Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Nucleic Acids Res ; 50(19): 11229-11242, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36259651

RESUMO

Non-coding RNAs (ncRNAs) ubiquitously exist in normal and cancer cells. Despite their prevalent distribution, the functions of most long ncRNAs remain uncharacterized. The fission yeast Schizosaccharomyces pombe expresses >1800 ncRNAs annotated to date, but most unconventional ncRNAs (excluding tRNA, rRNA, snRNA and snoRNA) remain uncharacterized. To discover the functional ncRNAs, here we performed a combinatory screening of computational and biological tests. First, all S. pombe ncRNAs were screened in silico for those showing conservation in sequence as well as in secondary structure with ncRNAs in closely related species. Almost a half of the 151 selected conserved ncRNA genes were uncharacterized. Twelve ncRNA genes that did not overlap with protein-coding sequences were next chosen for biological screening that examines defects in growth or sexual differentiation, as well as sensitivities to drugs and stresses. Finally, we highlighted an ncRNA transcribed from SPNCRNA.1669, which inhibited untimely initiation of sexual differentiation. A domain that was predicted as conserved secondary structure by the computational operations was essential for the ncRNA to function. Thus, this study demonstrates that in silico selection focusing on conservation of the secondary structure over species is a powerful method to pinpoint novel functional ncRNAs.


Assuntos
Schizosaccharomyces , Schizosaccharomyces/genética , Diferenciação Sexual , RNA não Traduzido/genética , RNA não Traduzido/química , RNA Nucleolar Pequeno/genética , Fases de Leitura Aberta
2.
Neural Netw ; 156: 170-178, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36274524

RESUMO

Non-coding RNAs (ncRNAs) play an important role in revealing the mechanism of human disease for anti-tumor and anti-virus substances. Detecting subcellular locations of ncRNAs is a necessary way to study ncRNA. Traditional biochemical methods are time-consuming and labor-intensive, and computational-based methods can help detect the location of ncRNAs on a large scale. However, many models did not consider the correlation information among multiple subcellular localizations of ncRNAs. This study proposes a radial basis function neural network based on shared subspace learning (RBFNN-SSL), which extract shared structures in multi-labels. To evaluate performance, our classifier is tested on three ncRNA datasets. Our model achieves better performance in experimental results.


Assuntos
Redes Neurais de Computação , RNA não Traduzido , Humanos , RNA não Traduzido/genética , RNA não Traduzido/química , Biologia Computacional/métodos
3.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807045

RESUMO

Breast cancer is very heterogenous and the most common gynaecological cancer, with various factors affecting its development. While its impact on human lives and national health budgets is still rising in almost all global areas, many molecular mechanisms affecting its onset and development remain unclear. Conventional treatments still prove inadequate in some aspects, and appropriate molecular therapeutic targets are required for improved outcomes. Recent scientific interest has therefore focused on the non-coding RNAs roles in tumour development and their potential as therapeutic targets. These RNAs comprise the majority of the human transcript and their broad action mechanisms range from gene silencing to chromatin remodelling. Many non-coding RNAs also have altered expression in breast cancer cell lines and tissues, and this is often connected with increased proliferation, a degraded extracellular environment, and higher endothelial to mesenchymal transition. Herein, we summarise the known abnormalities in the function and expression of long non-coding RNAs, Piwi interacting RNAs, small nucleolar RNAs and small nuclear RNAs in breast cancer, and how these abnormalities affect the development of this deadly disease. Finally, the use of RNA interference to suppress breast cancer growth is summarised.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica , RNA não Traduzido/genética , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Gerenciamento Clínico , Suscetibilidade a Doenças , Feminino , Humanos , Biópsia Líquida/métodos , Interferência de RNA , RNA não Traduzido/química
4.
J Comput Aided Mol Des ; 35(3): 355-369, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33624202

RESUMO

Sequence-specific targeting of double-stranded DNA and non-coding RNA via triple-helix-forming peptide nucleic acids (PNAs) has attracted considerable attention in therapeutic, diagnostic and nanotechnological fields. An E-base (3-oxo-2,3-dihydropyridazine), attached to the polyamide backbone of a PNA Hoogsteen strand by a side-chain linker molecule, is typically used in the hydrogen bond recognition of the 4-oxo group of thymine and uracil nucleic acid bases in the major groove. We report on the application of quantum chemical computational methods, in conjunction with spatial constraints derived from the experimental structure of a homopyrimidine PNA·DNA-PNA hetero-triplex, to investigate the influence of linker flexibility on binding interactions of the E-base with thymine and uracil bases in geometry-optimised model systems. Hydrogen bond formation between the N2 E-base atom and target pyrimidine base 4-oxo groups in model systems containing a ß-alanine linker (J Am Chem Soc 119:11116, 1997) was found to incur significant internal strain energy and the potential disruption of intra-stand aromatic base stacking interactions in an oligomeric context. In geometry-optimised model systems containing a 3-trans olefin linker (Bioorg Med Chem Lett 14:1551, 2004) the E-base swung out away from the target pyrimidine bases into the solvent. These findings are in qualitative agreement with calorimetric measurements in hybridisation experiments at T-A and U-A inversion sites. In contrast, calculations on a novel 2-cis olefin linker design indicate that it could permit simultaneous E-base hydrogen bonding with the thymine 4-oxo group, circumvention and solvent screening of the thymine 5-methyl group, and maintenance of triplex intra-stand base stacking interactions.


Assuntos
DNA/química , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , RNA não Traduzido/química , Timina/química , Alanina/química , Alcenos/química , Pareamento de Bases , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico , Pirimidinas/química , Termodinâmica
5.
RNA Biol ; 18(2): 290-303, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32401147

RESUMO

La and La-related proteins (LARPs) are characterized by a common RNA interaction platform termed the La module. This structural hallmark allows LARPs to pervade various aspects of RNA biology. The metazoan LARP7 protein binds to the 7SK RNA as part of a 7SK small nuclear ribonucleoprotein (7SK snRNP), which inhibits the transcriptional activity of RNA polymerase II (Pol II). Additionally, recent findings revealed unanticipated roles of LARP7 in the assembly of other RNPs, as well as in the modification, processing and cellular transport of RNA molecules. Reduced levels of functional LARP7 have been linked to cancer and Alazami syndrome, two seemingly unrelated human diseases characterized either by hyperproliferation or growth retardation. Here, we review the intricate regulatory networks centered on LARP7 and assess how malfunction of these networks may relate to the etiology of LARP7-linked diseases.


Assuntos
Processamento Pós-Transcricional do RNA , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Ribonucleoproteínas/metabolismo , Humanos , Conformação de Ácido Nucleico , Estabilidade de RNA , Transporte de RNA , RNA não Traduzido/química , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética
6.
Nucleic Acids Res ; 49(2): e10, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33290507

RESUMO

Results of massive parallel sequencing-by-synthesis vary depending on the sequencing approach. CoolMPS™ is a new sequencing chemistry that incorporates bases by labeled antibodies. To evaluate the performance, we sequenced 240 human non-coding RNA samples (dementia patients and controls) with and without CoolMPS. The Q30 value as indicator of the per base sequencing quality increased from 91.8 to 94%. The higher quality was reached across the whole read length. Likewise, the percentage of reads mapping to the human genome increased from 84.9 to 86.2%. For both technologies, we computed similar distributions between different RNA classes (miRNA, piRNA, tRNA, snoRNA and yRNA) and within the classes. While standard sequencing-by-synthesis allowed to recover more annotated miRNAs, CoolMPS yielded more novel miRNAs. The correlation between the two methods was 0.97. Evaluating the diagnostic performance, we observed lower minimal P-values for CoolMPS (adjusted P-value of 0.0006 versus 0.0004) and larger effect sizes (Cohen's d of 0.878 versus 0.9). Validating 19 miRNAs resulted in a correlation of 0.852 between CoolMPS and reverse transcriptase-quantitative polymerase chain reaction. Comparison to data generated with Illumina technology confirmed a known shift in the overall RNA composition. With CoolMPS we evaluated a novel sequencing-by-synthesis technology showing high performance for the analysis of non-coding RNAs.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA não Traduzido/química , Análise de Sequência de RNA/métodos , Especificidade de Anticorpos , Biomarcadores , Biologia Computacional , DNA Complementar/genética , Bases de Dados Genéticas , Conjuntos de Dados como Assunto , Demência/sangue , Demência/genética , Técnica Direta de Fluorescência para Anticorpo , Biblioteca Gênica , Humanos , Biópsia Líquida , MicroRNAs/química , MicroRNAs/genética , Nucleotídeos/imunologia , RNA não Traduzido/síntese química , RNA não Traduzido/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Viruses ; 12(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839386

RESUMO

Group-B enteroviruses (EV-B) are ubiquitous naked single-stranded positive RNA viral pathogens that are responsible for common acute or persistent human infections. Their genome is composed in the 5' end by a non-coding region, which is crucial for the initiation of the viral replication and translation processes. RNA domain-I secondary structures can interact with viral or cellular proteins to form viral ribonucleoprotein (RNP) complexes regulating viral genomic replication, whereas RNA domains-II to -VII (internal ribosome entry site, IRES) are known to interact with cellular ribosomal subunits to initiate the viral translation process. Natural 5' terminally deleted viral forms lacking some genomic RNA domain-I secondary structures have been described in EV-B induced murine or human infections. Recent in vitro studies have evidenced that the loss of some viral RNP complexes in the RNA domain-I can modulate the viral replication and infectivity levels in EV-B infections. Moreover, the disruption of secondary structures of RNA domain-I could impair viral RNA sensing by RIG-I (Retinoic acid inducible gene I) or MDA5 (melanoma differentiation-associated protein 5) receptors, a way to overcome antiviral innate immune response. Overall, natural 5' terminally deleted viral genomes resulting in the loss of various structures in the RNA domain-I could be major key players of host-cell interactions driving the development of acute or persistent EV-B infections.


Assuntos
Enterovirus Humano B/genética , Infecções por Enterovirus/virologia , RNA não Traduzido/genética , RNA Viral/química , RNA Viral/genética , Animais , Enterovirus Humano B/fisiologia , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Interferons/metabolismo , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA não Traduzido/química , RNA não Traduzido/metabolismo , RNA Viral/metabolismo , Transdução de Sinais , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral
8.
Cancer Lett ; 494: 88-93, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32822814

RESUMO

Recent advancement in RNA technology and computation biology shows the abundance and impact of RNA editing at the genome-wide level. Of RNA editing events, Adenosine-to-inosine (A-to-I) RNA editing is one of the most frequent types of RNA editing catalyzed by ADAR proteins. Indeed, A-to-I RNA editing occurs at the various coding and noncoding regions, triggering abnormal signaling pathways involved in cancer pathogenesis. Noncoding RNAs such as microRNA and long noncoding RNA have emerged as key regulators of pathways in cancer. The RNA editing including A-to-I editing is enriched in noncoding regions because of the abundance of noncoding RNAs accounting for 99% of total transcripts in the human genome. The effects of A-to-I editing in coding genes have been investigated and reported. However, those in noncoding RNAs have been less known in spite of the high frequency of editing events in noncoding regions. In this review, we will briefly discuss current findings and potential directions of A-to-I RNA editing research of noncoding RNAs and cancer. We will also introduce the concept of A-to-I editing, ADAR proteins, RNA editing technologies and databases.


Assuntos
Neoplasias/genética , Edição de RNA , RNA não Traduzido/genética , Adenosina/genética , Adenosina Desaminase/metabolismo , Humanos , Inosina/genética , RNA não Traduzido/química , Proteínas de Ligação a RNA/metabolismo
9.
Nat Struct Mol Biol ; 27(6): 521-528, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32514177

RESUMO

Noncoding RNAs (ncRNAs) direct a remarkable number of diverse functions in development and disease through their regulation of transcription, RNA processing and translation. Leading the charge in the RNA revolution is a class of ncRNAs that are synthesized at active enhancers, called enhancer RNAs (eRNAs). Here, we review recent insights into the biogenesis of eRNAs and the mechanisms underlying their multifaceted functions and consider how these findings could inform future investigations into enhancer transcription and eRNA function.


Assuntos
Elementos Facilitadores Genéticos , Epigenoma , RNA não Traduzido/genética , Animais , Cromatina/genética , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , RNA não Traduzido/química , Transcrição Gênica
10.
Commun Biol ; 3(1): 60, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32047236

RESUMO

In the nucleus, genomic DNA is wrapped around histone octamers to form nucleosomes. In principle, nucleosomes are substantial barriers to transcriptional activities. Nuclear non-coding RNAs (ncRNAs) are proposed to function in chromatin conformation modulation and transcriptional regulation. However, it remains unclear how ncRNAs affect the nucleosome structure. Eleanors are clusters of ncRNAs that accumulate around the estrogen receptor-α (ESR1) gene locus in long-term estrogen deprivation (LTED) breast cancer cells, and markedly enhance the transcription of the ESR1 gene. Here we detected nucleosome depletion around the transcription site of Eleanor2, the most highly expressed Eleanor in the LTED cells. We found that the purified Eleanor2 RNA fragment drastically destabilized the nucleosome in vitro. This activity was also exerted by other ncRNAs, but not by poly(U) RNA or DNA. The RNA-mediated nucleosome destabilization may be a common feature among natural nuclear RNAs, and may function in transcription regulation in chromatin.


Assuntos
Núcleo Celular/genética , Núcleo Celular/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , RNA não Traduzido/genética , Linhagem Celular , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Loci Gênicos , Histonas/metabolismo , Humanos , Hibridização in Situ Fluorescente , Conformação de Ácido Nucleico , Estabilidade Proteica , RNA não Traduzido/química
11.
Sci Rep ; 10(1): 2629, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060318

RESUMO

Translocated in liposarcoma (TLS)/fused in sarcoma (FUS) is a multitasking DNA/RNA binding protein implicated in cancer and neurodegenerative diseases. Upon DNA damage, TLS is recruited to the upstream region of the cyclin D1 gene (CCND1) through binding to the promotor associated non-coding RNA (pncRNA) that is transcribed from and tethered at the upstream region. Binding to pncRNA is hypothesized to cause the conformational change of TLS that enables its inhibitive interaction with histone acetyltransferases and resultant repression of CCND1 expression, although no experimental proof has been obtained. Here, the closed-to-open conformational change of TLS on binding pncRNA was implied by fluorescence resonance energy transfer. A small fragment (31 nucleotides) of the full-length pncRNA (602 nucleotides) was shown to be sufficient for the conformational change of TLS. Dissection of pncRNA identified the G-rich RNA sequence that is critical for the conformational change. The length of RNA was also revealed to be critical for the conformational change. Furthermore, it was demonstrated that the conformational change of TLS is caused by another target DNA and RNA, telomeric DNA and telomeric repeat-containing RNA. The conformational change of TLS on binding target RNA/DNA is suggested to be essential for biological functions.


Assuntos
RNA não Traduzido/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Sequência de Bases , Sítios de Ligação , Transferência Ressonante de Energia de Fluorescência , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica , RNA não Traduzido/química , Proteína FUS de Ligação a RNA/química
12.
Elife ; 92020 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-31931956

RESUMO

Understanding genome organization and gene regulation requires insight into RNA transcription, processing and modification. We adapted nanopore direct RNA sequencing to examine RNA from a wild-type accession of the model plant Arabidopsis thaliana and a mutant defective in mRNA methylation (m6A). Here we show that m6A can be mapped in full-length mRNAs transcriptome-wide and reveal the combinatorial diversity of cap-associated transcription start sites, splicing events, poly(A) site choice and poly(A) tail length. Loss of m6A from 3' untranslated regions is associated with decreased relative transcript abundance and defective RNA 3' end formation. A functional consequence of disrupted m6A is a lengthening of the circadian period. We conclude that nanopore direct RNA sequencing can reveal the complexity of mRNA processing and modification in full-length single molecule reads. These findings can refine Arabidopsis genome annotation. Further, applying this approach to less well-studied species could transform our understanding of what their genomes encode.


Assuntos
Adenosina/análogos & derivados , Arabidopsis/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA de Plantas/genética , Análise de Sequência de RNA , Adenosina/metabolismo , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Metilação , Nanoporos , Poli A/genética , Poli A/metabolismo , Capuzes de RNA , Splicing de RNA , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA de Plantas/química , RNA de Plantas/metabolismo , RNA não Traduzido/química , RNA não Traduzido/genética
13.
J Comput Biol ; 27(6): 856-867, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31638408

RESUMO

Noncoding RNAs are increasingly found to play a wide variety of roles in living organisms. Yet, their functional mechanisms are poorly understood because their structures are difficult to determine experimentally. As a result, developing more effective computational techniques to predict RNA structures becomes increasingly an urgent task. One key challenge in RNA structure prediction is the lack of an accurate free energy function to guide RNA folding and discriminate native and near-native structures from decoy conformations. In this study, we developed an all-atom distance-dependent knowledge-based energy function for RNA that is based on a reference state (distance-scaled finite ideal-gas reference state, DFIRE) proven successful for protein structure discrimination. Using four separate benchmarks including RNA puzzles, we found that this DFIRE-based RNA statistical energy function is able to discriminate native and near-native structures against decoys with performance comparable with or better than several existing scoring functions compared. The energy function is expected to be useful for improving the detection of RNA near-native structures.


Assuntos
Biologia Computacional/métodos , RNA não Traduzido/química , Análise de Elementos Finitos , Modelos Moleculares , Dobramento de RNA
14.
Proc Natl Acad Sci U S A ; 116(51): 25392-25394, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31796588

RESUMO

The oncogenic gammaherpesviruses, including human Epstein-Barr virus (EBV), human Kaposi's sarcoma-associated herpesvirus (KSHV), and murine gammaherpesvirus 68 (MHV68, γHV68, MuHV-4) establish life-long latency in circulating B cells. The precise determinants that mediate in vivo gammaherpesvirus latency and tumorigenesis remain unclear. The EBV-encoded RNAs (EBERs) are among the first noncoding RNAs ever identified and have been the subject of decades of studies; however, their biological roles during in vivo infection remain unknown. Herein, we use a series of refined virus mutants to define the active isoform of MHV68 noncoding RNA TMER4 and demonstrate that EBV EBER1 functionally conserves this activity in vivo to promote egress of infected B cells from lymph nodes into peripheral circulation.


Assuntos
Gammaherpesvirinae/genética , RNA não Traduzido , RNA Viral , Liberação de Vírus/genética , Animais , Células Cultivadas , Infecções por Herpesviridae/virologia , Camundongos , Conformação de Ácido Nucleico , RNA não Traduzido/química , RNA não Traduzido/genética , RNA não Traduzido/fisiologia , RNA Viral/química , RNA Viral/genética , RNA Viral/fisiologia , Baço/citologia , Baço/virologia , Latência Viral/genética
15.
J Hematol Oncol ; 12(1): 121, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31757221

RESUMO

N6-methyladenosine (m6A) methylation, one of the most common RNA modifications, has been reported to execute important functions that affect normal life activities and diseases. Most studies have suggested that m6A modification can affect the complexity of cancer progression by regulating biological functions related to cancer. M6A modification of noncoding RNAs regulates the cleavage, transport, stability, and degradation of noncoding RNAs themselves. It also regulates cell proliferation and metastasis, stem cell differentiation, and homeostasis in cancer by affecting the biological function of cells. Interestingly, noncoding RNAs also play significant roles in regulating these m6A modifications. Additionally, it is becoming increasingly clear that m6A and noncoding RNAs potentially contribute to the clinical application of cancer treatment. In this review, we summarize the effect of the interactions between m6A modifications and noncoding RNAs on the biological functions involved in cancer progression. In particular, we discuss the role of m6A and noncoding RNAs as possible potential biomarkers and therapeutic targets in the treatment of cancers.


Assuntos
Adenosina/análogos & derivados , Neoplasias/genética , Neoplasias/patologia , Processamento Pós-Transcricional do RNA , RNA Neoplásico/química , RNA não Traduzido/química , Adenosina/química , Humanos , Metilação , Metiltransferases/metabolismo , RNA Neoplásico/genética , RNA não Traduzido/genética
16.
PLoS One ; 14(11): e0225029, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31703109

RESUMO

Non-coding RNAs have raised a lot of interest because of their capabilities to perform enzymatic reactions and regulate gene expression in various ways. Human Accelerated Region 1 (HAR1) has been identified during the search for highly conserved regions in mammalian genomes, over one hundred base pairs long, and with high rates of substitution in the human genome. Its potential for coding for a protein is very minimal. However, the HAR1 transcript has been computationally predicted to have a stable secondary structure. Previous structure-probing experiments have suggested that the majority of differences between human and chimp constructs are in helices, designated C and D. For this reason, a 47nt construct consisting of the C and D helices along with two additional C-G pairs was synthesized, purified, and crystallized, and its x-ray structure is reported in this study. The final structure is an artificial dimer, with a bulge that forms different conformations on each monomer. This bulge has been observed in predicted secondary structures, footprinting assays, enzymatic degradation assays, NMR studies, in silico studies, and in this crystalized dimer structure. It is proposed that the HAR1 transcript is a non-coding RNA that interacts with an unknown binding partner responsible for brain development through this inherent structural motif of bulged adenosines.


Assuntos
Conformação de Ácido Nucleico , RNA não Traduzido/síntese química , RNA não Traduzido/isolamento & purificação , Sequência de Bases , Técnicas de Química Sintética , Cristalização , Humanos , RNA não Traduzido/química , Relação Estrutura-Atividade
17.
Med Chem ; 15(3): 216-230, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30484409

RESUMO

BACKGROUND: Noncoding RNAs (ncRNAs) which play an important role in various cellular processes are important in medicine as well as in drug design strategies. Different studies have shown that ncRNAs are dis-regulated in cancer cells and play an important role in human tumorigenesis. Therefore, it is important to identify and predict such molecules by experimental and computational methods, respectively. However, to avoid expensive experimental methods, computational algorithms have been developed for accurately and fast prediction of ncRNAs. OBJECTIVE: The aim of this review was to introduce the experimental and computational methods to identify and predict ncRNAs structure. Also, we explained the ncRNA's roles in cellular processes and drugs design, briefly. METHOD: In this survey, we will introduce ncRNAs and their roles in biological and medicinal processes. Then, some important laboratory techniques will be studied to identify ncRNAs. Finally, the state-of-the-art models and algorithms will be introduced along with important tools and databases. RESULTS: The results showed that the integration of experimental and computational approaches improves to identify ncRNAs. Moreover, the high accurate databases, algorithms and tools were compared to predict the ncRNAs. CONCLUSION: ncRNAs prediction is an exciting research field, but there are different difficulties. It requires accurate and reliable algorithms and tools. Also, it should be mentioned that computational costs of such algorithm including running time and usage memory are very important. Finally, some suggestions were presented to improve computational methods of ncRNAs gene and structural prediction.


Assuntos
RNA não Traduzido , Algoritmos , Simulação por Computador , Bases de Dados Factuais , Desenho de Fármacos , RNA não Traduzido/química , RNA não Traduzido/farmacologia , RNA não Traduzido/fisiologia
18.
Open Biol ; 8(10)2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282659

RESUMO

RNA tracking allows researchers to visualize RNA molecules in cells and tissues, providing important spatio-temporal information regarding RNA dynamics and function. Methods such as fluorescent in situ hybridization (FISH) and molecular beacons rely on complementary oligonucleotides to label and view endogenous transcripts. Other methods create artificial chimeric transcripts coupled with bacteriophage-derived coat proteins (e.g. MS2, λN) to tag molecules in live cells. In other approaches, endogenous RNAs are recognized by complementary RNAs complexed with noncatalytic Cas proteins. Each technique has its own set of strengths and limitations that must be considered when planning an experiment. Here, we discuss the mechanisms, advantages, and weaknesses of in situ hybridization, molecular beacons, MS2 tagging and Cas-derived systems, as well as how RNA tracking can be employed to study various aspects of molecular biology.


Assuntos
Sistemas CRISPR-Cas , Hibridização in Situ Fluorescente , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Análise de Célula Única , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteína 9 Associada à CRISPR/química , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Humanos , RNA Mensageiro/química , RNA Mensageiro/genética , RNA não Traduzido/química , RNA não Traduzido/genética , Análise de Sequência de RNA
19.
Cell Rep ; 24(7): 1713-1721.e4, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30110628

RESUMO

Amyloid bodies (A-bodies) are inducible membrane-less nuclear compartments composed of heterogeneous proteins that adopt an amyloid-like state. A-bodies are seeded by noncoding RNA derived from stimuli-specific loci of the rDNA intergenic spacer (rIGSRNA). This raises the question of how rIGSRNA recruits a large population of diverse proteins to confer A-body identity. Here, we show that long low-complexity dinucleotide repeats operate as the architectural determinants of rIGSRNA. On stimulus, clusters of rIGSRNA with simple cytosine/uracil (CU) or adenosine/guanine (AG) repeats spanning hundreds of nucleotides accumulate in the nucleolar area. The low-complexity sequences facilitate charge-based interactions with short cationic peptides to produce multiple nucleolar liquid-like foci. Local concentration of proteins with fibrillation propensity in these nucleolar foci induces the formation of an amyloidogenic liquid phase that seeds A-bodies. These results demonstrate the physiological importance of low-complexity RNA and repetitive regions of the genome often dismissed as "junk" DNA.


Assuntos
Proteínas Amiloidogênicas/química , Nucléolo Celular/genética , DNA Intergênico/química , DNA Ribossômico/química , RNA Ribossômico/química , RNA não Traduzido/química , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Proteínas Amiloidogênicas/genética , Proteínas Amiloidogênicas/metabolismo , Animais , Sequência de Bases , Hipóxia Celular , Nucléolo Celular/metabolismo , Nucléolo Celular/ultraestrutura , DNA Intergênico/genética , DNA Intergênico/metabolismo , DNA Ribossômico/genética , DNA Ribossômico/metabolismo , Repetições de Dinucleotídeos , Expressão Gênica , Resposta ao Choque Térmico , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Camundongos , Transição de Fase , RNA Ribossômico/genética , RNA Ribossômico/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática , Estresse Fisiológico , Imagem com Lapso de Tempo
20.
FEBS Lett ; 592(17): 2828-2844, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30058219

RESUMO

Transfer RNA (tRNA) have been harbingers of many paradigms in RNA biology. They are among the first recognized noncoding RNA (ncRNA) playing fundamental roles in RNA metabolism. Although mainly recognized for their role in decoding mRNA and delivering amino acids to the growing polypeptide chain, tRNA also serve as an abundant source of small ncRNA named tRNA fragments. The functional significance of these fragments is only beginning to be uncovered. Early on, tRNA were recognized as heavily post-transcriptionally modified, which aids in proper folding and modulates the tRNA:mRNA anticodon-codon interactions. Emerging data suggest that these modifications play critical roles in the generation and activity of tRNA fragments. Modifications can both protect tRNA from cleavage or promote their cleavage. Modifications to individual fragments may be required for their activity. Recent work has shown that some modifications are critical for stem cell development and that failure to deposit certain modifications has profound effects on disease. This review will discuss how tRNA modifications regulate the generation and activity of tRNA fragments.


Assuntos
RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Animais , Humanos , Modelos Moleculares , Processamento Pós-Transcricional do RNA , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Células-Tronco/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA