Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
1.
Mol Diagn Ther ; 28(4): 347-377, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38717523

RESUMO

PURPOSE: HtrA1, HtrA2, HtrA3 and HtrA4 appear to be involved in the development of pathologies such as cancer. This systematic review reports the results of a literature search performed to compare the expression of HtrA family genes and proteins in cancer versus non-cancer tissues and cell lines, assess relationships between HtrA expression and cancer clinical features in cancer, and analyse the molecular mechanism, by which HtrA family affects cancer. METHODS: The literature search was conducted according to the PRISMA statement among four databases (PubMed, Web of Science, Embase and Scopus). RESULTS: A total of 38 articles met the inclusion criteria and involved the expression of HtrA family members and concerned the effect of HtrA expression on cancer and metastasis development or on the factor that influences it. Additionally, 31 reports were retrieved manually. Most articles highlighted that HtrA1 and HtrA3 exhibited tumour suppressor activity, while HtrA2 was associated with tumour growth and metastasis. There were too few studies to clearly define the role of the HtrA4 protease in tumours. CONCLUSION: Although the expression of serine proteases of the HtrA family was dependent on tumour type, stage and the presence of metastases, most articles indicated that HtrA1 and HtrA3 expression in tumours was downregulated compared with healthy tissue or cell lines. The expression of HtrA2 was completely study dependent. The limited number of studies on HtrA4 expression made it impossible to draw conclusions about differences in expression between healthy and tumour tissue. The conclusions drawn from the study suggest that HtrA1 and HtrA3 act as tumour suppressors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Serina Peptidase 1 de Requerimento de Alta Temperatura A , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Neoplasias , Serina Endopeptidases , Humanos , Neoplasias/genética , Neoplasias/patologia , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
2.
Int J Mol Sci ; 25(3)2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38338855

RESUMO

Systemic chronic inflammation (SCI) due to intrinsic immune over-activation is an important factor in the development of many noninfectious chronic diseases, such as neurodegenerative diseases and diabetes mellitus. Among these immune responses, macrophages are extensively involved in the regulation of inflammatory responses by virtue of their polarization plasticity; thus, dysregulation of macrophage polarization direction is one of the potential causes of the generation and maintenance of SCI. High-temperature demand protein A2 (HtrA2/Omi) is an important regulator of mitochondrial quality control, not only participating in the degradation of mis-accumulated proteins in the mitochondrial unfolded protein response (UPRmt) to maintain normal mitochondrial function through its enzymatic activity, but also participating in the regulation of mitochondrial dynamics-related protein interactions to maintain mitochondrial morphology. Recent studies have also reported the involvement of HtrA2/Omi as a novel inflammatory mediator in the regulation of the inflammatory response. HtrA2/Omi regulates the inflammatory response in BMDM by controlling TRAF2 stabilization in a collagen-induced arthritis mouse model; the lack of HtrA2 ameliorates pro-inflammatory cytokine expression in macrophages. In this review, we summarize the mechanisms by which HtrA2/Omi proteins are involved in macrophage polarization remodeling by influencing macrophage energy metabolism reprogramming through the regulation of inflammatory signaling pathways and mitochondrial quality control, elucidating the roles played by HtrA2/Omi proteins in inflammatory responses. In conclusion, interfering with HtrA2/Omi may become an important entry point for regulating macrophage polarization, providing new research space for developing HtrA2/Omi-based therapies for SCI.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A , Inflamação , Macrófagos , Mitocôndrias , Animais , Camundongos , Apoptose , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Inflamação/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Macrófagos/metabolismo
3.
Science ; 379(6637): 1105-1111, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36758104

RESUMO

Tight regulation of apoptosis is essential for metazoan development and prevents diseases such as cancer and neurodegeneration. Caspase activation is central to apoptosis, and inhibitor of apoptosis proteins (IAPs) are the principal actors that restrain caspase activity and are therefore attractive therapeutic targets. IAPs, in turn, are regulated by mitochondria-derived proapoptotic factors such as SMAC and HTRA2. Through a series of cryo-electron microscopy structures of full-length human baculoviral IAP repeat-containing protein 6 (BIRC6) bound to SMAC, caspases, and HTRA2, we provide a molecular understanding for BIRC6-mediated caspase inhibition and its release by SMAC. The architecture of BIRC6, together with near-irreversible binding of SMAC, elucidates how the IAP inhibitor SMAC can effectively control a processive ubiquitin ligase to respond to apoptotic stimuli.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Caspases , Proteínas Inibidoras de Apoptose , Proteínas Mitocondriais , Animais , Humanos , Caspases/química , Caspases/metabolismo , Microscopia Crioeletrônica , Ativação Enzimática , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Proteínas Inibidoras de Apoptose/química , Proteínas Inibidoras de Apoptose/metabolismo , Domínios Proteicos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo
4.
Structure ; 30(9): 1307-1320.e5, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738282

RESUMO

The mitochondrial serine protease High-temperature requirement A2 (HtrA2) is associated with various diseases including neurodegenerative disorders and cancer. Despite availability of structural details, the reports on HtrA2's mechanistic regulation that varies with the type of activation signals still remain non-concordant. To expound the role of regulatory PDZ (Postsynaptic density-95/Discs large/Zonula occludens-1) domains in multimodal activation of HtrA2, we generated heterotrimeric HtrA2 variants comprising different numbers of PDZs and/or active-site mutations. Sequential deletion of PDZs from the trimeric ensemble significantly affected its residual activity in a way that proffered a hypothesis advocating inter-molecular allosteric crosstalk via PDZs in HtrA2. Furthermore, structural and computational snapshots affirmed the role of PDZs in secondary structural element formation around the regulatory loops and coordinated reorganization of the N-terminal region. Therefore, apart from providing cues for devising structure-guided therapeutic strategies, this study establishes a physiologically relevant working model of complex allosteric regulation through a trans-mediated cooperatively shared energy landscape.


Assuntos
Proteínas Mitocondriais , Serina Endopeptidases , Regulação Alostérica , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Proteínas Mitocondriais/química , Modelos Moleculares , Domínios PDZ , Serina Endopeptidases/química
5.
Gene ; 819: 146263, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35121025

RESUMO

High temperature requirement A2 (HtrA2) contributes to regulating mitochondrial quality control and maintaining the balance between the death and survival of cells and living organisms. However, the molecular mechanism of HtrA2 in physiological and pathophysiological processes remains unclear. HtrA2 exhibits multifaceted characteristics according to the expression levels and acts opposite functions depending on its subcellular localization. Thus, innovative technologies and systems that can be freely manipulated at the quantitative, biochemical, molecular and cellular levels are needed to address not only the challenges faced by HtrA2 research but also the general obstacles to protein research. Here, we are the first to identify zebrafish HtrA2 (zHtrA2) as the true ortholog of human HtrA2 (hHtrA2), by in silico sequence analysis of genomic DNA and molecular biological techniques, which is highly conserved structurally and functionally as a serine protease and cell death regulator. The zHtrA2 protein is primarily localized in the mitochondria, where alanine-exposed mature zHtrA2 ((A)-zHtrA2) is generated by removing 111 residues at the N-terminus of pro-zHtrA2. The (A)-zHtrA2 released from the mitochondria into the cytosol induces the caspase cascade by binding to and inhibiting hXIAP, a cognate partner of hHtrA2. Notably, zHtrA2 has well conserved properties of serine protease that specifically cleaves hParkin, a cognate substrate of hHtrA2. Interestingly, cytosolic (M)-zHtrA2, which does not bind hXIAP, induces atypical cell death in a serine protease-dependent manner, as occurs in hHtrA2. Thus, the zebrafish-zHtrA2 system can be used to clarify the crucial role of HtrA2 in maintaining the survival of living organisms and provide an opportunity to develop novel therapeutics for HtrA2-associated diseases, such as neurodegenerative diseases and cancer, which are caused by dysregulation of HtrA2.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Homeostase , Mitocôndrias/genética , Animais , Caspases/metabolismo , Morte Celular , Genes Mitocondriais , Células HEK293 , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Mol Oncol ; 16(6): 1365-1383, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35122388

RESUMO

Radiation therapy can induce cellular senescence in cancer cells, leading to short-term tumor growth arrest but increased long-term recurrence. To better understand the molecular mechanisms involved, we developed a model of radiation-induced senescence in cultured cancer cells. The irradiated cells exhibited a typical senescent phenotype, including upregulation of p53 and its main target, p21, followed by a sustained reduction in cellular proliferation, changes in cell size and cytoskeleton organization, and senescence-associated beta-galactosidase activity. Mass spectrometry-based proteomic profiling of the senescent cells indicated downregulation of proteins involved in cell cycle progression and DNA repair, and upregulation of proteins associated with malignancy. A functional siRNA screen using a cell death-related library identified mitochondrial serine protease HtrA2 as being necessary for sustained growth arrest of the senescent cells. In search of direct HtrA2 substrates following radiation, we determined that HtrA2 cleaves the intermediate filament protein vimentin, affecting its cytoplasmic organization. Ectopic expression of active cytosolic HtrA2 resulted in similar changes to vimentin filament assembly. Thus, HtrA2 is involved in the cytoskeletal reorganization that accompanies radiation-induced senescence and the continuous maintenance of proliferation arrest.


Assuntos
Senescência Celular , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Neoplasias , Proteômica , Apoptose , Senescência Celular/fisiologia , Senescência Celular/efeitos da radiação , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Neoplasias/genética , Neoplasias/radioterapia , Células Tumorais Cultivadas , Vimentina/metabolismo
7.
J Clin Lab Anal ; 35(12): e24054, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34708890

RESUMO

BACKGROUND: mRNAs have been shown to be critical biomarkers or therapeutic targets for human diseases. However, only a few of them have been studied as blood-based biomarkers for gastric carcinoma (GC) detection. METHODS: mRNA expression profiles for GC were screened using plasma samples from 10 GC patients with different TNM stages and 5 healthy individuals as controls. One candidate tumor-related mRNA named HTRA2 was then evaluated in GC samples with quantitative real-time polymerase chain reaction (qRT-PCR). TCGAportal, UALCAN, and TISCH database were used to explore the function of HTRA2 in GC. Finally, the effect generated by HTRA2 expression on cell proliferating, invading, and migrating processes was assessed in vitro with knockdown and over-expression strategies. RESULTS: HTRA2 displayed noticeable increase inside GC plasma compared with control cases. Higher expression of HTRA2 displayed a correlation to higher clinicopathological stage and worse prognosis. HTRA2 knocking down down-regulated GC cells' proliferating, invading, and migrating states, while HTRA2 over-expression exerted the inconsistent influence. HTRA2 protein, which may interact with PINK1, PARL, and CYCS, was mainly located in the mitochondria of cells and primarily involved cellular response and metabolic signaling pathway. Immune factors may interact with HTRA2 in GC, and HTRA2 was found noticeably linked with immunosuppressor such as CD274, IDO1, and TIGIT. CONCLUSION: One plasma HTRA2 can be an emerging diagnosis-related biomarker to achieve GC detecting process, but the particular regulatory effect still needs to be further explored.


Assuntos
Ácidos Nucleicos Livres/sangue , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Neoplasias Gástricas/genética , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Mensageiro/sangue , Transdução de Sinais/genética , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/patologia
8.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446566

RESUMO

The human high-temperature requirement A2 (HtrA2) mitochondrial protease is critical for cellular proteostasis, with mutations in this enzyme closely associated with the onset of neurodegenerative disorders. HtrA2 forms a homotrimeric structure, with each subunit composed of protease and PDZ (PSD-95, DLG, ZO-1) domains. Although we had previously shown that successive ligand binding occurs with increasing affinity, and it has been suggested that allostery plays a role in regulating catalysis, the molecular details of how this occurs have not been established. Here, we use cysteine-based chemistry to generate subunits in different conformational states along with a protomer mixing strategy, biochemical assays, and methyl-transverse relaxation optimized spectroscopy-based NMR studies to understand the role of interprotomer allostery in regulating HtrA2 function. We show that substrate binding to a PDZ domain of one protomer increases millisecond-to-microsecond timescale dynamics in neighboring subunits that prime them for binding substrate molecules. Only when all three PDZ-binding sites are substrate bound can the enzyme transition into an active conformation that involves significant structural rearrangements of the protease domains. Our results thus explain why when one (or more) of the protomers is fixed in a ligand-binding-incompetent conformation or contains the inactivating S276C mutation that is causative for a neurodegenerative phenotype in mouse models of Parkinson's disease, transition to an active state cannot be formed. In this manner, wild-type HtrA2 is only active when substrate concentrations are high and therefore toxic and unregulated proteolysis of nonsubstrate proteins can be suppressed.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mitocôndrias/metabolismo , Mutação , Domínios PDZ , Doença de Parkinson/patologia , Regiões Promotoras Genéticas , Animais , Domínio Catalítico , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Humanos , Camundongos , Mitocôndrias/genética , Modelos Moleculares , Doença de Parkinson/etiologia , Conformação Proteica , Proteólise , Relação Estrutura-Atividade
9.
Genome Biol ; 22(1): 86, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752742

RESUMO

BACKGROUND: Aging, noise, infection, and ototoxic drugs are the major causes of human acquired sensorineural hearing loss, but treatment options are limited. CRISPR/Cas9 technology has tremendous potential to become a new therapeutic modality for acquired non-inherited sensorineural hearing loss. Here, we develop CRISPR/Cas9 strategies to prevent aminoglycoside-induced deafness, a common type of acquired non-inherited sensorineural hearing loss, via disrupting the Htra2 gene in the inner ear which is involved in apoptosis but has not been investigated in cochlear hair cell protection. RESULTS: The results indicate that adeno-associated virus (AAV)-mediated delivery of CRISPR/SpCas9 system ameliorates neomycin-induced apoptosis, promotes hair cell survival, and significantly improves hearing function in neomycin-treated mice. The protective effect of the AAV-CRISPR/Cas9 system in vivo is sustained up to 8 weeks after neomycin exposure. For more efficient delivery of the whole CRISPR/Cas9 system, we also explore the AAV-CRISPR/SaCas9 system to prevent neomycin-induced deafness. The in vivo editing efficiency of the SaCas9 system is 1.73% on average. We observed significant improvement in auditory brainstem response thresholds in the injected ears compared with the non-injected ears. At 4 weeks after neomycin exposure, the protective effect of the AAV-CRISPR/SaCas9 system is still obvious, with the improvement in auditory brainstem response threshold up to 50 dB at 8 kHz. CONCLUSIONS: These findings demonstrate the safe and effective prevention of aminoglycoside-induced deafness via Htra2 gene editing and support further development of the CRISPR/Cas9 technology in the treatment of non-inherited hearing loss as well as other non-inherited diseases.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Perda Auditiva Neurossensorial/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Animais , Linhagem Celular , Sobrevivência Celular/genética , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Marcação de Genes , Engenharia Genética , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Células Ciliadas Auditivas/metabolismo , Perda Auditiva Neurossensorial/induzido quimicamente , Perda Auditiva Neurossensorial/etiologia , Perda Auditiva Neurossensorial/terapia , Testes Auditivos , Camundongos , RNA Guia de Cinetoplastídeos , Transdução Genética , Transgenes , Resultado do Tratamento
10.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33692127

RESUMO

Human High temperature requirement A2 (HtrA2) is a mitochondrial protease chaperone that plays an important role in cellular proteostasis and in regulating cell-signaling events, with aberrant HtrA2 function leading to neurodegeneration and parkinsonian phenotypes. Structural studies of the enzyme have established a trimeric architecture, comprising three identical protomers in which the active sites of each protease domain are sequestered to form a catalytically inactive complex. The mechanism by which enzyme function is regulated is not well understood. Using methyl transverse relaxation optimized spectroscopy (TROSY)-based solution NMR in concert with biochemical assays, a functional HtrA2 oligomerization/binding cycle has been established. In the absence of substrates, HtrA2 exchanges between a heretofore unobserved hexameric conformation and the canonical trimeric structure, with the hexamer showing much weaker affinity toward substrates. Both structures are substrate inaccessible, explaining their low basal activity in the absence of the binding of activator peptide. The binding of the activator peptide to each of the protomers of the trimer occurs with positive cooperativity and induces intrasubunit domain reorientations to expose the catalytic center, leading to increased proteolytic activity. Our data paint a picture of HtrA2 as a finely tuned, stress-protective enzyme whose activity can be modulated both by oligomerization and domain reorientation, with basal levels of catalysis kept low to avoid proteolysis of nontarget proteins.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Proteínas Mitocondriais/química , Sítios de Ligação , Domínio Catalítico , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Proteínas Mitocondriais/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Proteólise , Relação Estrutura-Atividade , Termodinâmica
11.
Int J Biol Macromol ; 180: 97-111, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33716130

RESUMO

HtrA2, a proapoptotic mitochondrial serine protease, promotes cellular protection against oxidative damage. Literature reports show positive correlation between loss of HtrA2 protease activity and Parkinson's Disease (PD) susceptibility. Homozygous loss-of-function mutations in murine-HtrA2, and when they rarely occur in humans result in severe neurodegeneration and infantile death. Here, we report a novel heterozygous pathogenic HTRA2 variant, c.725C > T (p.T242M) in Indian PD patients. Although, this mutation exhibits no significant conformational changes compared to the wild-type, functional studies with HtrA2-T242M transfected neurons reveal common features of PD pathogenesis such as dysfunction, altered morphology and mitochondrial membrane depolarization. Despite exhibiting two-fold decrease in enzyme activity, observation of excessive cell-death due to over-expression of the mutant has been correlated with it being constitutively active. This interesting behavioral anomaly has been attributed to the loss of phosphorylation-mediated regulatory checkpoint at the T242M mutation site that is otherwise controlled by glycogen synthase kinase-3ß (GSK-3ß). This study, with seamless amalgamation of biophysical and biomedical research unravels a mechanistic pathway of HtrA2 regulation and delineates its biological role in PD. Therefore, this investigation will not only prove beneficial toward devising therapeutic strategies against HtrA2-associated diseases mediated by GSK-3ß but also suggest new avenues for treatment of Parkinsonian phenotype.


Assuntos
Apoptose/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mutação com Perda de Função , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Fenótipo , Adulto , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Glicogênio Sintase Quinase 3 beta/genética , Células HEK293 , Heterozigoto , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Humanos , Índia/epidemiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Neurônios/metabolismo , Doença de Parkinson/epidemiologia , Fosforilação/genética , Polimorfismo de Nucleotídeo Único , Estrutura Secundária de Proteína , Transfecção , Adulto Jovem
12.
Mol Immunol ; 129: 78-85, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33229071

RESUMO

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease characterized by the destruction of cartilage and bone. The present study aims to investigate the role of HtrA serine peptidase 2 (HtrA2) in the collagen-induced arthritis. The expressions of HtrA2 were determined in the database BioGPS and bone marrow-derived macrophages (BMDMs). The populations of myeloid and lymphoid cells were determined in wild type and HtrA2 knockout (HtrA2MKO) mice using flow cytometry. In addition, the expressions of pro-inflammatory cytokines (Il6, Tnf, and Il1ß) were determined in the activated BMDMs from wild type (WT) and HtrA2MKO mice. STRING database was used to predict the interactive proteins of HtrA2 and Co-Immunoprecipitation was used to confirm these interactions. A collagen-induced arthritis model was established to investigate the effects of HtrA2 on the arthritis symptoms. It was found that HtrA2 reduction was associated with the activation of myeloid cells. Interestingly, HtrA2 deficiency did not affect the development of myeloid and lymphoid cells. Further studies demonstrated that HtrA2 deficiency suppressed the production of pro-inflammatory cytokines in BMDMs induced by lipopolysaccharide or CpG. Co-Immunoprecipitation results demonstrated that HtrA2 enhanced the stability of TNF receptor-associated factor 2 (TRAF2). HtrA2 participated in the activation of the inflammatory response in a collagen-induced arthritis model. In summary, HtrA2 modulates inflammatory responses in BMDMs by controlling TRAF2 stability in a collagen-induced arthritis mouse model.


Assuntos
Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/metabolismo , Colágeno/farmacologia , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Fator 2 Associado a Receptor de TNF/metabolismo , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/metabolismo , Doenças Autoimunes/induzido quimicamente , Doenças Autoimunes/metabolismo , Osso e Ossos/metabolismo , Cartilagem/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo
13.
Bioengineered ; 11(1): 1058-1070, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33016225

RESUMO

Serine protease Omi/HtrA2, a member of the HtrA family, is closely related to the maintenance of mitochondrial integrity and participates in apoptosis but its role in cerebral ischemia/reperfusion (I/R) injury and cellular oxidative stress response remains unclear. In this study, we found that I/R injury resulted in a time-dependent increase in Omi/HtrA2 expression in rat brain tissue. Inhibition of Omi/HtrA2 significantly inhibited XIAP cleavage in H2O2-induced PC12 cells. In addition, inhibition of Omi/HtrA2 significantly inhibited the up-regulation of mitochondrial stress proteins CHOP and ClpP, significantly reduced mitochondrial aggregation, and attenuated the decline of mitochondrial ΔΨm in PC12 cells. Studies show that there is a physical interaction between Omi/HtrA2 and OPA1. We found that Omi/HtrA2 and OPA1 are closely related to the oxidative stress mitochondrial response in PC12 cells. The current study has demonstrated that Omi/HtrA2 is upregulated in brain I/R injury in vivo and is implicated in mitochondrial response to oxidative stress in vitro by regulating mitochondrial stress proteins CHOP and CLpP and by interacting with mitochondrial cristae remodeling protein OPA1. These findings suggest that Omi/HtrA2 could be a candidate molecular target in diseases that involve oxidative stress such as in I/R injury. Abbreviation: ATP: Adenosine tripHospHate; Bax: BCL2-Associated X; Bcl-2: B-cell lympHoma-2; BSA: Albumin from bovine serum; DMEM: Dulbecco's Minimum Essential Medium; DMSO: Dimethyl sulfoxide; HSP60: Heat shock protein60, 70; L-OPA1: Long forms of OPA1; Omi/HtrA2: high-temperature-regulated A2; MCAO: Middle cerebral artery occlusion; OPA1: Optic AtropHy; PBS: PHospHate buffered saline; PMSF: pHenylmethyl sulfonylfluoride; ROS: reactive oxygen species; SDS: Sodium dodecyl sulfate; S-OPA1: Short forms of OPA1; TTC: TripHenyltetrazalium chloride; XIAP: X-linked inhibitor apoptosis protein.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Proteínas Mitocondriais/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Fator de Transcrição CHOP/metabolismo , Animais , Apoptose/fisiologia , GTP Fosfo-Hidrolases/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Peróxido de Hidrogênio/farmacologia , Masculino , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/genética , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/genética , Estresse Oxidativo/fisiologia , Células PC12 , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição CHOP/genética
14.
Cancer Res ; 80(22): 5035-5050, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32978170

RESUMO

Although epithelial cell adhesion molecule (EpCAM) has previously been shown to promote tumor progression, the underlying mechanisms remain largely unknown. Here, we report that the EGF-like domain I within the extracellular domain of EpCAM (EpEX) binds EGFR, activating both AKT and MAPK signaling to inhibit forkhead transcription factor O3a (FOXO3a) function and stabilize PD-L1 protein, respectively. Treatment with the EpCAM neutralizing antibody, EpAb2-6, inhibited AKT and FOXO3a phosphorylation, increased FOXO3a nuclear translocation, and upregulated high temperature requirement A2 (HtrA2) expression to promote apoptosis while decreasing PD-L1 protein levels to enhance the cytotoxic activity of CD8+ T cells. In vivo, EpAb2-6 markedly extended survival in mouse metastasis and orthotopic models of human colorectal cancer. The combination of EpAb2-6 with atezolizumab, an anti-PD-L1 antibody, almost completely eliminated tumors. Moreover, the number of CD8+ T cells in combination-treated tumors was increased compared with atezolizumab alone. Our findings suggest a new combination strategy for cancer immunotherapy in patients with EpCAM-expressing tumors. SIGNIFICANCE: This study shows that treatment with an EpCAM neutralizing antibody promotes apoptosis while decreasing PD-L1 protein to enhance cytotoxic activity of CD8+ T cells.


Assuntos
Antígeno B7-H1/química , Linfócitos T CD8-Positivos/imunologia , Progressão da Doença , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores ErbB/metabolismo , Proteína Forkhead Box O3/metabolismo , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Neutralizantes/farmacologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/terapia , Cicloeximida/farmacologia , Ativação Enzimática , Xenoenxertos , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Transplante de Neoplasias , Fosforilação/efeitos dos fármacos , Receptor de Morte Celular Programada 1/metabolismo , Domínios Proteicos , Estabilidade Proteica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Regulação para Cima
15.
ACS Chem Biol ; 15(9): 2346-2354, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32786264

RESUMO

The high temperature requirement A (HTRA) family of serine proteases mediates protein quality control. These proteins process misfolded proteins in several diseases including Alzheimer's disease (AD) and Parkinson's disease (PD). While their structures and activation mechanisms have been studied, the precise details of the regulation of their activity under physiological conditions have not been completely elucidated, partly due to the lack of suitable chemical probes. In the present study, we developed novel activity-based probes (ABPs) targeting the HTRAs and demonstrated their utility in the monitoring and quantification of changes in enzyme activity in live cells. Using our probes, we found the activity of HTRA1 to be highly elevated in an AD-like cell-based model. We also observed the active HTRA2 in live cells by using a mitochondrion-targeted probe. We believe that our probes can serve as a useful tool to study the role of human HTRAs in neurodegenerative diseases.


Assuntos
Fluoresceínas/química , Corantes Fluorescentes/química , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Sondas Moleculares/química , Organofosfonatos/química , Linhagem Celular Tumoral , Serina Peptidase 1 de Requerimento de Alta Temperatura A/química , Serina Peptidase 2 de Requerimento de Alta Temperatura A/química , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Oligopeptídeos/química
16.
Int J Mol Sci ; 21(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486357

RESUMO

HtrA proteases regulate cellular homeostasis and cell death. Their dysfunctions have been correlated with oncogenesis and response to therapeutic treatment. We investigated the relation between HtrA1-3 expression and clinicopathological, and survival data, as well as the microsatellite status of tumors. Sixty-five colorectal cancer patients were included in the study. The expression of HTRA1-3 was estimated at the mRNA and protein levels by quantitative PCR and immunoblotting. Microsatellite status was determined by high-resolution-melting PCR. We found that the HTRA1 mRNA level was higher in colorectal cancer tissue as compared to the unchanged mucosa, specifically in primary lesions of metastasizing cancer. The levels of HtrA1 and HtrA2 proteins were reduced in tumor tissue when compared to unchanged mucosa, specifically in primary lesions of metastasizing disease. Moreover, a decrease in HTRA1 and HTRA2 transcripts' levels in cancers with a high level of microsatellite instability compared to microsatellite stable ones has been observed. A low level of HtrA1 or/and HtrA2 in cancer tissue correlated with poorer patient survival. The expression of HTRA1 and HTRA2 changes during colorectal carcinogenesis and microsatellite instability may be, at least partially, associated with these changes. The alterations in the HTRA1/2 genes' expression are connected with metastatic potential of colorectal cancer and may affect patient survival.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Instabilidade de Microssatélites , Serina Endopeptidases/genética , Adulto , Idoso , Sobrevivência Celular , Neoplasias Colorretais/mortalidade , Feminino , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Metástase Neoplásica , Isoformas de Proteínas
17.
J Biol Chem ; 295(30): 10138-10152, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32385113

RESUMO

Mitochondrial dysfunction has long been implicated in the neurodegenerative disorder Parkinson's disease (PD); however, it is unclear how mitochondrial impairment and α-synuclein pathology are coupled. Using specific mitochondrial inhibitors, EM analysis, and biochemical assays, we report here that intramitochondrial protein homeostasis plays a major role in α-synuclein aggregation. We found that interference with intramitochondrial proteases, such as HtrA2 and Lon protease, and mitochondrial protein import significantly aggravates α-synuclein seeding. In contrast, direct inhibition of mitochondrial complex I, an increase in intracellular calcium concentration, or formation of reactive oxygen species, all of which have been associated with mitochondrial stress, did not affect α-synuclein pathology. We further demonstrate that similar mechanisms are involved in amyloid-ß 1-42 (Aß42) aggregation. Our results suggest that, in addition to other protein quality control pathways, such as the ubiquitin-proteasome system, mitochondria per se can influence protein homeostasis of cytosolic aggregation-prone proteins. We propose that approaches that seek to maintain mitochondrial fitness, rather than target downstream mitochondrial dysfunction, may aid in the search for therapeutic strategies to manage PD and related neuropathologies.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Mitocôndrias/metabolismo , Doença de Parkinson/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteostase , alfa-Sinucleína/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Linhagem Celular Tumoral , Feminino , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Mitocôndrias/genética , Mitocôndrias/patologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/patologia , Fragmentos de Peptídeos/genética , Ratos , Ratos Sprague-Dawley , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , alfa-Sinucleína/genética
18.
IUBMB Life ; 72(8): 1659-1679, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32353215

RESUMO

Cellular homeostasis requires tight coordination between nucleus and mitochondria, organelles that each possesses their own genomes. Disrupted mitonuclear communication has been found to be implicated in many aging processes. However, little is known about mitonuclear signaling regulator in sarcopenia which is a major contributor to the risk of poor health-related quality of life, disability, and premature death in older people. High-temperature requirement protein A2 (HtrA2/Omi) is a mitochondrial protease and plays an important role in mitochondrial proteostasis. HtrA2mnd2(-/-) mice harboring protease-deficient HtrA2/Omi Ser276Cys missense mutants exhibit premature aging phenotype. Additionally, HtrA2/Omi has been established as a signaling regulator in nervous system and tumors. We therefore asked whether HtrA2/Omi participates in mitonuclear signaling regulation in muscle degeneration. Using motor functional, histological, and molecular biological methods, we characterized the phenotype of HtrA2mnd2(-/-) muscle. Furthermore, we isolated the gastrocnemius muscle of HtrA2mnd2(-/-) mice and determined expression of genes in mitochondrial unfolded protein response (UPRmt ), mitohormesis, electron transport chain (ETC), and mitochondrial biogenesis. Here, we showed that HtrA2/Omi protease deficiency induced denervation-independent skeletal muscle degeneration with sarcopenia phenotypes. Despite mitochondrial hypofunction, upregulation of UPRmt and mitohormesis-related genes and elevated total reactive oxygen species (ROS) production were not observed in HtrA2mnd2(-/-) mice, contrary to previous assumptions that loss of protease activity of HtrA2/Omi would lead to mitochondrial dysfunction as a result of proteostasis disturbance and ROS burst. Instead, we showed that HtrA2/Omi protease deficiency results in different changes between the expression of nuclear DNA- and mitochondrial DNA-encoded ETC subunits, which is in consistent with their transcription factors, nuclear respiratory factors 1 and 2, and coactivator peroxisome proliferator-activated receptor γ coactivator 1α. These results reveal that loss of HtrA2/Omi protease activity induces mitonuclear imbalance via differential regulation of mitochondrial biogenesis in sarcopenia. The novel mechanistic insights may be of importance in developing new therapeutic strategies for sarcopenia.


Assuntos
Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Biogênese de Organelas , Sarcopenia/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Núcleo Celular/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Homeostase/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Sarcopenia/metabolismo , Sarcopenia/patologia , Temperatura , Resposta a Proteínas não Dobradas/genética
19.
CNS Neurosci Ther ; 26(8): 837-841, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32196977

RESUMO

INTRODUCTION: Essential tremor (ET) is one of the most prevalent movement disorders. The genetic etiology of ET has not been well defined although a significant proportion (≥50%) are familial cases. Linkage analysis and genome-wide association studies (GWASs) have identified several risk variants. In recent years, whole-exome sequencing of ET has revealed several specific causal variants in FUS (p.Q290X), HTRA2 (p.G399S), and TENM4 (c.4324 G>A, c.4100C>A, and c.3412G>A) genes. OBJECTIVE: To investigate the genetic contribution of these three genes to ET, the protein-coding sequences of FUS, HTRA2, and TENM4 were analyzed in a total of 238 ET patients and 272 controls from eastern China using direct Sanger sequencing. RESULTS: We identified two synonymous coding single nucleotide polymorphisms (SNPs), rs741810 and rs1052352 in FUS, and three previously reported synonymous SNPs, rs11237621, rs689369, and rs2277277 in TENM4. No nonsynonymous exonic variants were identified in these subjects. We found that the frequency of the rs1052352C allele was significantly higher (P = .001) in the ET group than in the control group. CONCLUSION: Overall, our findings suggest that rs1052352 of FUS might contribute to ET risk in Chinese population.


Assuntos
Povo Asiático/genética , Tremor Essencial/genética , Testes Genéticos/métodos , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Glicoproteínas de Membrana/genética , Proteína FUS de Ligação a RNA/genética , Adolescente , Adulto , Idoso , Criança , Tremor Essencial/diagnóstico , Tremor Essencial/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
20.
Proteomics ; 19(24): e1900139, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31617661

RESUMO

A number of unique proteases localize to specific sub-compartments of the mitochondria, but the functions of these enzymes are poorly defined. Here, in vivo proximity-dependent biotinylation (BioID) is used to map the interactomes of seven proteases localized to the mitochondrial intermembrane space (IMS). In total, 802 high confidence proximity interactions with 342 unique proteins are identified. While all seven proteases co-localized with the IMS markers OPA1 and CLPB, 230 of the interacting partners are unique to just one or two protease bait proteins, highlighting the ability of BioID to differentiate unique interactomes within the confined space of the IMS. Notably, high-temperature requirement peptidase 2 (HTRA2) interacts with eight of 13 components of the mitochondrial intermembrane space bridging (MIB) complex, a multiprotein assembly essential for the maintenance of mitochondrial cristae structure. Knockdown of HTRA2 disrupts cristae in HEK 293 and OCI-AML2 cells, and leads to increased intracellular levels of the MIB subunit IMMT. Using a cell-free assay it is demonstrated that HTRA2 can degrade recombinant IMMT but not two other core MIB complex subunits, SAMM50 and CHCHD3. The IMS protease interactome thus represents a rich dataset that can be mined to uncover novel IMS protease biology.


Assuntos
Proteases Dependentes de ATP/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Serina Peptidase 2 de Requerimento de Alta Temperatura A/antagonistas & inibidores , Serina Peptidase 2 de Requerimento de Alta Temperatura A/genética , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Mapas de Interação de Proteínas , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA