Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zebrafish ; 20(2): 47-54, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071854

RESUMO

Our understanding of inner ear hair cell ultrastructure has heretofore relied upon two-dimensional imaging; however, serial block-face scanning electron microscopy (SBFSEM) changes this paradigm allowing for three-dimensional evaluation. We compared inner ear hair cells of the apical cristae in myo7aa-/- null zebrafish, a model of human Usher Syndrome type 1B, to hair cells in wild-type zebrafish by SBFSEM to investigate possible ribbon synapse ultrastructural differences. Previously, it has been shown that compared to wild type, myo7aa-/- zebrafish neuromast hair cells have fewer ribbon synapses yet similar ribbon areas. We expect the recapitulation of these results within the inner ear apical crista hair cells furthering the knowledge of three-dimensional ribbon synapse structure while resolving the feasibility of therapeutically targeting myo7aa-/- mutant ribbons. In this report, we evaluated ribbon synapse number, volume, surface area, and sphericity. Localization of ribbons and their distance from the nearest innervation were also evaluated. We determined that myo7aa-/- mutant ribbon synapses are smaller in volume and surface area; however, all other measurements were not significantly different from wild-type zebrafish. Because the ribbon synapses are nearly indistinguishable between the myo7aa-/- mutant and wild type, it suggests that the ribbons are structurally receptive, supporting that therapeutic intervention may be feasible.


Assuntos
Síndromes de Usher , Peixe-Zebra , Animais , Humanos , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Sinapses/metabolismo , Sinapses/ultraestrutura , Células Ciliadas Auditivas Internas/metabolismo , Células Ciliadas Auditivas Internas/ultraestrutura , Cabelo , Miosinas/genética , Miosinas/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Cell Rep ; 25(5): 1281-1291.e4, 2018 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-30380418

RESUMO

Morphogenesis and mechanoelectrical transduction of the hair cell mechanoreceptor depend on the correct assembly of Usher syndrome (USH) proteins into highly organized macromolecular complexes. Defects in these proteins lead to deafness and vestibular areflexia in USH patients. Mutations in a non-USH protein, glutaredoxin domain-containing cysteine-rich 1 (GRXCR1), cause non-syndromic sensorineural deafness. To understand the deglutathionylating enzyme function of GRXCR1 in deafness, we generated two grxcr1 zebrafish mutant alleles. We found that hair bundles are thinner in homozygous grxcr1 mutants, similar to the USH1 mutants ush1c (Harmonin) and ush1ga (Sans). In vitro assays showed that glutathionylation promotes the interaction between Ush1c and Ush1ga and that Grxcr1 regulates mechanoreceptor development by preventing physical interaction between these proteins without affecting the assembly of another USH1 protein complex, the Ush1c-Cadherin23-Myosin7aa tripartite complex. By elucidating the molecular mechanism through which Grxcr1 functions, we also identify a mechanism that dynamically regulates the formation of Usher protein complexes.


Assuntos
Glutarredoxinas/metabolismo , Células Ciliadas Auditivas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Síndromes de Usher/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Cães , Glutationa/metabolismo , Complexo de Golgi/metabolismo , Células Madin Darby de Rim Canino , Atividade Motora , Mutação/genética , Ligação Proteica , Transporte Proteico , Estereocílios/metabolismo , Especificidade por Substrato
3.
J Clin Invest ; 128(8): 3382-3401, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29985171

RESUMO

Clarin-1, a tetraspan-like membrane protein defective in Usher syndrome type IIIA (USH3A), is essential for hair bundle morphogenesis in auditory hair cells. We report a new synaptic role for clarin-1 in mouse auditory hair cells elucidated by characterization of Clrn1 total (Clrn1ex4-/-) and postnatal hair cell-specific conditional (Clrn1ex4fl/fl Myo15-Cre+/-) knockout mice. Clrn1ex4-/- mice were profoundly deaf, whereas Clrn1ex4fl/fl Myo15-Cre+/- mice displayed progressive increases in hearing thresholds, with, initially, normal otoacoustic emissions and hair bundle morphology. Inner hair cell (IHC) patch-clamp recordings for the 2 mutant mice revealed defective exocytosis and a disorganization of synaptic F-actin and CaV1.3 Ca2+ channels, indicative of a synaptopathy. Postsynaptic defects were also observed, with an abnormally broad distribution of AMPA receptors associated with a loss of afferent dendrites and defective electrically evoked auditory brainstem responses. Protein-protein interaction assays revealed interactions between clarin-1 and the synaptic CaV1.3 Ca2+ channel complex via the Cavß2 auxiliary subunit and the PDZ domain-containing protein harmonin (defective in Usher syndrome type IC). Cochlear gene therapy in vivo, through adeno-associated virus-mediated Clrn1 transfer into hair cells, prevented the synaptic defects and durably improved hearing in Clrn1ex4fl/fl Myo15-Cre+/- mice. Our results identify clarin-1 as a key organizer of IHC ribbon synapses, and suggest new treatment possibilities for USH3A patients.


Assuntos
Técnicas de Transferência de Genes , Terapia Genética , Células Ciliadas Auditivas/metabolismo , Proteínas de Membrana , Sinapses , Síndromes de Usher , Animais , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Dependovirus , Modelos Animais de Doenças , Células Ciliadas Auditivas/patologia , Humanos , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Sinapses/genética , Sinapses/metabolismo , Sinapses/patologia , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/patologia , Síndromes de Usher/terapia
4.
Mol Vis ; 24: 115-126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29430167

RESUMO

Purpose: Usher syndrome (US) is characterized by a loss of vision due to retinitis pigmentosa (RP) and deafness. US has three clinical subtypes, but even within each subtype, the severity varies. Myosin VIIA, coded by Myo7a, has been identified as one of the causal genes of US. This study aims to identify pathways and other genes through which Myo7a interacts to affect the presentation of US symptoms. Methods: In this study, we used the retinal tissue of BXD recombinant inbred (RI) mice to examine the expression of Myo7a and perform genetic mapping. Expression quantitative trait locus (eQTL), single nucleotide polymorphism (SNP), and gene correlation analysis were performed using GeneNetwork. Gene set enrichment analysis was performed using WebGestalt, and gene network construction was performed using the Gene Cohesion Analysis Tool. Results: We found Myo7a to be cis-regulated, with varied levels of expression across BXD strains. Here, we propose a genetic network with 40 genes whose expression is highly correlated with Myo7a. Among these genes, six have been linked to retinal diseases, three to deafness, and five share a transcription factor with Myo7a. Gene ontology and pathway analysis revealed a strong connection among ion channel activity, Myo7a, and US. Conclusions: Although Myo7a is a causal gene of US type I, this gene works with many other genes and pathways to affect the severity of US. Many of the genes found in the genetic network, pathways, and gene ontology categories of Myo7a are related to either deafness or blindness. Further investigation is needed to examine the specific relationships between these genes, which may assist in the treatment of US.


Assuntos
Redes Reguladoras de Genes , Miosinas/genética , Locos de Características Quantitativas , Fatores de Transcrição/genética , Síndromes de Usher/genética , Animais , Cruzamentos Genéticos , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Anotação de Sequência Molecular , Miosina VIIa , Miosinas/metabolismo , Polimorfismo de Nucleotídeo Único , Transdução de Sinais , Fatores de Transcrição/metabolismo , Síndromes de Usher/metabolismo , Síndromes de Usher/patologia
5.
J Cell Sci ; 130(21): 3698-3712, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28883094

RESUMO

The way an organism perceives its surroundings depends on sensory systems and the highly specialized cilia present in the neurosensory cells. Here, we describe the existence of an integrin α8 (Itga8) and protocadherin-15a (Pcdh15a) ciliary complex in neuromast hair cells in a zebrafish model. Depletion of the complex via downregulation or loss-of-function mutation leads to a dysregulation of cilia biogenesis and endocytosis. At the molecular level, removal of the complex blocks the access of Rab8a into the cilia as well as normal recruitment of ciliary cargo by centriolar satellites. These defects can be reversed by the introduction of a constitutively active form of Rhoa, suggesting that Itga8-Pcdh15a complex mediates its effect through the activation of this small GTPase and probably by the regulation of actin cytoskeleton dynamics. Our data points to a novel mechanism involved in the regulation of sensory cilia development, with the corresponding implications for normal sensory function.


Assuntos
Caderinas/genética , Cílios/metabolismo , Células Ciliadas Auditivas/metabolismo , Integrinas/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Proteínas Relacionadas a Caderinas , Caderinas/antagonistas & inibidores , Caderinas/deficiência , Centríolos/metabolismo , Centríolos/ultraestrutura , Cílios/ultraestrutura , Modelos Animais de Doenças , Endocitose , Regulação da Expressão Gênica no Desenvolvimento , Células Ciliadas Auditivas/ultraestrutura , Humanos , Integrinas/antagonistas & inibidores , Integrinas/deficiência , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/patologia , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
J Biol Chem ; 292(26): 10950-10960, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28507101

RESUMO

Human myosin VIIa (MYO7A) is an actin-linked motor protein associated with human Usher syndrome (USH) type 1B, which causes human congenital hearing and visual loss. Although it has been thought that the role of human myosin VIIa is critical for USH1 protein tethering with actin and transportation along actin bundles in inner-ear hair cells, myosin VIIa's motor function remains unclear. Here, we studied the motor function of the tail-truncated human myosin VIIa dimer (HM7AΔTail/LZ) at the single-molecule level. We found that the HM7AΔTail/LZ moves processively on single actin filaments with a step size of 35 nm. Dwell-time distribution analysis indicated an average waiting time of 3.4 s, yielding ∼0.3 s-1 for the mechanical turnover rate; hence, the velocity of HM7AΔTail/LZ was extremely slow, at 11 nm·s-1 We also examined HM7AΔTail/LZ movement on various actin structures in demembranated cells. HM7AΔTail/LZ showed unidirectional movement on actin structures at cell edges, such as lamellipodia and filopodia. However, HM7AΔTail/LZ frequently missed steps on actin tracks and exhibited bidirectional movement at stress fibers, which was not observed with tail-truncated myosin Va. These results suggest that the movement of the human myosin VIIa motor protein is more efficient on lamellipodial and filopodial actin tracks than on stress fibers, which are composed of actin filaments with different polarity, and that the actin structures influence the characteristics of cargo transportation by human myosin VIIa. In conclusion, myosin VIIa movement appears to be suitable for translocating USH1 proteins on stereocilia actin bundles in inner-ear hair cells.


Assuntos
Actinas/metabolismo , Miosinas/metabolismo , Pseudópodes/metabolismo , Síndromes de Usher/metabolismo , Células 3T3 , Actinas/genética , Sequência de Aminoácidos , Animais , Humanos , Camundongos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosina VIIa , Miosinas/genética , Transporte Proteico/genética , Pseudópodes/genética , Deleção de Sequência , Síndromes de Usher/genética
7.
Hum Mol Genet ; 25(3): 524-33, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26620972

RESUMO

Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram recordings and monitored significant changes in the odor detection capabilities in mice expressing mutant Usher proteins. Furthermore, we observed changes in the expression of signaling proteins that might compensate for the Usher protein deficiency. In summary, this study provides novel insights into the presence and purpose of the Usher proteins in olfactory signal transduction.


Assuntos
Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Odorantes/análise , Mucosa Olfatória/metabolismo , Olfato/genética , Síndromes de Usher/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Células Epiteliais/patologia , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Mucosa Olfatória/patologia , Transdução de Sinais , Síndromes de Usher/metabolismo , Síndromes de Usher/patologia
8.
J Biol Chem ; 290(28): 17587-98, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26001786

RESUMO

Human myosin VIIA (HM7A) is responsible for human Usher syndrome type 1B, which causes hearing and visual loss in humans. Here we studied the regulation of HM7A. The actin-activated ATPase activity of full-length HM7A (HM7AFull) was lower than that of tail-truncated HM7A (HM7AΔTail). Deletion of the C-terminal 40 amino acids and mutation of the basic residues in this region (R2176A or K2179A) abolished the inhibition. Electron microscopy revealed that HM7AFull is a monomer in which the tail domain bends back toward the head-neck domain to form a compact structure. This compact structure is extended at high ionic strength or in the presence of Ca(2+). Although myosin VIIA has five isoleucine-glutamine (IQ) motifs, the neck length seems to be shorter than the expected length of five bound calmodulins. Supporting this observation, the IQ domain bound only three calmodulins in Ca(2+), and the first IQ motif failed to bind calmodulin in EGTA. These results suggest that the unique IQ domain of HM7A is important for the tail-neck interaction and, therefore, regulation. Cellular studies revealed that dimer formation of HM7A is critical for its translocation to filopodial tips and that the tail domain (HM7ATail) markedly reduced the filopodial tip localization of the HM7AΔTail dimer, suggesting that the tail-inhibition mechanism is operating in vivo. The translocation of the HM7AFull dimer was significantly less than that of the HM7AΔTail dimer, and R2176A/R2179A mutation rescued the filopodial tip translocation. These results suggest that HM7A can transport its cargo molecules, such as USH1 proteins, upon release of the tail-dependent inhibition.


Assuntos
Miosinas/química , Miosinas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Calmodulina/metabolismo , Células HeLa , Humanos , Microscopia Eletrônica de Transmissão , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Miosina VIIa , Miosinas/genética , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Síndromes de Usher/genética , Síndromes de Usher/metabolismo
9.
Invest Ophthalmol Vis Sci ; 55(12): 8488-96, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25468891

RESUMO

PURPOSE: Patients with Usher syndrome type I (USH1) have retinitis pigmentosa, profound congenital hearing loss, and vestibular ataxia. This syndrome is currently thought to be associated with at least six genes, which are encoded by over 180 exons. Here, we present the use of state-of-the-art techniques in the molecular diagnosis of a cohort of 47 USH1 probands. METHODS: The cohort was studied with selective exon capture and next-generation sequencing of currently known inherited retinal degeneration genes, comparative genomic hybridization, and Sanger sequencing of new USH1 exons identified by human retinal transcriptome analysis. RESULTS: With this approach, we were able to genetically solve 14 of the 47 probands by confirming the biallelic inheritance of mutations. We detected two likely pathogenic variants in an additional 19 patients, for whom family members were not available for cosegregation analysis to confirm biallelic inheritance. Ten patients, in addition to primary disease-causing mutations, carried rare likely pathogenic USH1 alleles or variants in other genes associated with deaf-blindness, which may influence disease phenotype. Twenty-one of the identified mutations were novel among the 33 definite or likely solved patients. Here, we also present a clinical description of the studied cohort at their initial visits. CONCLUSIONS: We found a remarkable genetic heterogeneity in the studied USH1 cohort with multiplicity of mutations, of which many were novel. No obvious influence of genotype on phenotype was found, possibly due to small sample sizes of the genotypes under study.


Assuntos
Éxons , Miosinas/metabolismo , Análise de Sequência de DNA/métodos , Síndromes de Usher/genética , Adulto , Estudos de Coortes , Análise Mutacional de DNA , Perfilação da Expressão Gênica , Variação Genética , Humanos , Mutação , Linhagem , Síndromes de Usher/metabolismo
10.
PLoS One ; 9(9): e107326, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25211151

RESUMO

BACKGROUND: Usher syndrome (USH) is a genetically heterogeneous condition with ten disease-causing genes. The spectrum of genes and mutations causing USH in the Lebanese and Middle Eastern populations has not been described. Consequently, diagnostic approaches designed to screen for previously reported mutations were unlikely to identify the mutations in 11 unrelated families, eight of Lebanese and three of Middle Eastern origins. In addition, six of the ten USH genes consist of more than 20 exons, each, which made mutational analysis by Sanger sequencing of PCR-amplified exons from genomic DNA tedious and costly. The study was aimed at the identification of USH causing genes and mutations in 11 unrelated families with USH type I or II. METHODS: Whole exome sequencing followed by expanded familial validation by Sanger sequencing. RESULTS: We identified disease-causing mutations in all the analyzed patients in four USH genes, MYO7A, USH2A, GPR98 and CDH23. Eleven of the mutations were novel and protein truncating, including a complex rearrangement in GPR98. CONCLUSION: Our data highlight the genetic diversity of Usher syndrome in the Lebanese population and the time and cost-effectiveness of whole exome sequencing approach for mutation analysis of genetically heterogeneous conditions caused by large genes.


Assuntos
Códon sem Sentido , Exoma , Síndromes de Usher/genética , Sequência de Aminoácidos , Proteínas Relacionadas a Caderinas , Caderinas/genética , Análise Mutacional de DNA , Proteínas da Matriz Extracelular/genética , Estudos de Associação Genética , Ligação Genética , Humanos , Líbano , Dados de Sequência Molecular , Miosina VIIa , Miosinas/genética , Receptores Acoplados a Proteínas G/genética , Análise de Sequência de RNA , Síndromes de Usher/metabolismo
11.
Proteomics ; 14(13-14): 1674-87, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24841751

RESUMO

Imaging MS (MSI) has emerged as a valuable tool to study the spatial distribution of biomolecules in the brain. Herein, MALDI-MSI was used to determine the distribution of endogenous peptides in a rat model of Usher's disease. This rare disease is considered as a leading cause of deaf-blindness in humans worldwide. Cryosections of brain tissue were analyzed by MALDI-MSI to differentiate between healthy and diseased rats. MSI results were highly reproducible. Tissue-specific peptides were identified by MS/MS using LC-Orbitrap and MALDI-TOF/TOF analyses. These peptides were proposed for histological classification due to their particular spatial distribution in the brain, for example, substantia nigra, corpus callosum, and hippocampus. Several endogenous peptides showed significantly increased ion densities, particularly in the colliculi superiores and in the substantia nigra of diseased rats, including peptides derived from Fsd1, dystrobrevin-ß, and ProSAAS. Furthermore, several proteolytic degradation products of the myelin basic protein were identified, of which one peptide is most likely mediated by calpain-2. Our findings contribute to the characterization of this animal model and include possible peptide markers of disease.


Assuntos
Encéfalo/patologia , Peptídeos/análise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Síndromes de Usher/patologia , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Dados de Sequência Molecular , Peptídeos/metabolismo , Ratos , Ratos Endogâmicos Lew , Síndromes de Usher/metabolismo
12.
Exp Eye Res ; 122: 65-76, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24698764

RESUMO

Mutations in myosin VIIa (MYO7A) cause Usher Syndrome 1B (USH1B), a disease characterized by the combination of sensorineural hearing loss and visual impairment termed retinitis pigmentosa (RP). Although the shaker-1 mouse model of USH1B exists, only minor defects in the retina have been observed during its lifespan. Previous studies of the zebrafish mariner mutant, which also carries a mutation in myo7aa, revealed balance and hearing defects in the mutants but the retinal phenotype has not been described. We found elevated cell death in the outer nuclear layer (ONL) of myo7aa(-/-) mutants. While myo7aa(-/-) mutants retained visual behaviors in the optokinetic reflex (OKR) assay, electroretinogram (ERG) recordings revealed a significant decrease in both a- and b-wave amplitudes in mutant animals, but not a change in ERG threshold sensitivity. Immunohistochemistry showed mislocalization of rod and blue cone opsins and reduced expression of rod-specific markers in the myo7aa(-/-) ONL, providing further evidence that the photoreceptor degeneration observed represents the initial stages of the RP. Further, constant light exposure resulted in widespread photoreceptor degeneration and the appearance of large holes in the retinal pigment epithelium (RPE). No differences were observed in the retinomotor movements of the photoreceptors or in melanosome migration within the RPE, suggesting that myo7aa(-/-) does not function in these processes in teleosts. These results indicate that the zebrafish myo7aa(-/-) mutant is a useful animal model for the RP seen in humans with USH1B.


Assuntos
Códon sem Sentido , Miosinas/genética , Células Fotorreceptoras de Vertebrados/patologia , Degeneração Retiniana/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Morte Celular , Adaptação à Escuridão , Modelos Animais de Doenças , Eletrorretinografia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Luz , Melanossomas/fisiologia , Microscopia Eletrônica de Transmissão , Miosina VIIa , Nistagmo Optocinético/fisiologia , Células Fotorreceptoras de Vertebrados/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Opsinas de Bastonetes/metabolismo , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/patologia
13.
Int J Biochem Cell Biol ; 46: 80-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24239741

RESUMO

The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome.


Assuntos
Células Ciliadas Auditivas/patologia , Células Fotorreceptoras/patologia , Síndromes de Usher/genética , Síndromes de Usher/patologia , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Modelos Animais de Doenças , Células Ciliadas Auditivas/metabolismo , Humanos , Células Fotorreceptoras/metabolismo , Síndromes de Usher/metabolismo
14.
Physiol Genomics ; 45(21): 987-9, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24022220

RESUMO

Usher syndrome (USH) is a neurosensory disorder affecting both hearing and vision in humans. Linkage studies of families of USH patients, studies in animals, and characterization of purified proteins have provided insight into the molecular mechanisms of hearing. To date, 11 USH proteins have been identified, and evidence suggests that all of them are crucial for the function of the mechanosensory cells of the inner ear, the hair cells. Most USH proteins are localized to the stereocilia of the hair cells, where mechano-electrical transduction (MET) of sound-induced vibrations occurs. Therefore, elucidation of the functions of USH proteins in the stereocilia is a prerequisite to understanding the exact mechanisms of MET.


Assuntos
Orelha Interna/metabolismo , Células Ciliadas Auditivas/metabolismo , Estereocílios/metabolismo , Síndromes de Usher/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Orelha Interna/patologia , Orelha Interna/fisiopatologia , Células Ciliadas Auditivas/patologia , Humanos , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Biológicos , Mutação , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Estereocílios/patologia , Síndromes de Usher/genética , Síndromes de Usher/fisiopatologia
15.
Hum Mol Genet ; 22(18): 3773-88, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23704327

RESUMO

Mutations in the myosin VIIa gene cause Usher syndrome type IB (USH1B), characterized by deaf-blindness. A delay of opsin trafficking has been observed in the retinal photoreceptor cells of myosin VIIa-deficient mice. We identified spectrin ßV, the mammalian ß-heavy spectrin, as a myosin VIIa- and rhodopsin-interacting partner in photoreceptor cells. Spectrin ßV displays a polarized distribution from the Golgi apparatus to the base of the outer segment, which, unlike that of other ß spectrins, matches the trafficking route of opsin and other phototransduction proteins. Formation of spectrin ßV-rhodopsin complex could be detected in the differentiating photoreceptors as soon as their outer segment emerges. A failure of the spectrin ßV-mediated coupling between myosin VIIa and opsin molecules thus probably accounts for the opsin transport delay in myosin VIIa-deficient mice. We showed that spectrin ßV also associates with two USH1 proteins, sans (USH1G) and harmonin (USH1C). Spectrins are supposed to function as heteromers of α and ß subunits, but fluorescence resonance energy transfer and in vitro binding experiments indicated that spectrin ßV can also form homodimers, which likely supports its αII-independent ßV functions. Finally, consistent with its distribution along the connecting cilia axonemes, spectrin ßV binds to several subunits of the microtubule-based motor proteins, kinesin II and the dynein complex. We therefore suggest that spectrin ßV homomers couple some USH1 proteins, opsin and other phototransduction proteins to both actin- and microtubule-based motors, thereby contributing to their transport towards the photoreceptor outer disks.


Assuntos
Miosinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Espectrina/genética , Espectrina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Células HeLa , Humanos , Transdução de Sinal Luminoso , Camundongos , Proteínas dos Microtúbulos/metabolismo , Miosina VIIa , Retina/metabolismo , Rodopsina/metabolismo , Síndromes de Usher/metabolismo
16.
Nat Med ; 19(3): 345-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23380860

RESUMO

Hearing impairment is the most common sensory disorder, with congenital hearing impairment present in approximately 1 in 1,000 newborns. Hereditary deafness is often mediated by the improper development or degeneration of cochlear hair cells. Until now, it was not known whether such congenital failures could be mitigated by therapeutic intervention. Here we show that hearing and vestibular function can be rescued in a mouse model of human hereditary deafness. An antisense oligonucleotide (ASO) was used to correct defective pre-mRNA splicing of transcripts from the USH1C gene with the c.216G>A mutation, which causes human Usher syndrome, the leading genetic cause of combined deafness and blindness. Treatment of neonatal mice with a single systemic dose of ASO partially corrects Ush1c c.216G>A splicing, increases protein expression, improves stereocilia organization in the cochlea, and rescues cochlear hair cells, vestibular function and low-frequency hearing in mice. These effects were sustained for several months, providing evidence that congenital deafness can be effectively overcome by treatment early in development to correct gene expression and demonstrating the therapeutic potential of ASOs in the treatment of deafness.


Assuntos
Proteínas de Transporte/genética , Oligonucleotídeos Antissenso/uso terapêutico , Síndromes de Usher/genética , Síndromes de Usher/terapia , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Cóclea/metabolismo , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico , Terapia Genética , Células Ciliadas Auditivas/metabolismo , Células HeLa , Audição , Humanos , Camundongos , Estereocílios/genética , Síndromes de Usher/metabolismo , Vestíbulo do Labirinto/fisiologia
17.
Acta Ophthalmol ; 91(4): 325-34, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22681893

RESUMO

PURPOSE: The Finnish distribution of clinical Usher syndrome (USH) types is 40% USH3, 34% USH1 and 12% USH2. All patients with USH3 carry the founder mutation in clarin 1 (CLRN1), whereas we recently reported three novel myosin VIIA (MYO7A) mutations in two unrelated patients with USH1. This study was carried out to further investigate the USH mutation spectrum in Finnish patients. METHODS: We analysed samples from nine unrelated USH patients/families without known mutations and two USH3 families with atypically severe phenotype. The Asper Ophthalmics USH mutation chip was used to screen for known mutations and to evaluate the chip in molecular diagnostics of Finnish patients. RESULTS: The chip revealed a heterozygous usherin (USH2A) mutation, p.N346H, in one patient. Sequencing of MYO7A and/or USH2A in three index patients revealed two novel heterozygous mutations, p.R873W in MYO7A and c.14343+2T>C in USH2A. We did not identify definite pathogenic second mutations in the patients, but identified several probably nonpathogenic variations that may modify the disease phenotype. Possible digenism could not be excluded in two families segregating genomic variations in both MYO7A and USH2A, and two families with CLRN1 and USH2A. CONCLUSION: We conclude that there is considerable genetic heterogeneity of USH1 and USH2 in Finland, making molecular diagnostics and genetic counselling of patients and families challenging.


Assuntos
DNA/genética , Predisposição Genética para Doença , Proteínas de Membrana/genética , Mutação , Miosinas/genética , Síndromes de Usher/genética , Adulto , Análise Mutacional de DNA , Feminino , Finlândia/epidemiologia , Genótipo , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Miosina VIIa , Miosinas/metabolismo , Linhagem , Prevalência , Síndromes de Usher/epidemiologia , Síndromes de Usher/metabolismo
18.
J Cell Biol ; 199(2): 381-99, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23045546

RESUMO

The mechanisms underlying retinal dystrophy in Usher syndrome type I (USH1) remain unknown because mutant mice lacking any of the USH1 proteins-myosin VIIa, harmonin, cadherin-23, protocadherin-15, sans-do not display retinal degeneration. We found here that, in macaque photoreceptor cells, all USH1 proteins colocalized at membrane interfaces (i) between the inner and outer segments in rods and (ii) between the microvillus-like calyceal processes and the outer segment basolateral region in rods and cones. This pattern, conserved in humans and frogs, was mediated by the formation of an USH1 protein network, which was associated with the calyceal processes from the early embryonic stages of outer segment growth onwards. By contrast, mouse photoreceptors lacked calyceal processes and had no USH1 proteins at the inner-outer segment interface. We suggest that USH1 proteins form an adhesion belt around the basolateral region of the photoreceptor outer segment in humans, and that defects in this structure cause the retinal degeneration in USH1 patients.


Assuntos
Junções Intercelulares/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestrutura , Síndromes de Usher/metabolismo , Animais , Anuros , Proteínas Relacionadas a Caderinas , Caderinas/deficiência , Caderinas/genética , Caderinas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Humanos , Junções Intercelulares/ultraestrutura , Macaca fascicularis , Camundongos , Miosina VIIa , Miosinas/deficiência , Miosinas/genética , Miosinas/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Precursores de Proteínas/deficiência , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Retina/metabolismo , Retina/ultraestrutura , Distrofias Retinianas/patologia , Suínos , Síndromes de Usher/patologia
19.
Biochem Soc Trans ; 39(5): 1207-10, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21936790

RESUMO

Mutations in MYO7A (myosin VIIa) cause Usher syndrome type 1B, a disorder involving profound congenital deafness and progressive blindness. In the retina, most MYO7A is localized in the apical region of the RPE (retinal pigmented epithelial) cells, and a small amount is associated with the ciliary and periciliary membranes of the photoreceptor cells. Its roles appear to be quite varied. Studies with MYO7A-null mice indicate that MYO7A participates in the apical localization of RPE melanosomes and in the removal of phagosomes from the apical RPE for their delivery to lysosomes in the basal RPE. In the first role, MYO7A competes with microtubule motors, but in the second one, it may function co-operatively. An additional role of MYO7A in the RPE is indicated by the requirement for it in the light-dependent translocation of the ER (endoplasmic reticulum)-associated visual cycle enzyme RPE65 and normal functioning of the visual retinoid cycle. In photoreceptor cells lacking MYO7A, opsin accumulates abnormally in the transition zone of the cilium, suggesting that MYO7A functions as a selective barrier for membrane proteins at the distal end of the transition zone. It is likely that the progressive retinal degeneration that occurs in Usher syndrome 1B patients results from a combination of cellular defects in the RPE and photoreceptor cells.


Assuntos
Miosinas/metabolismo , Retina/metabolismo , Síndromes de Usher/metabolismo , Animais , Humanos , Melanossomas/metabolismo , Camundongos , Camundongos Knockout , Mutação , Miosina VIIa , Miosinas/genética , Células Fotorreceptoras/citologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Retina/citologia , Retina/patologia , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Síndromes de Usher/genética , Síndromes de Usher/patologia
20.
Hum Mol Genet ; 20(13): 2560-70, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21493626

RESUMO

Mutations in the MYO7A gene cause a deaf-blindness disorder, known as Usher syndrome 1B.  In the retina, the majority of MYO7A is in the retinal pigmented epithelium (RPE), where many of the reactions of the visual retinoid cycle take place.  We have observed that the retinas of Myo7a-mutant mice are resistant to acute light damage. In exploring the basis of this resistance, we found that Myo7a-mutant mice have lower levels of RPE65, the RPE isomerase that has a key role in the retinoid cycle.  We show for the first time that RPE65 normally undergoes a light-dependent translocation to become more concentrated in the central region of the RPE cells.  This translocation requires MYO7A, so that, in Myo7a-mutant mice, RPE65 is partly mislocalized in the light.  RPE65 is degraded more quickly in Myo7a-mutant mice, perhaps due to its mislocalization, providing a plausible explanation for its lower levels.  Following a 50-60% photobleach, Myo7a-mutant retinas exhibited increased all-trans-retinyl ester levels during the initial stages of dark recovery, consistent with a deficiency in RPE65 activity.  Lastly, MYO7A and RPE65 were co-immunoprecipitated from RPE cell lysate by antibodies against either of the proteins, and the two proteins were partly colocalized, suggesting a direct or indirect interaction.  Together, the results support a role for MYO7A in the translocation of RPE65, illustrating the involvement of a molecular motor in the spatiotemporal organization of the retinoid cycle in vision.


Assuntos
Proteínas do Olho/metabolismo , Miosinas/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Proteínas do Olho/genética , Humanos , Espaço Intracelular/metabolismo , Luz/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina VIIa , Miosinas/genética , Ligação Proteica/fisiologia , Transporte Proteico/genética , Transporte Proteico/efeitos da radiação , Retina/metabolismo , Retina/patologia , Retina/efeitos da radiação , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Síndromes de Usher/genética , Síndromes de Usher/metabolismo , Síndromes de Usher/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA