation at pH 3 and pH 4 at 98.0 ± 3.3% and 96.1 ± 1.7% of bacteria growth and exhibited the highest survival at bile salt condition at 0.3% and 0.5%. The same isolate also showed high adherence ability to intestinal cells at 96.3 ± 0.01%, has antibiotic resistance towards ampicillin, penicillin, and tetracycline, and showed no hemolytic activity. In addition, the results of antioxidant activity tests demonstrated that isolated Lactobacillus spp. from kefir G possessed high antioxidant activities for total phenolic content (TPC), total flavonoid content (TFC), ferric reducing ability of plasma (FRAP), and 1,1-diphenyl-2-picryl-hydrazine (DPPH) assay compared to other isolates. From these data, all Lactobacillus spp. isolated from Malaysian kefir serve as promising candidates for probiotics foods and beverage since they exhibit potential probiotic properties and antioxidant activities.


Assuntos
Antioxidantes/química , Kefir/microbiologia , Lactobacillus plantarum/isolamento & purificação , Lactobacillus/isolamento & purificação , Humanos , Lactobacillus/química , Lactobacillus/crescimento & desenvolvimento , Lactobacillus plantarum/química , Lactobacillus plantarum/crescimento & desenvolvimento , Malásia , Probióticos/química , Probióticos/isolamento & purificação
18.
J Anim Sci ; 97(10): 4140-4151, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31310662

RESUMO

This study was conducted to investigate the effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, inflammation-related pathways, and microflora community in weaned piglets challenged with lipopolysaccharide (LPS). One hundred and eighty 28-d-old weaned piglets were randomly divided into 3 treatments groups: piglets fed with a basal diet (Con), piglets fed with a basal diet containing 6 × 109 CFU C. butyricum·kg-1 (CB), and piglets fed with a basal diet containing 2 × 1010 CFU E. faecali·kg-1 (EF). At the end of trial, 1 pig was randomly selected from for each pen (6 pigs per treatment group) and these 18 piglets were orally challenged with LPS 25 µg·kg-1 body weight. The result showed that piglets fed C. butyricum and E. faecalis had greater final BW compared with the control piglets (P < 0.05). The C. butyricum and E. faecalis fed piglets had lower levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), IL-1ß, tumor inflammatory factor-α (TNF-α), and had greater level of serum interferon-γ (IFN-γ) than control piglets at 1.5 and 3 h after injection with LPS (P < 0.05). Furthermore, piglets in the C. butyricum or E. faecalis treatment groups had a greater ratio of jejunal villus height to crypt depth (V/C) compared with control piglets after challenge with LPS for 3 h (P < 0.05). Compared with the control treatment, the CB and EF treatments significantly decreased the expression of inflammation-related pathway factors (TLR4, MyD88, and NF-κB) after challenge with LPS for 3 h (P < 0.05). High-throughput sequencing revealed that C. butyricum and E. faecalis modulated bacterial diversity in the colon. The species richness and alpha diversity (Shannon) of bacterial samples in CB or EF piglets challenged with LPS were higher than those in LPS-challenged control piglets. Furthermore, the relative abundance of Bacteroidales-Rikenellanceae in the CB group was higher than that in the control group (P < 0.05), whereas EF piglets had a higher relative abundance of Lactobacillus amylovorus and Lactobacillus gasseri (P < 0.05). In conclusion, dietary supplementation with C. butyricum or E. faecalis promoted growth performance, improved immunity, relieved intestinal villus damage and inflammation, and optimized the intestinal flora in LPS-challenged weaned piglets.


Assuntos
Ração Animal/análise , Clostridium butyricum/fisiologia , Enterococcus faecalis/fisiologia , Microbioma Gastrointestinal , Probióticos/análise , Suínos/fisiologia , Animais , Dieta/veterinária , Inflamação/veterinária , Mucosa Intestinal/microbiologia , Intestinos/microbiologia , Lactobacillus/crescimento & desenvolvimento , Lipopolissacarídeos/administração & dosagem , Distribuição Aleatória , Suínos/crescimento & desenvolvimento , Suínos/imunologia , Suínos/microbiologia
19.
Food Funct ; 10(7): 4134-4142, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31241125

RESUMO

This study aimed to investigate the effect of putrescine on the immune function and intestinal bacteria of weaning piglets. Twenty-four male castrated weaning piglets on their 21st day were randomly assigned into four groups: control (basal diet) and treatment groups given basal diets supplemented with 0.05%, 0.1%, and 0.15% putrescine for 11 days. Results were as follows: (1) Dietary putrescine increased the villus height, width, height/crypt depth and surface area, and decreased the diarrhea index (P < 0.05). (2) Dietary putrescine increased the lysozyme and acid phosphatase activities and the amount of immunoglobulin M, antibacterial peptides, and transforming growth factor ß1, but decreased the mRNA levels of tumor necrosis factor α, interleukin-6, interleukin-8 and inducible nitric oxide synthase (P < 0.05). (3) Dietary putrescine increased the mRNA expression of the mammalian target of rapamycin, signal transducer and activator of transcription, and Janus kinase 2 but decreased the mRNA expression of nuclear factor-kappa B P65 (P < 0.05). (4) Dietary putrescine increased the population of total bacteria, Lactobacillus, and Bifidobacterium and decreased that of Escherichia coli in the colon and cecum (P < 0.05). (5) Finally, dietary putrescine increased the concentrations of butyrate and total volatile fatty acids in the colon and those of acetate, propionate, and total volatile fatty acids in the cecum (P < 0.05). Overall, putrescine can enhance intestinal development, improve immune functions, and regulate the population of intestinal bacteria in weaning piglets.


Assuntos
Suplementos Nutricionais , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Putrescina/farmacologia , Desmame , Fosfatase Ácida/metabolismo , Animais , Bifidobacterium/efeitos dos fármacos , Bifidobacterium/crescimento & desenvolvimento , Butiratos/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Colo/metabolismo , Colo/microbiologia , Diarreia/prevenção & controle , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ácidos Graxos Voláteis/metabolismo , Imunoglobulina M , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Janus Quinase 2/metabolismo , Lactobacillus/efeitos dos fármacos , Lactobacillus/crescimento & desenvolvimento , Masculino , Muramidase/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Suínos
20.
Pathog Dis ; 77(3)2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31065694

RESUMO

Salmonella enterica Javiana is a leading cause of severe foodborne Salmonellosis. Despite its emergence as a major foodborne pathogen, little is known of how S. Javiana interacts with intestinal epithelial cells, or of potential methods for ameliorating the bacterial-host interaction. Using cell-based adhesion, invasion and lactate dehydrogenase release assays, we observed an invasive and cytotoxic effect of S. Javiana on intestinal epithelial cells. We assessed the effect of probiotic species of lactic acid bacteria (LAB) on the S. Javiana-host cell interaction, and hypothesized that LAB would reduce S. Javiana infectivity. Salmonella enterica Javiana invasion was significantly impaired in host cells pre-treated with live Lactobacillus acidophilus and Lactobacillus rhamnosus. In addition, pre-exposure of host cells to live L. acidophilus, L. rhamnosus and L. casei reduced S. Javiana-induced cytotoxicity, while heat-killed LAB cultures had no effect on S. Javiana invasion or cytotoxicity. qRT-PCR analysis revealed that S. Javiana exposed to L. acidophilus and L. rhamnosus exhibited reduced virulence gene expression. Moreover, pre-treating host cells with LAB prior to S. Javiana infection reduced host cell production of inflammatory cytokines. Data suggest a potential protective effect of L. acidophilus, L. rhamnosus and L. casei against intestinal epithelial infection and pathogen-induced damage caused by S. Javiana.


Assuntos
Antibiose , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Inflamação/microbiologia , Inflamação/patologia , Lactobacillus/crescimento & desenvolvimento , Salmonella enterica/crescimento & desenvolvimento , Aderência Bacteriana , Sobrevivência Celular , Citocinas/metabolismo , Endocitose , Perfilação da Expressão Gênica , Células HT29 , Humanos , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Virulência , Fatores de Virulência/biossíntese , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA