Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139332

RESUMO

The mitochondrial matrix peptidase CLPP is crucial during cell stress. Its loss causes Perrault syndrome type 3 (PRLTS3) with infertility, neurodegeneration, and a growth deficit. Its target proteins are disaggregated by CLPX, which also regulates heme biosynthesis via unfolding ALAS enzymes, providing access for pyridoxal-5'-phosphate (PLP). Despite efforts in diverse organisms with multiple techniques, CLPXP substrates remain controversial. Here, avoiding recombinant overexpression, we employed complexomics in mitochondria from three mouse tissues to identify endogenous targets. A CLPP absence caused the accumulation and dispersion of CLPX-VWA8 as AAA+ unfoldases, and of PLPBP. Similar changes and CLPX-VWA8 co-migration were evident for mitoribosomal central protuberance clusters, translation factors like GFM1-HARS2, the RNA granule components LRPPRC-SLIRP, and enzymes OAT-ALDH18A1. Mitochondrially translated proteins in testes showed reductions to <30% for MTCO1-3, the mis-assembly of the complex IV supercomplex, and accumulated metal-binding assembly factors COX15-SFXN4. Indeed, heavy metal levels were increased for iron, molybdenum, cobalt, and manganese. RT-qPCR showed compensatory downregulation only for Clpx mRNA; most accumulated proteins appeared transcriptionally upregulated. Immunoblots validated VWA8, MRPL38, MRPL18, GFM1, and OAT accumulation. Co-immunoprecipitation confirmed CLPX binding to MRPL38, GFM1, and OAT, so excess CLPX and PLP may affect their activity. Our data mechanistically elucidate the mitochondrial translation fidelity deficits which underlie progressive hearing impairment in PRLTS3.


Assuntos
Endopeptidase Clp , Perda Auditiva , Mitocôndrias , Animais , Camundongos , Adenosina Trifosfatases/metabolismo , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Perda Auditiva/genética , Perda Auditiva/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Respiração/genética , Biossíntese de Proteínas/genética
2.
Funct Integr Genomics ; 22(1): 65-76, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34839401

RESUMO

Air-breathing has evolved independently serval times with a variety of air-breathing organs (ABOs) in fish. The physiology of the air-breathing in bimodal respiration fish has been well understood, while studies on molecular mechanisms of the character are very limited. In the present study, we first determined the gill indexes of 110 fish species including 25 and 85 kinds of bimodal respiration fishes and non-air-breathing fishes, respectively. Then combined with histological observations of gills and ABOs/non-ABOs in three bimodal respiration fishes and two non-air breathing fishes, we found that the bimodal respiration fish was always of a degeneration gill and a well-vascularized ABO. Meanwhile, a comparative transcriptome analysis of posterior intestines, namely a well vascularized ABO in Misgurnus anguillicaudatus and a non-ABO in Leptobotia elongata, was performed to expound molecular variations of the air-breathing character. A total of 5,003 orthologous genes were identified. Among them, 1,189 orthologous genes were differentially expressed, which were enriched in 14 KEGG pathways. More specially, the expressions of hemoglobin genes and various HIF/VEGF signaling pathway genes were obviously upregulated in the ABO of M. anguillicaudatus. Moreover, we found that HIF-1α, VEGFAa, and MAP2K1 were co-expressed dramatically higher in ABOs of bimodal respiration fishes than those of non-ABOs of non-air-breathing fishes. These results indicated that the HIF/VEGF pathway played an important role in ABO angiogenesis/formation to promote fish to do aerial respiration. This study will contribute to our understanding of molecular mechanisms of air-breathing in fish.


Assuntos
Cipriniformes , Fator 1 Induzível por Hipóxia , Neovascularização Fisiológica , Respiração , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular , Animais , Cipriniformes/genética , Cipriniformes/fisiologia , Fator 1 Induzível por Hipóxia/genética , Respiração/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética
3.
Aging (Albany NY) ; 13(9): 13318-13332, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33903282

RESUMO

Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Currently, recent risk stratification has only focused on liver function and tumor characteristics. Thus, the purpose of this study was to develop a prognostic model based on genes involved in aerobic respiration. Matched tumor and normal tissues from TCGA and ICGC cohorts were analyzed to identify 15 overlapping differential expressed genes. Cox univariate analysis of the 15 genes in the TCGA cohort revealed they were all associated with disease-specific survival (DSS) in HCC patients. Using LASSO estimation and the optimal value for penalization coefficient lambda 12 genes were selected for the prognostic model, and then HCC patients in the TCGA cohort were dichotomized into low-risk and high-risk groups. Univariate and multivariate Cox analysis demonstrated patients in low-risk group had better survival. Validation of the risk score model with the ICGC cohort produces results consistent with those of the TCGA cohort. In conclusion, this study developed and validated a prognostic model of HCC through a comprehensive analysis of genes involved in aerobic respiration. This model may help develop personalized treatments for patients with HCC.


Assuntos
Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Respiração/genética , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/diagnóstico , Perfilação da Expressão Gênica/métodos , Humanos , Neoplasias Hepáticas/diagnóstico , Prognóstico , Fatores de Risco
4.
Sci Rep ; 11(1): 3664, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574459

RESUMO

Vagus nerve stimulation has shown many benefits for disease therapies but current approaches involve imprecise electrical stimulation that gives rise to off-target effects, while the functionally relevant pathways remain poorly understood. One method to overcome these limitations is the use of optogenetic techniques, which facilitate targeted neural communication with light-sensitive actuators (opsins) and can be targeted to organs of interest based on the location of viral delivery. Here, we tested whether retrograde adeno-associated virus (rAAV2-retro) injected in the heart can be used to selectively express opsins in vagus nerve fibers controlling cardiac function. Furthermore, we investigated whether perturbations in cardiac function could be achieved with photostimulation at the cervical vagus nerve. Viral injection in the heart resulted in robust, primarily afferent, opsin reporter expression in the vagus nerve, nodose ganglion, and brainstem. Photostimulation using both one-photon stimulation and two-photon holography with a GRIN-lens incorporated nerve cuff, was tested on the pilot-cohort of injected mice. Changes in heart rate, surface electrocardiogram, and respiratory responses were observed in response to both one- and two-photon photostimulation. The results demonstrate feasibility of retrograde labeling for organ targeted optical neuromodulation.


Assuntos
Dependovirus/genética , Coração/virologia , Opsinas/genética , Nervo Vago/metabolismo , Animais , Estimulação Elétrica , Coração/fisiopatologia , Frequência Cardíaca/genética , Frequência Cardíaca/fisiologia , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/virologia , Optogenética/métodos , Respiração/genética , Nervo Vago/fisiologia , Nervo Vago/virologia , Estimulação do Nervo Vago/métodos
5.
Semin Cell Dev Biol ; 110: 61-69, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32307225

RESUMO

Cilia and centrosomes of eukaryotic cells play important roles in cell movement, fluid transport, extracellular sensing, and chromosome division. The physiological functions of cilia and centrosomes are generated by their dynamics, motions, and forces controlled by the physical, chemical, and biological environments. How an individual cilium achieves its beat pattern and induces fluid flow is governed by its ultrastructure as well as the coordination of associated molecular motors. Thus, a bottom-up understanding of the physiological functions of cilia and centrosomes from the molecular to tissue levels is required. Correlations between the structure and motion can be understood in terms of mechanics. This review first focuses on cilia and centrosomes at the molecular level, introducing their ultrastructure. We then shift to the organelle level and introduce the kinematics and mechanics of cilia and centrosomes. Next, at the tissue level, we introduce nodal ciliary dynamics and nodal flow, which play crucial roles in the organogenetic process of left-right asymmetry. We also introduce respiratory ciliary dynamics and mucous flow, which are critical for protecting the epithelium from drying and exposure to harmful particles and viruses, i.e., respiratory clearance function. Finally, we discuss the future research directions in this field.


Assuntos
Axonema/ultraestrutura , Corpos Basais/ultraestrutura , Centrossomo/ultraestrutura , Cílios/ultraestrutura , Células Epiteliais/ultraestrutura , Microtúbulos/ultraestrutura , Dineínas do Axonema/genética , Dineínas do Axonema/metabolismo , Axonema/metabolismo , Corpos Basais/metabolismo , Transporte Biológico , Fenômenos Biomecânicos , Centrossomo/metabolismo , Segregação de Cromossomos , Cílios/metabolismo , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Microtúbulos/metabolismo , Movimento , Organogênese/genética , Respiração/genética , Reologia
6.
Biochim Biophys Acta Mol Cell Res ; 1868(1): 118863, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33007329

RESUMO

Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.


Assuntos
Proteínas Ferro-Enxofre/genética , Mitocôndrias/genética , Fotossíntese/genética , Simbiose/genética , Bactérias/genética , Citosol/metabolismo , Humanos , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Respiração/genética , Saccharomyces cerevisiae/genética , Enxofre/metabolismo
7.
J Mol Biol ; 432(23): 6108-6126, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33058874

RESUMO

The Krebs cycle enzyme fumarase is a dual-targeted protein that is located in the mitochondria and cytoplasm of eukaryotic cells. Besides being involved in the TCA cycle and primary metabolism, fumarase is a tumour suppressor that aids DNA repair in human cells. Using mass spectrometry, we identified modifications in peptides of cytosolic yeast fumarase, some of which were absent when the cells were exposed to DNA damage (using the homing endonuclease system or hydroxyurea). We show that DNA damage increased the enzymatic activity of fumarase, which we hypothesized to be affected by post-translational modifications. Succinylation and ubiquitination of fumarase at lysines 78 and 79, phosphorylation at threonine 122, serine 124 and threonine 126 as well as deamidation at arginine 239 were found to be functionally relevant. Upon homology analysis, these residues were also found to be evolutionally conserved. Serine 128, on the other hand, is not evolutionary conserved and the Fum1S128D phosphorylation mimic was able to aid DNA repair. Our molecular model is that the above modifications inhibit the enzymatic activity of cytosolic fumarase under conditions of no DNA damage induction and when there is less need for the enzyme. Upon genotoxic stress, some fumarase modifications are removed and some enzymes are degraded while unmodified proteins are synthesized. This report is the first to demonstrate how post-translational modifications influence the catalytic and DNA repair functions of fumarase in the cell.


Assuntos
Dano ao DNA/genética , Fumarato Hidratase/genética , Processamento de Proteína Pós-Traducional/genética , Respiração/genética , Citoplasma/enzimologia , Citoplasma/genética , Reparo do DNA/genética , Fumarato Hidratase/química , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Fosforilação/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Succínico/metabolismo , Ubiquitinação/genética
8.
Brain Res ; 1720: 146289, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31228406

RESUMO

The prevalence of delivery through cesarean-section (C-section) has been increasing worldwide. Although different modes of delivery, such as vaginal birth and C-section, are associated with incidence of some diseases in humans, little is known about how delivery stimuli affect short- and long-term brain function. Phenotypic analyses of Atp1a2 homozygous knockout (Atp1a2-/-) neonates showed that the mode of delivery affected neural phenotypes; Atp1a2-/- mice born by vaginal delivery started spontaneous breathing, while Atp1a2-/- mice born by C-section showed a complete absence of breathing followed by their death. This life or death phenotype prompted us to examine several aspects of the neonatal brain following C-section or vaginal delivery. We found significantly different levels of several monoamines and transporters/channel proteins and a different c-Fos expression pattern. Furthermore, these mice showed different behaviors in adulthood. Our results suggest that birth mode impacts neurotransmission and functional network formation in the neonatal brain.


Assuntos
Encéfalo/crescimento & desenvolvimento , Cesárea/efeitos adversos , Parto Obstétrico/efeitos adversos , Animais , Animais Recém-Nascidos/metabolismo , Cesárea/métodos , Parto Obstétrico/métodos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Gravidez , Respiração/genética , ATPase Trocadora de Sódio-Potássio/genética
9.
Free Radic Biol Med ; 133: 11-20, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30385345

RESUMO

Iron is an essential element for plants as well as other organisms, functioning in various cellular processes, including respiration, chlorophyll biosynthesis, and photosynthesis. Plants take up iron from soil in which iron solubility is extremely low especially under aerobic conditions at high-pH range. Therefore, plants have evolved efficient iron-uptake mechanisms. Because iron is prone to being precipitated and excess ionic iron is cytotoxic, plants also have sophisticated internal iron-transport mechanisms. These transport mechanisms comprise iron chelators including nicotianamine, mugineic acid family phytosiderophores and citrate, and various types of transporters of these chelators, iron-chelate complexes, or free iron ions. To maintain iron homeostasis, plants have developed mechanisms for regulating gene expression in response to iron availability. Expression of various genes involved in iron uptake and translocation is induced under iron deficiency by transcription factor networks and is negatively regulated by the ubiquitin ligase HRZ/BTS. This response is deduced to be mediated by cellular iron sensing as well as long-distance iron signaling. The ubiquitin ligase HRZ/BTS is a candidate intracellular iron sensor because it binds to iron and zinc, and its activity is affected by iron availability. The iron-excess response of plants is thought to be partially independent of the iron-deficiency response. In this review, we summarize and discuss extant knowledge of plant iron transport and its regulation.


Assuntos
Ferro/metabolismo , Raízes de Plantas/metabolismo , Plantas/genética , Ubiquitina-Proteína Ligases/genética , Clorofila/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Homeostase , Transporte de Íons/genética , Fotossíntese/genética , Raízes de Plantas/genética , Plantas/metabolismo , Respiração/genética , Ubiquitina-Proteína Ligases/metabolismo
10.
PLoS One ; 13(11): e0206873, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30412599

RESUMO

INTRODUCTION: Murine studies have shown that apolipoprotein E modulates pulmonary function during development, aging, and allergen-induced airway disease. It is not known whether the polymorphic human APOE gene influences pulmonary function. OBJECTIVES: We assessed whether an association exists between the polymorphic human APOE ε2, ε3, and ε4 alleles and pulmonary function among participants in the Long Life Family Study. METHODS: Data from 4,468 Caucasian subjects who had genotyping performed for the APOE ε2, ε3, and ε4 alleles were analyzed, with and without stratification by sex. Statistical models were fitted considering the effects of the ε2 allele, defined as ε2/2 or ε2/3 genotypes, and the ε4 allele, defined as ε3/4 or ε4/4 genotypes, which were compared to the ε3/3 genotype. RESULTS: The mean FEV1/FVC ratio (the forced expiratory volume in one second divided by the forced vital capacity) was lower among women with the ε4 allele as compared to women with the ε3/3 genotype or the ε2 allele. Carriage of the APOE ε4 allele was associated with FEV1/FVC, which implied lower values. Further analysis showed that the association primarily reflected women without lung disease who were older than 70 years. The association was not mediated by lipid levels, smoking status, body mass index, or cardiovascular disease. CONCLUSIONS: This study for the first time identifies that the APOE gene is associated with modified lung physiology in women. This suggests that a link may exist between the APOE ε4 allele, female sex, and a reduction in the FEV1/FVC ratio in older individuals.


Assuntos
Alelos , Apolipoproteínas E/genética , Pulmão/fisiologia , Respiração/genética , População Branca/genética , Fatores Etários , Idoso , Estudos Transversais , Feminino , Volume Expiratório Forçado/genética , Genótipo , Humanos , Masculino , Isoformas de Proteínas/genética , Fatores Sexuais , Capacidade Vital/genética
11.
Biosci Rep ; 38(3)2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29654168

RESUMO

Cellular oxygen consumption and lactate production rates have been measured in both placental and myometrial cells to study obstetrics-related disease states such as preeclampsia. Platelet metabolic alterations indicate systemic bioenergetic changes that can be useful as disease biomarkers. We tested the hypothesis that platelet mitochondria display functional alterations in preeclampsia. Platelets were harvested from women in the third trimester of either a healthy, non-preeclamptic or preeclamptic pregnancy, and from healthy, non-pregnant women. Using Seahorse respirometry, we analyzed platelets for oxygen consumption (OCR) and extracellular acidification (ECAR) rates, indicators of mitochondrial electron transport and glucose metabolism, respectively. There was a 37% decrease in the maximal respiratory capacity measured in platelets from healthy, non-preeclamptic compared with preeclamptic pregnancy (P<0.01); this relationship held true for other measurements of OCR, including basal respiration; ATP-linked respiration; respiratory control ratio (RCR); and spare respiratory capacity. RCR, a measure of mitochondrial efficiency, was significantly lower in healthy pregnant compared with non-pregnant women. In contrast with increased OCR, basal ECAR was significantly reduced in platelets from preeclamptic pregnancies compared with either normal pregnancies (-25%; P<0.05) or non-pregnant women (-22%; P<0.01). Secondary analysis of OCR revealed reduced basal and maximal platelet respiration in normal pregnancy prior to 34 weeks' estimated gestational age (EGA) compared with the non-pregnant state; these differences disappeared after 34 weeks. Taken together, findings suggest that in preeclampsia, there exists either a loss or early (before the third trimester) reversal of a normal biologic mechanism of platelet mitochondrial respiratory reduction associated with normal pregnancy.


Assuntos
Biomarcadores/sangue , Plaquetas/metabolismo , Consumo de Oxigênio , Pré-Eclâmpsia/sangue , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Feminino , Humanos , Ácido Láctico/biossíntese , Ácido Láctico/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fosforilação Oxidativa , Pré-Eclâmpsia/patologia , Gravidez , Respiração/genética , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 114(6): 1413-1418, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28115703

RESUMO

Sleep apnea, which is the periodic cessation of breathing during sleep, is a major health problem affecting over 10 million people in the United States and is associated with several sequelae, including hypertension and stroke. Clinical studies suggest that abnormal carotid body (CB) activity may be a driver of sleep apnea. Because gaseous molecules are important determinants of CB activity, aberrations in their signaling could lead to sleep apnea. Here, we report that mice deficient in heme oxygenase-2 (HO-2), which generates the gaseous molecule carbon monoxide (CO), exhibit sleep apnea characterized by high apnea and hypopnea indices during rapid eye movement (REM) sleep. Similar high apnea and hypopnea indices were also noted in prehypertensive spontaneously hypertensive (SH) rats, which are known to exhibit CB hyperactivity. We identified the gaseous molecule hydrogen sulfide (H2S) as the major effector molecule driving apneas. Genetic ablation of the H2S-synthesizing enzyme cystathionine-γ-lyase (CSE) normalized breathing in HO-2-/- mice. Pharmacologic inhibition of CSE with l-propargyl glycine prevented apneas in both HO-2-/- mice and SH rats. These observations demonstrate that dysregulated CO and H2S signaling in the CB leads to apneas and suggest that CSE inhibition may be a useful therapeutic intervention for preventing CB-driven sleep apnea.


Assuntos
Monóxido de Carbono/metabolismo , Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Síndromes da Apneia do Sono/metabolismo , Animais , Corpo Carotídeo/metabolismo , Corpo Carotídeo/fisiopatologia , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Feminino , Heme Oxigenase (Desciclizante)/genética , Heme Oxigenase (Desciclizante)/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Respiração/genética , Síndromes da Apneia do Sono/genética , Síndromes da Apneia do Sono/fisiopatologia
13.
Biosci Rep ; 36(3)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27190130

RESUMO

Recent experimental evidence increasingly shows that the dysregulation of cellular bioenergetics is associated with a wide array of common human diseases, including cancer, neurological diseases and diabetes. Respiration provides a vital source of cellular energy for most eukaryotic cells, particularly high energy demanding cells. However, the understanding of how respiration is globally regulated is very limited. Interestingly, recent evidence suggests that Swi3 is an important regulator of respiration genes in yeast. In this report, we performed an array of biochemical and genetic experiments and computational analysis to directly evaluate the function of Swi3 and its human homologues in regulating respiration. First, we showed, by computational analysis and measurements of oxygen consumption and promoter activities, that Swi3, not Swi2, regulates genes encoding functions involved in respiration and oxygen consumption. Biochemical analysis showed that the levels of mitochondrial respiratory chain complexes were substantially increased in Δswi3 cells, compared with the parent cells. Additionally, our data showed that Swi3 strongly affects haem/oxygen-dependent activation of respiration gene promoters whereas Swi2 affects only the basal, haem-independent activities of these promoters. We found that increased expression of aerobic expression genes is correlated with increased oxygen consumption and growth rates in Δswi3 cells in air. Furthermore, using computational analysis and RNAi knockdown, we showed that the mammalian Swi3 BAF155 and BAF170 regulate respiration in HeLa cells. Together, these experimental and computational data demonstrated that Swi3 and its mammalian homologues are key regulators in regulating respiration.


Assuntos
Proteínas Nucleares/genética , Respiração/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Adenosina Trifosfatases , Sequência de Aminoácidos/genética , Animais , Cromatina/genética , Proteínas de Ligação a DNA/genética , Metabolismo Energético/genética , Células HeLa , Humanos , Consumo de Oxigênio/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos
14.
Acta Neuropathol Commun ; 4: 23, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26936605

RESUMO

INTRODUCTION: Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. RESULTS AND CONCLUSIONS: In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy.


Assuntos
Complemento C1q/metabolismo , Via Clássica do Complemento/fisiologia , Gangliosídeos/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Complemento C1q/genética , Via Clássica do Complemento/genética , Diafragma/metabolismo , Diafragma/patologia , Transportadores de Ácidos Dicarboxílicos/genética , Modelos Animais de Doenças , Gangliosídeos/classificação , Gangliosídeos/imunologia , Síndrome de Guillain-Barré/metabolismo , Síndrome de Guillain-Barré/patologia , Humanos , Infiltração Leucêmica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/genética , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/fisiopatologia , Receptores Nicotínicos/metabolismo , Respiração/efeitos dos fármacos , Respiração/genética , Especificidade da Espécie , Simportadores/genética , Volume de Ventilação Pulmonar/efeitos dos fármacos , Volume de Ventilação Pulmonar/genética
15.
Nucleic Acids Res ; 44(12): 5629-45, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27001512

RESUMO

Chaperones of the Hsp70 family interact with a multitude of newly synthesized polypeptides and prevent their aggregation. Saccharomyces cerevisiae cells lacking the Hsp70 homolog Ssb suffer from pleiotropic defects, among others a defect in glucose-repression. The highly conserved heterotrimeric kinase SNF1/AMPK (AMP-activated protein kinase) is required for the release from glucose-repression in yeast and is a key regulator of energy balance also in mammalian cells. When glucose is available the phosphatase Glc7 keeps SNF1 in its inactive, dephosphorylated state. Dephosphorylation depends on Reg1, which mediates targeting of Glc7 to its substrate SNF1. Here we show that the defect in glucose-repression in the absence of Ssb is due to the ability of the chaperone to bridge between the SNF1 and Glc7 complexes. Ssb performs this post-translational function in concert with the 14-3-3 protein Bmh, to which Ssb binds via its very C-terminus. Raising the intracellular concentration of Ssb or Bmh enabled Glc7 to dephosphorylate SNF1 even in the absence of Reg1. By that Ssb and Bmh efficiently suppressed transcriptional deregulation of Δreg1 cells. The findings reveal that Ssb and Bmh comprise a new chaperone module, which is involved in the fine tuning of a phosphorylation-dependent switch between respiration and fermentation.


Assuntos
Adenosina Trifosfatases/genética , Glucose/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteína Fosfatase 1/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcrição Gênica , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Fermentação/genética , Glucose/genética , Fosforilação , Respiração/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
J Theor Biol ; 363: 164-8, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25150458

RESUMO

This paper puts forward a new hypothesis to interpret the high carrier frequency of CFTR mutations in individuals of European descent. The proposed heterozygote advantage factor is related to the specific climate conditions in Europe during the last 50 ky that might have heavily compromised the respiratory function of our ancestors in Eurasia. A large part of the last 50 ky was cold, and the coldest period was the Last Glacial Maximum (LGM) (26.5 to 19 kya). The global climate was dry with a dust-laden atmosphere (20 to 25 times more dust than the present level). High levels of atmospheric dust started more than 40 kya and ended less than 10 kya. Secretion of airway fluid is usually related to the submucosal tissue hydration, while salt reabsorption relies on activation of CFTRs that allow ENaCs to absorb salt and water. The water loss by evaporation depends on the air humidity and flow rate. Salt accumulation in the mucus is normally prevented by reabsorption of Na(+) and Cl(-) by epithelial cells if the presence of functional CFTRs is normal. If one gene for CFTR is mutated, the number of functional CFTRs is reduced and this limits the capacity of salt reabsorption by epithelial cells. This means that evaporation makes the airway fluid more hypertonic, and osmotic forces bring more water from the interstitial space, thus leading to a new balance in mucosal fluid traffic. Increased osmolarity and volume of airway fluid can be more moveable in cases when evaporation and dust exposure is increased. If both CFTR genes are mutated, low number of functional CFTRs diminishes salt resorption of epithelial cells. Salt accumulated in the mucous fluid within respiratory ducts, as previously described. The hypertonic ductal content forces more water and some electrolytes to enter the airway fluid from the interstitial fluid, and evaporation leads to further concentration of thick immobile mucus. The proposed interpretation is that CFTR mutations have spread among our ancestors that roamed the central Eurasia after the LGM. The heterozygote individuals might have benefitted from the limited water resorption in their respiratory mucosa that allowed improved airway cleansing.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Fibrose Cística/genética , Fibrose Cística/história , Fibrose Cística/fisiopatologia , Heterozigoto , Respiração/genética , Clima , Poeira , História Antiga , Humanos , Modelos Biológicos , População Branca/genética
18.
PLoS One ; 9(7): e100776, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24983941

RESUMO

BACKGROUND: Genome-wide association studies (GWAS) have identified numerous loci influencing cross-sectional lung function, but less is known about genes influencing longitudinal change in lung function. METHODS: We performed GWAS of the rate of change in forced expiratory volume in the first second (FEV1) in 14 longitudinal, population-based cohort studies comprising 27,249 adults of European ancestry using linear mixed effects model and combined cohort-specific results using fixed effect meta-analysis to identify novel genetic loci associated with longitudinal change in lung function. Gene expression analyses were subsequently performed for identified genetic loci. As a secondary aim, we estimated the mean rate of decline in FEV1 by smoking pattern, irrespective of genotypes, across these 14 studies using meta-analysis. RESULTS: The overall meta-analysis produced suggestive evidence for association at the novel IL16/STARD5/TMC3 locus on chromosome 15 (P  =  5.71 × 10(-7)). In addition, meta-analysis using the five cohorts with ≥3 FEV1 measurements per participant identified the novel ME3 locus on chromosome 11 (P  =  2.18 × 10(-8)) at genome-wide significance. Neither locus was associated with FEV1 decline in two additional cohort studies. We confirmed gene expression of IL16, STARD5, and ME3 in multiple lung tissues. Publicly available microarray data confirmed differential expression of all three genes in lung samples from COPD patients compared with controls. Irrespective of genotypes, the combined estimate for FEV1 decline was 26.9, 29.2 and 35.7 mL/year in never, former, and persistent smokers, respectively. CONCLUSIONS: In this large-scale GWAS, we identified two novel genetic loci in association with the rate of change in FEV1 that harbor candidate genes with biologically plausible functional links to lung function.


Assuntos
Cromossomos Humanos Par 11/genética , Regulação da Expressão Gênica , Loci Gênicos , Estudo de Associação Genômica Ampla , Respiração/genética , Adulto , Feminino , Humanos , Estudos Longitudinais , Masculino
19.
Biochim Biophys Acta ; 1841(4): 630-44, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24406904

RESUMO

Coenzyme Q biosynthesis in yeast requires a multi-subunit Coq polypeptide complex. Deletion of any one of the COQ genes leads to respiratory deficiency and decreased levels of the Coq4, Coq6, Coq7, and Coq9 polypeptides, suggesting that their association in a high molecular mass complex is required for stability. Over-expression of the putative Coq8 kinase in certain coq null mutants restores steady-state levels of the sensitive Coq polypeptides and promotes the synthesis of late-stage Q-intermediates. Here we show that over-expression of Coq8 in yeast coq null mutants profoundly affects the association of several of the Coq polypeptides in high molecular mass complexes, as assayed by separation of digitonin extracts of mitochondria by two-dimensional blue-native/SDS PAGE. The Coq4 polypeptide persists at high molecular mass with over-expression of Coq8 in coq3, coq5, coq6, coq7, coq9, and coq10 mutants, indicating that Coq4 is a central organizer of the Coq complex. Supplementation with exogenous Q6 increased the steady-state levels of Coq4, Coq7, and Coq9, and several other mitochondrial polypeptides in select coq null mutants, and also promoted the formation of late-stage Q-intermediates. Q supplementation may stabilize this complex by interacting with one or more of the Coq polypeptides. The stabilizing effects of exogenously added Q6 or over-expression of Coq8 depend on Coq1 and Coq2 production of a polyisoprenyl intermediate. Based on the observed interdependence of the Coq polypeptides, the effect of exogenous Q6, and the requirement for an endogenously produced polyisoprenyl intermediate, we propose a new model for the Q-biosynthetic complex, termed the CoQ-synthome.


Assuntos
Proteínas Mitocondriais/genética , Respiração/genética , Proteínas de Saccharomyces cerevisiae/genética , Ubiquinona/biossíntese , Suplementos Nutricionais , Regulação Fúngica da Expressão Gênica , Metiltransferases/química , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Complexos Multiproteicos , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquinona/química , Ubiquinona/genética , Ubiquinona/metabolismo
20.
Exp Neurol ; 251: 84-90, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24270080

RESUMO

Mitochondria actively participate in neurotransmission by providing energy (ATP) and maintaining normative concentrations of reactive oxygen species (ROS) in both presynaptic and postsynaptic elements. In human and animal epilepsies, ATP-producing respiratory rates driven by mitochondrial respiratory complex (MRC) I are reduced, antioxidant systems are attenuated and oxidative damage is increased. We report that MRCI-driven respiration and functional uncoupling (an inducible antioxidant mechanism) are reduced and levels of H2O2 are elevated in mitochondria isolated from KO mice. Experimental impairment of MRCI in WT hippocampal slices via rotenone reduces paired-pulse ratios (PPRs) at mossy fiber-CA3 synapses (resembling KO PPRs), and exacerbates seizure-like events in vitro. Daily treatment with AATP [a combination therapy composed of ascorbic acid (AA), alpha-tocopherol (T), sodium pyruvate (P) designed to synergistically target mitochondrial impairments] improved mitochondrial functions, mossy fiber PPRs, and reduced seizure burden index (SBI) scores and seizure incidence in KO mice. AATP pretreatment reduced severity of KA-induced seizures resulting in 100% protection from the severe tonic-clonic seizures in WT mice. These data suggest that restoration of bioenergetic homeostasis in the brain may represent a viable anti-seizure target for temporal lobe epilepsy.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/prevenção & controle , Trifosfato de Adenosina/administração & dosagem , Trifosfato de Adenosina/análogos & derivados , Animais , Ácido Ascórbico/uso terapêutico , Modelos Animais de Doenças , Estimulação Elétrica , Eletroencefalografia , Epilepsia do Lobo Temporal/genética , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Peróxido de Hidrogênio/metabolismo , Técnicas In Vitro , Ácido Caínico/toxicidade , Canal de Potássio Kv1.1/deficiência , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ácido Pirúvico/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Respiração/efeitos dos fármacos , Respiração/genética , Convulsões/induzido quimicamente , Convulsões/prevenção & controle , Convulsões/terapia , alfa-Tocoferol/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA