Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
eNeuro ; 11(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839305

RESUMO

Social behavior is important for our well-being, and its dysfunctions impact several pathological conditions. Although the involvement of glutamate is undeniable, the relevance of vesicular glutamate transporter type 3 (VGluT3), a specific vesicular transporter, in the control of social behavior is not sufficiently explored. Since midbrain median raphe region (MRR) is implicated in social behavior and the nucleus contains high amount of VGluT3+ neurons, we compared the behavior of male VGluT3 knock-out (KO) and VGluT3-Cre mice, the latter after chemogenetic MRR-VGluT3 manipulation. Appropriate control groups were included. Behavioral test battery was used for social behavior (sociability, social discrimination, social interaction, resident intruder test) and possible confounding factors (open field, elevated plus maze, Y-maze tests). Neuronal activation was studied by c-Fos immunohistochemistry. Human relevance was confirmed by VGluT3 gene expression in relevant human brainstem areas. VGluT3 KO mice exhibited increased anxiety, social interest, but also aggressive behavior in anxiogenic environment and impaired social memory. For KO animals, social interaction induced lower cell activation in the anterior cingulate, infralimbic cortex, and medial septum. In turn, excitation of MRR-VGluT3+ neurons was anxiolytic. Inhibition increased social interest 24 h later but decreased mobility and social behavior in aggressive context. Chemogenetic activation increased the number of c-Fos+ neurons only in the MRR. We confirmed the increased anxiety-like behavior and impaired memory of VGluT3 KO strain and revealed increased, but inadequate, social behavior. MRR-VGluT3 neurons regulated mobility and social and anxiety-like behavior in a context-dependent manner. The presence of VGluT3 mRNA on corresponding human brain areas suggests clinical relevance.


Assuntos
Ansiedade , Camundongos Knockout , Comportamento Social , Animais , Masculino , Humanos , Ansiedade/metabolismo , Núcleos da Rafe/metabolismo , Camundongos , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia , Camundongos Transgênicos , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Agressão/fisiologia
2.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673899

RESUMO

According to previous studies, the median raphe region (MRR) is known to contribute significantly to social behavior. Besides serotonin, there have also been reports of a small population of dopaminergic neurons in this region. Dopamine is linked to reward and locomotion, but very little is known about its role in the MRR. To address that, we first confirmed the presence of dopaminergic cells in the MRR of mice (immunohistochemistry, RT-PCR), and then also in humans (RT-PCR) using healthy donor samples to prove translational relevance. Next, we used chemogenetic technology in mice containing the Cre enzyme under the promoter of the dopamine transporter. With the help of an adeno-associated virus, designer receptors exclusively activated by designer drugs (DREADDs) were expressed in the dopaminergic cells of the MRR to manipulate their activity. Four weeks later, we performed an extensive behavioral characterization 30 min after the injection of the artificial ligand (Clozapine-N-Oxide). Stimulation of the dopaminergic cells in the MRR decreased social interest without influencing aggression and with an increase in social discrimination. Additionally, inhibition of the same cells increased the friendly social behavior during social interaction test. No behavioral changes were detected in anxiety, memory or locomotion. All in all, dopaminergic cells were present in both the mouse and human samples from the MRR, and the manipulation of the dopaminergic neurons in the MRR elicited a specific social response.


Assuntos
Clozapina/análogos & derivados , Neurônios Dopaminérgicos , Comportamento Social , Animais , Neurônios Dopaminérgicos/metabolismo , Masculino , Camundongos , Humanos , Clozapina/farmacologia , Núcleos da Rafe/metabolismo , Comportamento Animal , Dopamina/metabolismo , Camundongos Endogâmicos C57BL
3.
J Neurosci Res ; 100(7): 1506-1523, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35443076

RESUMO

Heterodimerization between 5-HT7 and 5-HT1A receptors seems to play an important role in the mechanism of depression and antidepressant drug action. It was suggested that the shift of the ratio between 5-HT1A /5-HT7 hetero- and 5-HT1A /5-HT1A homodimers in presynaptic neurons toward 5-HT1A /5-HT1A homodimers is one of the reasons of depression. Consequently, the artificial elevation of 5-HT7 receptor number in presynaptic terminals might restore physiological homo-/heterodimer ratio resulting in antidepressive effect. Here we showed that adeno-associated virus (AAV)-based 5-HT7 receptor overexpression in the midbrain raphe nuclei area produced antidepressive effect in male mice of both C57Bl/6J and genetically predisposed to depressive-like behavior ASC (antidepressant sensitive cataleptics) strains. These changes were accompanied by the elevation of 5-HT7 receptor mRNA level in the frontal cortex of C57Bl/6J and its reduction in the hippocampus of ASC mice. The presence of engineered 5-HT7 receptor in the midbrain of both mouse strains was further demonstrated. Importantly that 5-HT7 receptor overexpression resulted in the reduction of 5-HT1A receptor level in the membrane protein fraction from the midbrain samples of C57Bl/6J, but not ASC, mice. 5-HT7 receptor overexpression caused an increase of 5-HIAA/5-HT ratio in the midbrain and the frontal cortex of C57Bl/6J and in all investigated brain structures of ASC mice. Thus, 5-HT7 receptor overexpression in the raphe nuclei area affects brain 5-HT system and causes antidepressive effect both in C57Bl/6J and in "depressive" ASC male mice. Obtained results indicate the involvement of 5-HT7 receptor in the mechanisms underlying depressive behavior.


Assuntos
Núcleos da Rafe , Receptores de Serotonina , Serotonina , Animais , Antidepressivos/metabolismo , Encéfalo/metabolismo , Dependovirus , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleos da Rafe/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/metabolismo
4.
Exp Physiol ; 106(9): 1992-2001, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34159656

RESUMO

NEW FINDINGS: What is the central question of this study? There is evidence that H2 S plays a role in the control of breathing: what are its actions on the ventilatory and thermoregulatory responses to hypercapnia via effects in the medullary raphe, a brainstem region that participates in the ventilatory adjustments to hypercapnia? What is the main finding and its importance? Hypercapnia increased the endogenous production of H2 S in the medullary raphe. Inhibition of endogenous H2 S attenuated the ventilatory response to hypercapnia in unanaesthetized rats, suggesting its excitatory action via the cystathionine ß-synthase-H2 S pathway in the medullary raphe. ABSTRACT: Hydrogen sulfide (H2 S) has been recently recognized as a gasotransmitter alongside carbon monoxide (CO) and nitric oxide (NO). H2 S seems to modulate the ventilatory and thermoregulatory responses to hypoxia and hypercapnia. However, the action of the H2 S in the medullary raphe (MR) on the ventilatory responses to hypercapnia remains to be elucidated. The present study aimed to assess the role of H2 S in the MR (a brainstem region that contains CO2 -sensitive cells and participates in the ventilatory adjustments to hypercapnia) in the ventilatory responses to hypercapnia in adult unanaesthetized Wistar rats. To do so, aminooxyacetic acid (AOA; a cystathionine ß-synthase (CBS) enzyme inhibitor), propargylglycine (PAG; a cystathionine γ-lyase enzyme inhibitor) and sodium sulfide (Na2 S; an H2 S donor) were microinjected into the MR. Respiratory frequency (fR ), tidal volume (VT ), ventilation ( V̇E ), oxygen consumption ( V̇O2 ) and body temperature (Tb ) were measured under normocapnic (room air) and hypercapnic (7% CO2 ) conditions. H2 S concentration within the MR was determined. Microinjection of the drugs did not affect fR , VT and V̇E during normocapnia when compared to the control group. However, the microinjection of AOA, but not PAG, attenuated fR and V̇E during hypercapnia in comparison to the vehicle group, but had no effects on Tb . In addition, we observed an increase in the endogenous production of H2 S in the MR during hypercapnia. Our findings indicate that endogenously produced H2 S in the MR plays an excitatory role in the ventilatory response to hypercapnia, acting through the CBS-H2 S pathway.


Assuntos
Sulfeto de Hidrogênio , Hipercapnia , Animais , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Hipercapnia/metabolismo , Bulbo/metabolismo , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar
5.
Brain Struct Funct ; 226(4): 1253-1267, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33625560

RESUMO

Serotonin (5-HT) and dopamine (DA) are involved in the regulation of social behaviors. However, the effects of their interactions on social behavior are not well understood. In this study, rats received a serotonergic neurotoxin injection into the raphe nuclei and/or systemic administration of L-3, 4-dihydroxyphenylalanine (L-DOPA), and their agonistic behaviors were investigated using the resident-intruder (RI) paradigm. Rats in the DA + /5-HT-group, which were administered both monoaminergic treatments, exhibited intense jump and flight responses to intruders. These behaviors were not observed in rats that received either 5-HT lesions or L-DOPA treatment only. To address the neural basis of these aberrant behaviors, we compared c-Fos immunoreactivity in the brain among the different groups. The DA + /5-HT-group had c-Fos activation in areas related to anti-predatory defensive behaviors, such as the ventromedial hypothalamic nucleus, premammillary nucleus, and periaqueductal gray. Moreover, this group had increased c-Fos expression in the ventroposterior part of the anterior olfactory nucleus (AOVP). To test the involvement of this area in the aberrant behaviors, cytotoxic lesions were performed in the AOVP prior to the monoaminergic treatments, and subsequent behaviors were examined using the RI test. The AOVP-lesioned DA + /5-HT-rats had attenuation of the aberrant behaviors. Together, these results suggest that the AOVP is involved in the generation of the aberrant defensive behaviors, and that 5-HT/DA balance is important in the regulation of social behaviors.


Assuntos
Comportamento Agonístico , Animais , Dopamina , Levodopa , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/metabolismo , Ratos , Serotonina
6.
Neuropharmacology ; 187: 108477, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33581143

RESUMO

Within the hindbrain, serotonin (5-HT) functions as a modulator of the central glucagon-like peptide-1 (GLP-1) system. This interaction between 5-HT and GLP-1 is achieved via 5-HT2C and 5-HT3 receptors and is relevant for GLP-1-mediated feeding behavior. The central GLP-1 system is activated by various stressors, activates the hypothalamic pituitary adrenocortical (HPA) axis, and contributes to stress-related behaviors. Whether 5-HT modulates GLP-1's role in the stress response in unknown. We hypothesized that the serotonergic modulation of GLP-1-producing neurons (i.e., PPG neurons) is stimuli-specific and that stressed-induced PPG activity is one of the modalities in which 5-HT plays a role. In this study, we investigated the roles of 5-HT2C and 5-HT3 receptors in mediating the activation of PPG neurons in the nucleus tractus solitarius (NTS) following exposure to three different acute stressors: lithium chloride (LiCl), noncontingent cocaine (Coc), and novel restraint stress (RES). Results showed that increased c-Fos expression in PPG neurons following LiCl and RES-but not Coc-is dependent on hindbrain 5-HT2C and 5-HT3 receptor signaling. Additionally, stressors that depend on 5-HT signaling to activate PPG neurons (i.e., LiCl and RES) increased c-Fos expression in 5-HT-expressing neurons within the caudal raphe (CR), specifically in the raphe magnus (RMg). Finally, we showed that RMg neurons innervate NTS PPG neurons and that some of these PPG neurons lie in close proximity to 5-HT axons, suggesting RMg 5-HT-expressing neurons are the source of 5-HT input responsible for engaging NTS PPG neurons. Together, these findings identify a direct RMg to NTS pathway responsible for the modulatory effect of 5-HT on the central GLP-1 system-specifically via activation of 5-HT2C and 5-HT3 receptors-in the facilitation of acute stress responses.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor 5-HT2C de Serotonina/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Estresse Psicológico/metabolismo , Animais , Cocaína , Cloreto de Lítio , Masculino , Vias Neurais/metabolismo , Núcleo Magno da Rafe/metabolismo , Proglucagon/metabolismo , Núcleos da Rafe/metabolismo , Ratos , Rombencéfalo/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas do Receptor 5-HT3 de Serotonina , Núcleo Solitário/metabolismo , Estresse Fisiológico
7.
Sci Rep ; 10(1): 19361, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168887

RESUMO

The habenula is a phylogenetically conserved epithalamic structure, which conveys negative information via inhibition of mesolimbic dopamine neurons. We have previously shown the expression of kisspeptin (Kiss1) in the habenula and its role in the modulation of fear responses in the zebrafish. In this study, to investigate whether habenular Kiss1 regulates fear responses via dopamine neurons in the zebrafish, Kiss1 peptides were intracranially administered close to the habenula, and the expression of dopamine-related genes (th1, th2 and dat) were examined in the brain using real-time PCR and dopamine levels using LC-MS/MS. th1 mRNA levels and dopamine levels were significantly increased in the telencephalon 24-h and 30-min after Kiss1 administration, respectively. In fish administered with Kiss1, expression of neural activity marker gene, npas4a and kiss1 gene were significantly decreased in the ventral habenula. Application of neural tracer into the median raphe, site of habenular Kiss1 neural terminal projections showed tracer-labelled projections in the medial forebrain bundle towards the telencephalon where dopamine neurons reside. These results suggest that Kiss1 negatively regulates its own neuronal activity in the ventral habenula via autocrine action. This, in turn affects neurons of the median raphe via interneurons, which project to the telencephalic dopaminergic neurons.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Habenula/metabolismo , Kisspeptinas/metabolismo , Prosencéfalo/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Comportamento Animal , Cromatografia Líquida , Dopamina/metabolismo , Regulação da Expressão Gênica , Interneurônios/metabolismo , Masculino , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Núcleos da Rafe/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Comportamento Social , Espectrometria de Massas em Tandem , Telencéfalo/metabolismo , Peixe-Zebra
8.
BMC Neurosci ; 21(1): 12, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32216748

RESUMO

BACKGROUND: Medium spiny neurons (MSNs) comprise the main body (95% in mouse) of the dorsal striatum neurons and represent dopaminoceptive GABAergic neurons. The cAMP (cyclic Adenosine MonoPhosphate)-mediated cascade of excitation and inhibition responses observed in MSN intracellular signal transduction is crucial for neuroscience research due to its involvement in the motor and behavioral functions. In particular, all types of addictions are related to MSNs. Shedding the light on the mechanics of the above-mentioned cascade is of primary importance for this research domain. RESULTS: A mouse model of chronic social conflicts in daily agonistic interactions was used to analyze dorsal striatum neurons genes implicated in cAMP-mediated phosphorylation activation pathways specific for MSNs. Based on expression correlation analysis, we succeeded in dissecting Drd1- and Drd2-dopaminoceptive neurons (D1 and D2, correspondingly) gene pathways. We also found that D1 neurons genes clustering are split into two oppositely correlated states, passive and active ones, the latter apparently corresponding to D1 firing stage upon protein kinase A (PKA) activation. We observed that under defeat stress in chronic social conflicts the loser mice manifest overall depression of dopamine-mediated MSNs activity resulting in previously reported reduced motor activity, while the aggressive mice with positive fighting experience (aggressive mice) feature an increase in both D1-active phase and D2 MSNs genes expression leading to hyperactive behavior pattern corresponded by us before. Based on the alternative transcript isoforms expression analysis, it was assumed that many genes (Drd1, Adora1, Pde10, Ppp1r1b, Gnal), specifically those in D1 neurons, apparently remain transcriptionally repressed via the reversible mechanism of promoter CpG island silencing, resulting in alternative promoter usage following profound reduction in their expression rate. CONCLUSION: Based on the animal stress model dorsal striatum pooled tissue RNA-Seq data restricted to cAMP related genes subset we elucidated MSNs steady states exhaustive projection for the first time. We correspond the existence of D1 active state not explicitly outlined before, and connected with dynamic dopamine neurotransmission cycles. Consequently, we were also able to indicate an oscillated postsynaptic dopamine vs glutamate action pattern in the course of the neurotransmission cycles.


Assuntos
Corpo Estriado/metabolismo , AMP Cíclico/genética , Dopamina/genética , Neurônios GABAérgicos/metabolismo , Expressão Gênica , Neurônios/metabolismo , Animais , AMP Cíclico/metabolismo , Dopamina/metabolismo , Redes Reguladoras de Genes , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Núcleos da Rafe/metabolismo , Transdução de Sinais/genética , Estresse Psicológico/genética , Área Tegmentar Ventral/metabolismo
9.
Behav Brain Res ; 378: 112237, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31525404

RESUMO

Voluntary exercise increases stress resistance by modulating stress-responsive neurocircuitry, including brainstem serotonergic systems. However, it remains unknown how exercise produces adaptations to serotonergic systems. Recruitment of serotonergic systems during repeated, daily exercise could contribute to the adaptations in serotonergic systems following exercise, but whether repeated voluntary exercise recruits serotonergic systems is unknown. In this study, we investigated the effects of six weeks of voluntary or forced exercise on rat brain serotonergic systems. Specifically, we analyzed c-Fos and FosB/ΔFosB as markers of acute and chronic cellular activation, respectively, in combination with tryptophan hydroxylase, a marker of serotonergic neurons, within subregions of the dorsal raphe nucleus using immunohistochemical staining. Compared to sedentary controls, rats exposed to repeated forced exercise, but not repeated voluntary exercise, displayed decreased c-Fos expression in serotonergic neurons in the rostral dorsal portion of the dorsal raphe nucleus (DRD) and increased c-Fos expression in serotonergic neurons in the caudal DR (DRC), and interfascicular part of the dorsal raphe nucleus (DRI) during the active phase of the diurnal activity rhythm. Similarly, increases in c-Fos expression in serotonergic neurons in the DRC, DRI, and ventral portion of the dorsal raphe nucleus (DRV) were observed in rats exposed to repeated forced exercise, compared to rats exposed to repeated voluntary exercise. Six weeks of forced exercise, relative to the sedentary control condition, also increased FosB/ΔFosB expression in DRD, DRI, and DRV serotonergic neurons. While both voluntary and forced exercise increase stress resistance, these results suggest that repeated forced exercise, but not repeated voluntary exercise, increases activation of DRI serotonergic neurons, an effect that may contribute to the stress resistance effects of forced exercise. These results also suggest that mechanisms of exercise-induced stress resistance may differ depending on the controllability of the exercise.


Assuntos
Comportamento Animal/fisiologia , Atividade Motora/fisiologia , Condicionamento Físico Animal/fisiologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/metabolismo , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Triptofano Hidroxilase/metabolismo , Animais , Imuno-Histoquímica , Masculino , Ratos , Ratos Endogâmicos F344
10.
Brain Res ; 1724: 146443, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31513792

RESUMO

The participation of estrogens in depression has been well recognized. To exert its effects, estradiol binds mainly to estrogen receptors ESR1 and ESR2 (α and ß, respectively), expressed in brain regions including the hippocampus, limbic regions and hypothalamic nuclei. In rodents, modified estrogen receptors expression in brain areas have been implicated in different signs similar to those observed in depressive patients. Neonatal clomipramine (CMI) treatment is a pharmacological manipulation that generates behavioral and neurochemical changes that persist throughout adulthood and resemble human depression. The aim of this study was to analyze whether CMI neonatal treatment modifies the expression of nuclear ESR1 and ESR2 in the hippocampus, amygdala basolateral (BLA), amygdala medial (MeA), hypothalamic medial preoptic area (mPOA) and raphe nucleus in male rats. Our results indicate that CMI treatment significantly induced an mRNA increase of ESR1 in the hypothalamus, additionally produce a reduction in the mRNA ESR2 expression in raphe accompanied of an increase in hypothalamus and amygdala. CMI treated rats show more immunorreactive cells to ESR1 (ESR1-ir) in mPOA, BLA, MeA, together with a reduction of these cells in the hippocampal CA1 region. Moreover, an increase in the number of immunorreactive cells to ESR2 (ESR2-ir), in BLA and MeA, was observed in CMI treated rats. Additionally, the hippocampal CA2 region and raphe nucleus showed a decrease in these cells. Also, neonatal CMI treatment induced a decrease in the number of cells of the pyramidal layer in CA1. Overall, the results suggest that neonatal CMI treatment in rats (during brain development) induces changes in estrogen receptors in different brain areas involved with the regulation of depressive-like behaviors.


Assuntos
Encéfalo/metabolismo , Clomipramina/farmacologia , Receptores de Estrogênio/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Animais Recém-Nascidos/metabolismo , Comportamento Animal/efeitos dos fármacos , Clomipramina/metabolismo , Depressão/tratamento farmacológico , Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Hipocampo/metabolismo , Hipotálamo/metabolismo , Masculino , Núcleos da Rafe/metabolismo , Ratos , Ratos Wistar , Receptores de Estrogênio/metabolismo , Comportamento Sexual Animal/efeitos dos fármacos
11.
Stress ; 22(6): 707-717, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31184239

RESUMO

Transport stress causes not only physiological changes but also behavioral responses, including anxiety-like and depression-like behaviors in animals. The serotonergic system in the brain plays a pivotal role in processing anxiety. This study aimed to explore changes in concentrations of 5-hydroxytryptamine (serotonin), and the expression changes of tryptophan hydroxylase 2 (TPH2) mRNA and protein associated with anxiety-related behavioral responses under transport stress. A model of simulated transport stress was established in 40 adult male Sprague-Dawley rats, including a control group (n = 20) and a transport stress (TS) group (n = 20). The results showed that the rats in the TS group exhibited an increased feeding latency in the novelty-suppressed feeding test and a reduced frequency and dwelling time in the central area in the open-field test (OFT). Two hours following the final behavioral test, blood samples were collected. Creatine kinase (CK) activities and glucose and corticosterone concentrations in serum were significantly higher in the rats in the TS group than in the control group. Transport stress also significantly reduced the concentrations of 5-hydroxytryptamine in the hippocampus, striatum, and raphe nuclei and also reduced the expression levels of mRNA and protein for TPH2 in the raphe nuclei. Notably, the number of Fos-immunoreactive neurons was higher in the dorsal raphe nucleus under transport stress, whereas the number of 5-hydroxytryptamine-positive neurons was significantly lower. These findings are consistent with the hypothesis that the 5-hydroxytryptamine transmitter in the hippocampus, striatum, and raphe nuclei is involved in processing anxiety-related behavioral responses under transport stress. Lay summary Physiological and psychological stress responses were induced in a rat model of simulated transport stress. We examined whether serotonin in the brain may be involved in mediating behavioral responses following exposure to transport stress. Tissue concentrations of serotonin in rat brain regions, including the hippocampus, striatum, and raphe nuclei, were reduced following exposure to transport stress. Expression of tryptophan hydroxylase 2 mRNA and protein, which catalyses serotonin synthesis, as well as numbers of serotonin-immunoreactive neurons, were decreased in the brainstem raphe nuclei.


Assuntos
Ansiedade/metabolismo , Serotonina/metabolismo , Estresse Psicológico/metabolismo , Triptofano Hidroxilase/metabolismo , Animais , Encéfalo/metabolismo , Corticosterona/metabolismo , Masculino , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun , RNA Mensageiro/metabolismo , Núcleos da Rafe/metabolismo , Ratos , Ratos Sprague-Dawley
12.
Behav Brain Res ; 357-358: 57-64, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-29567265

RESUMO

Severe food restriction (FR), as observed in disorders like anorexia nervosa, has been associated to the reduction of estrogen levels, which in turn could lead to anxiety development. Estrogen receptors, mainly ERß type, are commonly found in the dorsal raphe nucleus (DRN) neurons, an important nucleus related to anxiety modulation and the primary source of serotonin (5-HT) in the brain. Taking together, these findings suggest an involvement of estrogen in anxiety modulation during food restriction, possibly mediated by ERß activation in serotonergic DRN neurons. Thus, the present study investigated the relationship between food restriction and anxiety-like behavior, and the involvement of DRN and ERß on the modulation of anxiety-like behaviors in animals subjected to FR. For that, female Fischer rats were grouped in control group, with free access to food, or a FR group, which received 40% of control intake during 14 days. Animals were randomly treated with 17ß-estradiol (E2), DPN (ERß selective agonist), or their respective vehicles, PBS and DMSO. Behavioral tests were performed on Elevated T-Maze (ETM) and Open Field (OF). Our results suggest that FR probably reduced the estrogen levels, since the remained in the non-ovulatory cycle phases, and their uterine weight was lower when compared to control group. The FR rats showed increased inhibitory avoidance latency in theETM indicating that FR is associated with the development of an anxiety-like state. The injections of both E2 and DPN into DRN of FR animals had an anxiolytic effect. Those data suggest thatanxiety-like behavior induced by FR could be mediated by a reduction of ERß activation in the DRN neurons, probably due to decreased estrogen levels.


Assuntos
Ansiedade/etiologia , Receptor beta de Estrogênio/metabolismo , Privação de Alimentos , Núcleos da Rafe/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/patologia , Animais , Ansiedade/tratamento farmacológico , Modelos Animais de Doenças , Estradiol/farmacologia , Ciclo Estral/efeitos dos fármacos , Feminino , Locomoção/efeitos dos fármacos , Locomoção/fisiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Microinjeções , NAD/farmacologia , Núcleos da Rafe/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Útero/efeitos dos fármacos , Útero/patologia
13.
Neuroscience ; 390: 88-103, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30125684

RESUMO

Anxiety-related defensive behavior is controlled by a distributed network of brain regions and interconnected neural circuits. The dorsal raphe nucleus (DR), which contains the majority of forebrain-projecting serotonergic neurons, is a key brain region involved in fear states and anxiety-related behavior via modulation of this broad neural network. Evidence suggests that relaxin-3 neurons in the nucleus incertus (NI) may also interact with this network, however, the potential role of the NI in the control of anxiety-related defensive behavior requires further investigation. In this study, we examined the response of an anxiety-related neuronal network, including serotonergic neurons in the DR and relaxin-3-containing neurons in the NI, to administration of an anxiogenic drug and exposure to an aversive environment. We administered an anxiogenic dose of the adenosine receptor antagonist, caffeine (50 mg/kg, i.p.), or vehicle, to adult male Wistar rats and 30 min later exposed them to either an elevated plus-maze (EPM) or a home cage environment. Administration of caffeine and exposure to the EPM activated a broad network of brain regions involved in control of anxiety-like behaviors, including serotonergic neurons in the DR, as measured using c-Fos immunohistochemistry. However, only exposure to the EPM activated relaxin-3-containing neurons in the NI, and activation of these neurons was not correlated with changes in anxiety-like behavior. These data suggest activation of the NI relaxin-3 system is associated with expression of behavior in tests of anxiety, but may not be directly involved in the approach-avoidance conflict inherent in anxiety-related defensive behavior in rodents.


Assuntos
Ansiedade/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Núcleos da Rafe/metabolismo , Relaxina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Ansiedade/induzido quimicamente , Cafeína/administração & dosagem , Masculino , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/metabolismo , Ratos Wistar
14.
Sleep Med ; 49: 31-39, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30029993

RESUMO

Serotonin (5-HT) is involved in sleep in two different ways. First, when released during waking by the axonal nerve endings, it influences the synthesis of hypnogenic substances in specific brain targets. Such a synthesis might be in keeping with the waking qualitative aspects. As an example, the hypnogenic CLIP peptide (ACTH18-39) is synthesized when stressful events occur during wakefulness. Second, when released during sleep within the nucleus raphe dorsalis (nRD) by dendrites of 5-HT neurons, it contributes to 5-HT perikarya silencing through an auto-inhibitory process. Nitric oxide, co-synthesized with 5-HT, may act in synergy with this amine at both mentioned levels. Regarding the triggered hypnogenic substances, they induce sleep through acting on two components within the nRD: (1) the 5-HT component; its silencing is necessary to remove the gating effect exerted on phasic sleep events (ponto-geniculo-occipital, PGO, waves); (2) a substance P component; its silencing is necessary, at least, to alleviate the tonic influence exerted on somatic muscles. These two components may constitute the brain "sleep switch-on" mechanism allowing wake/sleep alternation. Pharmacological procedures influencing this switch may be determinant for treating insomniac patients. Serotonin appears thus to be involved in sleep preparation, triggering and maintenance.


Assuntos
Núcleos da Rafe/efeitos dos fármacos , Serotonina/metabolismo , Sono REM/fisiologia , Sono/fisiologia , Animais , Gatos , Peptídeo da Parte Intermédia da Adeno-Hipófise Semelhante à Corticotropina , França , História do Século XX , História do Século XXI , Humanos , Peptídeos/farmacologia , Núcleos da Rafe/metabolismo , Pesquisa , Distúrbios do Início e da Manutenção do Sono , Fases do Sono/fisiologia
15.
Brain Res ; 1678: 153-163, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29079504

RESUMO

Previous studies indicate that the modification of adrenergic neurotransmission in median raphe nucleus (MRN) enhances or removes an inhibitory influence on food intake, possibly serotonergic, due to a presence of serotonin-producing neurons in that nucleus. Therefore, the aim of this study is evaluated whether the activity of neurons in the MRN and dorsal raphe nucleus (DRN) are affected by intracerebroventricular injection of adrenaline (AD) in free-feeding rats. Male Wistar rats with guide cannulae chronically implanted in the lateral ventricle were injected with AD followed by evaluation of ingestive behavioral parameters. Behavior was monitored and the amount of food ingested was assessed. The highest dose (20 nmol) of AD was the most effective dose in increasing food intake. Subsequently, AD 20 nmol was injected to study neuronal activity indicated by the presence of Fos protein and its co-localization with serotonergic neurons in the MRN and DRN of naive rats with or without access to food during the recording of behavior. The administration of AD 20 nmol increased Fos expression and double labeling with serotonergic neurons in the DRN in rats with access to food, but not in animals without access. No statistically significant changes in Fos expression were observed in the MRN in any of the experimental conditions tested. These results suggest that DRN serotonergic and non-serotonergic neurons are activated by post-prandial signals. In contrast, the absence of Fos expression in the MRN suggests that this nucleus does not participate in the circuit involved in the control of post-prandial satiety.


Assuntos
Ingestão de Alimentos/efeitos dos fármacos , Epinefrina/metabolismo , Núcleos da Rafe/metabolismo , Animais , Núcleo Dorsal da Rafe/metabolismo , Ingestão de Alimentos/fisiologia , Expressão Gênica , Genes fos/genética , Genes fos/fisiologia , Infusões Intraventriculares , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo
16.
Transl Psychiatry ; 7(2): e1038, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28221365

RESUMO

Ketamine and deep brain stimulation produce rapid antidepressant effects in humans and rodents. An increased AMPA receptor (AMPA-R) signaling in medial prefrontal cortex (mPFC) has been suggested to mediate these responses. However, little research has addressed the direct effects of enhancing glutamate tone or AMPA-R stimulation in mPFC subdivisions. The current study investigates the behavioral and neurochemical consequences of glutamate transporter-1 (GLT-1) blockade or s-AMPA microinfusion in the infralimbic (IL) and prelimbic (PrL) cortex. Owing to the connectivity between the mPFC and raphe nuclei, the role of serotonin is also explored. The bilateral microinfusion of the depolarizing agent veratridine into IL -but not PrL- of rats evoked immediate antidepressant-like responses. The same regional selectivity was observed after microinfusion of dihydrokainic acid (DHK), a selective inhibitor of GLT-1, present in astrocytes. The DHK-evoked antidepressant-like responses appear to be mediated by an AMPA-R-driven enhancement of serotonergic activity, as (i) they were prevented by NBQX 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium salt) and mimicked by s-AMPA; (ii) DHK and s-AMPA elevated similarly extracellular glutamate in IL and PrL, although extracellular 5-HT and c-fos expression in the midbrain dorsal raphe increased only when these agents were applied in IL; and (iii) DHK antidepressant-like responses were prevented by 5-HT synthesis inhibition and mimicked by citalopram microinfusion in IL. These results indicate that an acute increase of glutamatergic neurotransmission selectively in IL triggers immediate antidepressant-like responses in rats, likely mediated by the activation of IL-raphe pathways, which then results in a fast increase of serotonergic activity.


Assuntos
Afeto/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Transportador 2 de Aminoácido Excitatório/antagonistas & inibidores , Ácido Caínico/análogos & derivados , Neuroglia/metabolismo , Veratridina/farmacologia , Animais , Citalopram/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Ácido Caínico/farmacologia , Lobo Límbico/citologia , Lobo Límbico/metabolismo , Masculino , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinoxalinas/farmacologia , Núcleos da Rafe/metabolismo , Ratos , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia
17.
Exp Neurol ; 287(Pt 2): 102-112, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27132994

RESUMO

The regulation of blood gases in mammals requires precise feedback mechanisms including chemoreceptor feedback from the carotid bodies. Carotid body denervation (CBD) leads to immediate hypoventilation (increased PaCO2) in adult rats, but over a period of days and weeks ventilation normalizes due in part to central (brain) mechanisms. Here, we tested the hypothesis that functional ventilatory recovery following CBD correlated with significant shifts in medullary raphe gene expression of molecules/pathways associated with known or novel forms of neuroplasticity. Tissue punches were obtained from snap frozen brainstems collected from rats 1-2days or 14-15days post-sham or post-bilateral CBD surgery (verified by physiologic measurements), and subjected to mRNA sequencing to identify, quantify, and statistically compare gene expression level differences among these groups of rats. We found the greatest number of gene expression changes acutely after CBD (154 genes), with fewer changes in the weeks after CBD (69-80 genes) and the fewest changes in expression among the time control groups (39 genes). Little or no changes were observed for multiple genes associated with serotonin- or glutamate receptor-dependent forms of neuroplasticity. However, an unbiased assessment of gene expression changes using a bioinformatics pathway analysis highlighted multiple changes in gene expression in signaling pathways associated with immune function. These included several growth factors and cytokines associated with peripheral and innate immune systems. Thus, these medullary raphe gene expression data support a role for immune-related signaling pathways in the functional restoration of blood gas control after CBD, but little or no role for serotonin- or glutamate receptor-mediated plasticity.


Assuntos
Corpo Carotídeo/fisiologia , Denervação , Regulação da Expressão Gênica/fisiologia , Núcleos da Rafe/metabolismo , Recuperação de Função Fisiológica/fisiologia , Respiração , Serotonina/metabolismo , Animais , Corpo Carotídeo/cirurgia , Modelos Animais de Doenças , Masculino , Plasticidade Neuronal/fisiologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo , Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Fatores de Tempo
18.
Eur J Neurosci ; 45(3): 342-357, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27763700

RESUMO

Manipulating gut microbes may improve mental health. Prebiotics are indigestible compounds that increase the growth and activity of health-promoting microorganisms, yet few studies have examined how prebiotics affect CNS function. Using an acute inescapable stressor known to produce learned helplessness behaviours such as failure to escape and exaggerated fear, we tested whether early life supplementation of a blend of two prebiotics, galactooligosaccharide (GOS) and polydextrose (PDX), and the glycoprotein lactoferrin (LAC) would attenuate behavioural and biological responses to stress later in life. Juvenile, male F344 rats were fed diets containing either GOS and PDX alone, LAC alone, or GOS, PDX and LAC. All diets altered gut bacteria, while diets containing GOS and PDX increased Lactobacillus spp. After 4 weeks, rats were exposed to inescapable stress, and either immediately killed for blood and tissues, or assessed for learned helplessness 24 h later. Diets did not attenuate stress effects on spleen weight, corticosterone and blood glucose; however, all diets differentially attenuated stress-induced learned helplessness. Notably, in situ hybridization revealed that all diets reduced stress-evoked cfos mRNA in the dorsal raphe nucleus (DRN), a structure important for learned helplessness behaviours. In addition, GOS, PDX and LAC diet attenuated stress-evoked decreases in mRNA for the 5-HT1A autoreceptor in the DRN and increased basal BDNF mRNA within the prefrontal cortex. These data suggest early life diets containing prebiotics and/or LAC promote behavioural stress resistance and uniquely modulate gene expression in corresponding circuits.


Assuntos
Dieta , Desamparo Aprendido , Lactoferrina/uso terapêutico , Prebióticos , Estresse Psicológico/dietoterapia , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Lactoferrina/farmacologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/crescimento & desenvolvimento , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleos da Rafe/efeitos dos fármacos , Núcleos da Rafe/crescimento & desenvolvimento , Núcleos da Rafe/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptor 5-HT1A de Serotonina/metabolismo , Estresse Psicológico/prevenção & controle
19.
Sci Rep ; 6: 26285, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27211987

RESUMO

We studied the impact of α-synuclein overexpression in brainstem serotonin neurons using a novel vector construct where the expression of human wildtype α-synuclein is driven by the tryptophan hydroxylase promoter, allowing expression of α-synuclein at elevated levels, and with high selectivity, in serotonergic neurons. α-Synuclein induced degenerative changes in axons and dendrites, displaying a distorted appearance, suggesting accumulation and aggregation of α-synuclein as a result of impaired axonal transport, accompanied by a 40% loss of terminals, as assessed in the hippocampus. Tissue levels of serotonin and its major metabolite 5-HIAA remained largely unaltered, and the performance of the α-synuclein overexpressing rats in tests of spatial learning (water maze), anxiety related behavior (elevated plus maze) and depressive-like behavior (forced swim test) was not different from control, suggesting that the impact of the developing axonal pathology on serotonin neurotransmission was relatively mild. Overexpression of α-synuclein in the raphe nuclei, combined with overexpression in basal forebrain cholinergic neurons, resulted in more pronounced axonal pathology and significant impairment in the elevated plus maze. We conclude that α-synuclein pathology in serotonergic or cholinergic neurons alone is not sufficient to impair non-motor behaviors, but that it is their simultaneous involvement that determines severity of such symptoms.


Assuntos
Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Neurônios Serotoninérgicos/metabolismo , Neurônios Serotoninérgicos/patologia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Comportamento Animal , Tronco Encefálico/fisiopatologia , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/patologia , Dependovirus/genética , Feminino , Vetores Genéticos , Humanos , Aprendizagem em Labirinto , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Regiões Promotoras Genéticas , Núcleos da Rafe/metabolismo , Núcleos da Rafe/patologia , Núcleos da Rafe/fisiopatologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Triptofano Hidroxilase/genética , Regulação para Cima
20.
J Radiat Res ; 57(2): 127-32, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26811259

RESUMO

The aim of this study was to investigate the effect of continuous extremely low frequency magnetic fields (ELF-MFs) with a frequency of 10 Hz and an intensity of 690-720 µT on the level of 5-hydroxyindolacetic acid (5-HIAA) in adult male Wistar rats. A total of 24 adult Wistar male rats were used, and after exposure with an ELF-MF for 15 successive days, all rats in each test were anesthetized with chloral hydrate. Then, they were placed in a stereotaxic frame for surgery and a microdialysis process. Dialysate samples were analyzed to measure the amount of 5-HIAA by high performance liquid chromatography (HPLC) using electrochemical detection. Results showed that ELF-MF exposure for 15 days, 1 h daily, was not effective in altering the level of 5-HIAA. However, ELF-MF exposure for 15 days, 3 h daily, decreased the level of the 5-HIAA in the raphe nucleus. It can be concluded that ELF-MFs affect the serotonergic system and may be used to treat nervous system diseases. This study is an initial step towards helping cure depression using ELF-MFs.


Assuntos
Ácido Hidroxi-Indolacético/metabolismo , Campos Magnéticos , Núcleos da Rafe/metabolismo , Núcleos da Rafe/efeitos da radiação , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Metaboloma/efeitos da radiação , Ratos Wistar , Padrões de Referência , Serotonina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA