Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.362
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 15: 1342350, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720901

RESUMO

Dyslipidemia is the most prevalent independent risk factor for patients with chronic kidney disease (CKD). Lipid-induced NLRP3 inflammasome activation in kidney-resident cells exacerbates renal injury by causing sterile inflammation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that modulates the cellular redox balance; however, the exact role of Nrf2 signaling and its regulation of the NLRP3 inflammasome in hyperlipidemia-induced kidney injury are poorly understood. In this study, we demonstrated that activation of the mtROS-NLRP3 inflammasome pathway is a critical contributor to renal tubular epithelial cell (RTEC) apoptosis under hyperlipidemia. In addition, the Nrf2/ARE signaling pathway is activated in renal tubular epithelial cells under hyperlipidemia conditions both in vivo and in vitro, and Nrf2 silencing accelerated palmitic acid (PA)-induced mtROS production, mitochondrial injury, and NLRP3 inflammasome activation. However, the activation of Nrf2 with tBHQ ameliorated mtROS production, mitochondrial injury, NLRP3 inflammasome activation, and cell apoptosis in PA-induced HK-2 cells and in the kidneys of HFD-induced obese rats. Furthermore, mechanistic studies showed that the potential mechanism of Nrf2-induced NLRP3 inflammasome inhibition involved reducing mtROS generation. Taken together, our results demonstrate that the Nrf2/ARE signaling pathway attenuates hyperlipidemia-induced renal injury through its antioxidative and anti-inflammatory effects through the downregulation of mtROS-mediated NLRP3 inflammasome activation.


Assuntos
Células Epiteliais , Hiperlipidemias , Inflamassomos , Túbulos Renais , Fator 2 Relacionado a NF-E2 , Proteína 3 que Contém Domínio de Pirina da Família NLR , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Hiperlipidemias/metabolismo , Hiperlipidemias/complicações , Hiperlipidemias/imunologia , Células Epiteliais/metabolismo , Ratos , Humanos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Masculino , Linhagem Celular , Apoptose , Elementos de Resposta Antioxidante , Mitocôndrias/metabolismo , Modelos Animais de Doenças , Ratos Sprague-Dawley
2.
Tunis Med ; 102(4): 241-244, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38746965

RESUMO

INTRODUCTION: Toll-like- receptors (TLR) control important aspects of innate and adaptive immune responses. Renal cells are among the non-immune cells that express (TLR). Therefore, their activation might be implicated in renal tubulo-interstitial injury. AIM: The study aimed to compare TLR9 expression in patients with primary membranous nephropathy (MN) to patients with lupus membranous nephropathy. METHODS: Kidney sections from 10 Lupus nephritis (LN) patients and ten patients with primary MN were analyzed by immunohistochemistry using anti-human TLR9 antibody. RESULTS: Results showed that TLR9 expression was weak and exclusively tubular in primary MN patients' biopsies. There was a significant difference between LN patients' biopsies and primary MN patients' biopsies. TLR9 expression was more diffused in LN patients' specimen than in those with primary MN. CONCLUSION: This study focuses on molecular level pathogenesis of MN. The data suggest that the receptors TLR9 may play role in tubulointerstitial injury in the pathogenesis of LN but not primary membranous nephropathy.


Assuntos
Glomerulonefrite Membranosa , Nefrite Lúpica , Receptor Toll-Like 9 , Humanos , Receptor Toll-Like 9/metabolismo , Receptor Toll-Like 9/biossíntese , Glomerulonefrite Membranosa/metabolismo , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/imunologia , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Nefrite Lúpica/imunologia , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Biópsia , Imuno-Histoquímica , Adulto Jovem
3.
Nat Commun ; 15(1): 4383, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782909

RESUMO

Macrophages (Mφ) autophagy is a pivotal contributor to inflammation-related diseases. However, the mechanistic details of its direct role in acute kidney injury (AKI) were unclear. Here, we show that Mφ promote AKI progression via crosstalk with tubular epithelial cells (TECs), and autophagy of Mφ was activated and then inhibited in cisplatin-induced AKI mice. Mφ-specific depletion of ATG7 (Atg7Δmye) aggravated kidney injury in AKI mice, which was associated with tubulointerstitial inflammation. Moreover, Mφ-derived exosomes from Atg7Δmye mice impaired TEC mitochondria in vitro, which may be attributable to miR-195a-5p enrichment in exosomes and its interaction with SIRT3 in TECs. Consistently, either miR-195a-5p inhibition or SIRT3 overexpression improved mitochondrial bioenergetics and renal function in vivo. Finally, adoptive transfer of Mφ from AKI mice to Mφ-depleted mice promotes the kidney injury response to cisplatin, which is alleviated when Mφ autophagy is activated with trehalose. We conclude that exosomal miR-195a-5p mediate the communication between autophagy-deficient Mφ and TECs, leading to impaired mitochondrial biogenetic in TECs and subsequent exacerbation of kidney injury in AKI mice via miR-195a-5p-SIRT3 axis.


Assuntos
Injúria Renal Aguda , Autofagia , Cisplatino , Macrófagos , MicroRNAs , Mitocôndrias , Sirtuína 3 , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Cisplatino/efeitos adversos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Autofagia/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Exossomos/metabolismo , Camundongos Endogâmicos C57BL , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Trealose/farmacologia , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Humanos , Rim/patologia , Rim/metabolismo , Modelos Animais de Doenças
4.
Artigo em Inglês | MEDLINE | ID: mdl-38780272

RESUMO

Sepsis-induced kidney injury (SAKI) has been frequently established as a prevailing complication of sepsis which is linked to unfavorable outcomes. Fatty acid-binding protein-4 (FABP4) has been proposed as a possible target for the treatment of SAKI. In the current work, we aimed to explore the role and underlying mechanism of FABP4 in lipopolysaccharide (LPS)-induced human renal tubular epithelial cell damage. In LPS-induced human kidney 2 (HK2) cells, FABP4 expression was tested by the reverse transcription-quantitative polymerase chain reaction and Western blot. Cell counting kit-8 method assayed cell viability. Inflammatory levels were detected using the enzyme-linked immunosorbent assay. Immunofluorescence staining measured the nuclear translocation of nuclear factor kappa B p65. Thiobarbituric acid-reactive substances assay and C11 BODIPY 581/591 probe were used to estimate the level of cellular lipid peroxidation. Fe2+ content was examined by the kit. In addition, the expression of proteins related to inflammation-, ferroptosis- and Janus kinase 2 (JAK2)/signal transducer, and activator of transcription 3 (STAT3) signaling was detected by the Western blot analysis. The results revealed that FABP4 was significantly upregulated in LPS-treated HK2 cells, the knockdown of which elevated the viability, whereas alleviated the inflammation and ferroptosis in HK2 cells challenged with LPS. In addition, down-regulation of FABP4 inactivated JAK2/STAT3 signaling. JAK2/STAT3 stimulator (colivelin) and ferroptosis activator (Erastin) partially restored the effects of FABP4 interference on LPS-triggered inflammation and ferroptosis in HK2 cells. Together, FABP4 knockdown inhibited ferroptosis to alleviate LPS-induced injury of renal tubular epithelial cells through suppressing JAK2/STAT3 signaling.


Assuntos
Células Epiteliais , Proteínas de Ligação a Ácido Graxo , Ferroptose , Janus Quinase 2 , Túbulos Renais , Lipopolissacarídeos , Fator de Transcrição STAT3 , Transdução de Sinais , Humanos , Lipopolissacarídeos/toxicidade , Ferroptose/efeitos dos fármacos , Janus Quinase 2/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/patologia , Injúria Renal Aguda/induzido quimicamente
5.
Nefrologia (Engl Ed) ; 44(2): 180-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38697696

RESUMO

BACKGROUND: Contrast agents can directly or indirectly induce renal tubular ischemia and hypoxic damage. Given that cobalt chloride (CoCl2) can protect renal tubules, the protective effect and potential mechanism of action of CoCl2 on contrast-induced nephropathy (CIN) warrant investigation. METHODS: A CIN mouse model was established to determine the protective effect of CoCl2 on renal injury in vivo. Then, TMT-based proteomics was performed to determine the differentially expressed proteins (DEPs), following which, enrichment analyses of gene ontology and the KEGG pathway were performed. In vitro, a CIN model was constructed with renal tubular epithelial cells (HK-2) to determine the effect of CoCl2 on potential targets and the role of the key protein identified from the in vivo experiments. RESULTS: CoCl2 treatment decreased the levels of BUN and serum creatinine (sCr), while increasing the levels of urea and creatinine (Cr) in the urine of mice after CIN injury. Damage to the renal tubules in the CoCl2 treatment group was significantly less than in the CIN model group. We identified 79 DEPs after treating the in vivo model with CoCl2, and frequently observed ferroptosis-related GO and KEGG pathway terms. Of these, Hp (haptoglobin) was selected and found to have a strong renoprotective effect, even though its expression level in kidney tissue decreased after CoCl2 treatment. In HK-2 cells, overexpression of Hp reduced the ferroptosis caused by erastin, while knocking down Hp negated the attenuation effect of CoCl2 on HK-2 cell ferroptosis. CONCLUSION: CoCl2 attenuated kidney damage in the CIN model, and this effect was associated with the decrease in ferroptosis mediated by Hp.


Assuntos
Cobalto , Meios de Contraste , Ferroptose , Ferroptose/efeitos dos fármacos , Animais , Camundongos , Meios de Contraste/efeitos adversos , Masculino , Nefropatias/induzido quimicamente , Nefropatias/prevenção & controle , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Humanos , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia
6.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697845

RESUMO

Defective mitophagy in renal tubular epithelial cells is one of the main drivers of renal fibrosis in diabetic kidney disease. Our gene sequencing data showed the expression of PINK1 and BNIP3, two key molecules of mitophagy, was decreased in renal tissues of VDR-knockout mice. Herein, streptozotocin (STZ) was used to induce renal interstitial fibrosis in mice. VDR deficiency exacerbated STZ-induced renal impairment and defective mitophagy. Paricalcitol (pari, a VDR agonist) and the tubular epithelial cell-specific overexpression of VDR restored the expression of PINK1 and BNIP3 in the renal cortex and attenuated STZ-induced kidney fibrosis and mitochondrial dysfunction. In HK-2 cells under high glucose conditions, an increased level of α-SMA, COL1, and FN and a decreased expression of PINK1 and BNIP3 with severe mitochondrial damage were observed, and these alterations could be largely reversed by pari treatment. ChIP-qPCR and luciferase reporter assays showed VDR could positively regulate the transcription of Pink1 and Bnip3 genes. These findings reveal that VDR could restore mitophagy defects and attenuate STZ-induced fibrosis in diabetic mice through regulation of PINK1 and BNIP3.


Assuntos
Diabetes Mellitus Experimental , Nefropatias Diabéticas , Ergocalciferóis , Proteínas de Membrana , Camundongos Knockout , Mitofagia , Proteínas Quinases , Receptores de Calcitriol , Estreptozocina , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Camundongos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/genética , Mitofagia/genética , Mitofagia/efeitos dos fármacos , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/genética , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Fibrose , Túbulos Renais/metabolismo , Túbulos Renais/patologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , Camundongos Endogâmicos C57BL , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos
7.
Am J Physiol Renal Physiol ; 326(6): F942-F956, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634135

RESUMO

T cells mediate organ injury and repair. A proportion of unconventional kidney T cells called double-negative (DN) T cells (TCR+ CD4- CD8-), with anti-inflammatory properties, were previously demonstrated to protect from early injury in moderate experimental acute kidney injury (AKI). However, their role in repair after AKI has not been studied. We hypothesized that DN T cells mediate repair after severe AKI. C57B6 mice underwent severe (40 min) unilateral ischemia-reperfusion injury (IRI). Kidney DN T cells were studied by flow cytometry and compared with gold-standard anti-inflammatory CD4+ regulatory T cells (Tregs). In vitro effects of DN T cells and Tregs on renal tubular epithelial cell (RTEC) repair after injury were quantified with live-cell analysis. DN T cells, Tregs, CD4, or vehicle were adoptively transferred after severe AKI. Glomerular filtration rate (GFR) was measured using fluorescein isothiocyanate (FITC)-sinistrin. Fibrosis was assessed with Masson's trichrome staining. Profibrotic genes were measured with qRT-PCR. Percentages and the numbers of DN T cells substantially decreased during repair phase after severe AKI, as well as their activation and proliferation. Both DN T cells and Tregs accelerated RTEC cell repair in vitro. Post-AKI transfer of DN T cells reduced kidney fibrosis and improved GFR, as did Treg transfer. DN T cell transfer lowered transforming growth factor (TGF)ß1 and α-smooth muscle actin (αSMA) expression. DN T cells reduced effector-memory CD4+ T cells and IL-17 expression. DN T cells undergo quantitative and phenotypical changes after severe AKI, accelerate RTEC repair in vitro as well as improve GFR and renal fibrosis in vivo. DN T cells have potential as immunotherapy to accelerate repair after AKI.NEW & NOTEWORTHY Double-negative (DN) T cells (CD4- CD8-) are unconventional kidney T cells with regulatory abilities. Their role in repair from acute kidney injury (AKI) is unknown. Kidney DN T cell population decreased during repair after ischemic AKI, in contrast to regulatory T cells (Tregs) which increased. DN T cell administration accelerated tubular repair in vitro, while after severe in vivo ischemic injury reduced kidney fibrosis and increased glomerular filtration rate (GFR). DN T cell infusion is a potential therapeutic agent to improve outcome from severe AKI.


Assuntos
Injúria Renal Aguda , Taxa de Filtração Glomerular , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Linfócitos T Reguladores , Animais , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Masculino , Modelos Animais de Doenças , Fibrose , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transferência Adotiva , Camundongos , Rim/patologia , Rim/imunologia , Rim/metabolismo , Fenótipo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Regeneração , Células Cultivadas
8.
Int Immunopharmacol ; 133: 111955, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626544

RESUMO

Renal tubular injury is an important pathological change associated with diabetic nephropathy (DN), in which ferroptosis of renal tubular epithelial cells is critical to its pathogenesis. Inhibition of the glutathione/glutathione peroxidase 4 (GSH/GPX4) axis is the most important mechanism in DN tubular epithelial cell ferroptosis, but the underlying reason for this is unclear. Our biogenic analysis showed that a zinc-dependent metalloproteinase, dipeptidase 1 (DPEP1), is associated with DN ferroptosis. Here, we investigated the role and mechanism of DPEP1 in DN tubular epithelial cell ferroptosis. DPEP1 upregulation was observed in the renal tubular epithelial cells of DN patients and model mice, as well as in HK-2 cells stimulated with high glucose. Furthermore, the level of DPEP1 upregulation was associated with the degree of tubular injury in DN patients and HK-2 cell ferroptosis. Mechanistically, knocking down DPEP1 expression could alleviate the inhibition of GSH/GPX4 axis and reduce HK-2 cell ferroptosis levels in a high glucose environment. HK-2 cells with stable DPEP1 overexpression also showed GSH/GPX4 axis inhibition and ferroptosis, but blocking the GSH/GPX4 axis could mitigate these effects. Additionally, treatment with cilastatin, a DPEP1 inhibitor, could ameliorate GSH/GPX4 axis inhibition and relieve ferroptosis and DN progression in DN mice. These results revealed that DPEP1 can promote ferroptosis in DN renal tubular epithelial cells via inhibition of the GSH/GPX4 axis.


Assuntos
Nefropatias Diabéticas , Dipeptidases , Células Epiteliais , Ferroptose , Glutationa , Túbulos Renais , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Humanos , Dipeptidases/metabolismo , Dipeptidases/genética , Células Epiteliais/metabolismo , Túbulos Renais/patologia , Camundongos , Masculino , Linhagem Celular , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Glutationa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Proteínas Ligadas por GPI
9.
Chem Biol Interact ; 394: 110990, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579922

RESUMO

Swainsonine (SW) is the main toxic component of locoweed. Previous studies have shown that kidney damage is an early pathologic change in locoweed poisoning in animals. Trehalose induces autophagy and alleviates lysosomal damage, while its protective effect and mechanism against the toxic injury induced by SW is not clear. Based on the published literature, we hypothesize that transcription factor EB(TFEB) -regulated is targeted by SW and activating TFEB by trehalose would reverse the toxic effects. In this study, we investigate the mechanism of protective effects of trehalose using renal tubular epithelial cells. The results showed that SW induced an increase in the expression level of microtubule-associated protein light chain 3-II and p62 proteins and a decrease in the expression level of ATPase H+ transporting V1 Subunit A, Cathepsin B, Cathepsin D, lysosome-associated membrane protein 2 and TFEB proteins in renal tubular epithelial cells in a time and dose-dependent manner suggesting TFEB-regulated lysosomal pathway is adversely affected by SW. Conversely, treatment with trehalose, a known activator of TFEB promote TFEB nuclear translocation suggesting that TFEB plays an important role in protection against SW toxicity. We demonstrated in lysosome staining that SW reduced the number of lysosomes and increased the luminal pH, while trehalose could counteract these SW-induced effects. In summary, our results demonstrated for the first time that trehalose could alleviate the autophagy degradation disorder and lysosomal damage induced by SW. Our results provide an interesting method for reversion of SW-induced toxicity in farm animals and furthermore, activation of TFEB by trehalose suggesting novel mechanism of treating lysosomal storage diseases.


Assuntos
Autofagia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Células Epiteliais , Túbulos Renais , Lisossomos , Swainsonina , Trealose , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/citologia , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Swainsonina/toxicidade , Trealose/farmacologia
10.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167180, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653356

RESUMO

The renal tubular epithelial cells (TEC) have a strong capacity for repair after acute injury, but when this mechanism becomes uncontrollable, it leads to chronic kidney diseases (CKD). Indeed, in progress toward CKDs, the TECs may dedifferentiate, undergo epithelial-to-mesenchyme transition (EMT), and promote inflammation and fibrosis. Given the critical role of Wnt4 signaling in kidney ontogenesis, we addressed whether changes in this signaling are connected to renal inflammation and fibrosis by taking advantage of a knock-in Wnt4mCh/mCh mouse. While the Wnt4mCh/mCh embryos appeared normal, the corresponding mice, within one month, developed CKD-related phenotypes, such as pro-inflammatory responses including T-cell/macrophage influx, expression of fibrotic markers, and epithelial cell damage with a partial EMT. The Wnt signal transduction component ß-catenin remained unchanged, while calcium signaling is induced in the injured TECs involving Nfat and Tfeb transcription factors. We propose that the Wnt4 signaling pathway is involved in repairing the renal injury, and when the signal is overdriven, CKD is established.


Assuntos
Sinalização do Cálcio , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal , Fibrose , Técnicas de Introdução de Genes , Proteína Wnt4 , Animais , Camundongos , Transição Epitelial-Mesenquimal/genética , Proteína Wnt4/metabolismo , Proteína Wnt4/genética , Sinalização do Cálcio/genética , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , Via de Sinalização Wnt , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Rim/patologia , Rim/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , beta Catenina/metabolismo , beta Catenina/genética
11.
J Immunol ; 212(11): 1807-1818, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639584

RESUMO

Drug-induced acute renal failure (ARF) is a public health concern that hinders optimal drug therapy. However, pathological mechanisms of drug-induced ARF remain to be elucidated. Here, we show that a pathological process of drug-induced ARF is mediated by proinflammatory cross-talk between kidney tubular cells and macrophages. Both polymyxin B and colistin, polypeptide antibiotics, frequently cause ARF, stimulated the ERK and NF-κB pathways in kidney tubular cells, and thereby upregulated M-CSF and MCP-1, leading to infiltration of macrophages into the kidneys. Thereafter, the kidney-infiltrated macrophages were exposed to polypeptide antibiotics, which initiated activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. Interestingly, blockade of the NLRP3 activation clearly ameliorated the pathology of ARF induced by polypeptide antibiotics, suggesting that a combination of the distinct cellular responses to polypeptide antibiotics in kidney tubular cells and macrophages plays a key role in the pathogenesis of colistin-induced ARF. Thus, our results provide a concrete example of how drugs initiate ARF, which may give insight into the underlying pathological process of drug-induced ARF.


Assuntos
Injúria Renal Aguda , Antibacterianos , Inflamassomos , Macrófagos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/patologia , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Camundongos , Inflamassomos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Polimixina B/farmacologia , Camundongos Endogâmicos C57BL , Colistina/efeitos adversos , Colistina/farmacologia , Peptídeos/farmacologia , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo
12.
Transl Res ; 269: 14-30, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38453052

RESUMO

The progression of chronic kidney disease (CKD) often involves renal interstitial fibrosis (RIF) and subsequent loss of peritubular capillaries (PTCs), which enhances disease severity. Despite advancements in our understanding of fibrosis, effective interventions for reversing capillary loss remain elusive. Notably, RIF exhibits reduced capillary density, whereas renal cell carcinoma (RCC) shows robust angiogenesis under hypoxic conditions. Using RNA sequencing and bioinformatics, we identified differentially expressed genes (DEGs) in hypoxic human renal tubular epithelial cells (HK-2) and renal cancer cells (786-0). Analysis of altered Ras and PI3K/Akt pathways coupled with hub gene investigation revealed RAS protein activator-like 2 (RASAL2) as a key candidate. Subsequent in vitro and in vivo studies confirmed RASAL2's early-stage response in RIF, which reduced with fibrosis progression. RASAL2 suppression in HK-2 cells enhanced angiogenesis, as evidenced by increased proliferation, migration, and branching of human umbilical vein endothelial cells (HUVECs) co-cultured with HK-2 cells. In mice, RASAL2 knockdown improved Vascular endothelial growth factor A (VEGFA) and Proliferating cell nuclear antigen (PCNA) levels in unilateral ureteral occlusion (UUO)-induced fibrosis (compared to wild type). Hypoxia-inducible factor 1 alpha (HIF-1α) emerged as a pivotal mediator, substantiated by chromatin immunoprecipitation (ChIP) sequencing, with its induction linked to activation. Hypoxia increased the production of RASAL2-enriched extracellular vesicles (EVs) derived from tubular cells, which were internalized by endothelial cells, contributing to the exacerbation of PTC loss. These findings underscore RASAL2's role in mediating reduced angiogenesis in RIF and reveal a novel EV-mediated communication between hypoxic tubular- and endothelial cells, demonstrating a complex interplay between angiogenesis and fibrosis in CKD pathogenesis.


Assuntos
Fibrose , Humanos , Animais , Camundongos , Masculino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Rarefação Microvascular/metabolismo , Rarefação Microvascular/patologia , Rarefação Microvascular/genética , Camundongos Endogâmicos C57BL , Rim/irrigação sanguínea , Rim/patologia , Rim/metabolismo , Hipóxia/patologia , Hipóxia/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/genética , Hipóxia Celular , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Linhagem Celular , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética
13.
J Mol Med (Berl) ; 102(5): 679-692, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38453697

RESUMO

Chronic kidney disease (CKD) is the 16th leading cause of mortality worldwide. Clinical studies have raised that long-term use of omeprazole (OME) is associated with the morbidity of CKD. OME is commonly used in clinical practice to treat peptic ulcers and gastroesophageal reflux disease. However, the mechanism underlying renal failure following OME treatment remains mostly unknown and the rodent model of OME-induced CKD is yet to be established. We described the process of renal injury after exposure to OME in mice; the early renal injury markers were increased in renal tubular epithelial cells (RTECs). And after long-term OME treatment, the OME-induced CKD mice model was established. Herein, aryl hydrocarbon receptor (AHR) translocation appeared after exposure to OME in HK-2 cells. Then for both in vivo and in vitro, we found that Ahr-knockout (KO) and AHR small interfering RNA (siRNA) substantially alleviated the OME-induced renal function impairment and tubular cell damage. Furthermore, our data demonstrate that antagonists of AHR and CYP1A1 could attenuate OME-induced tubular cell impairment in HK-2 cells. Taken together, these data indicate that OME induces CKD through the activation of the AHR-CYP axis in RTECs. Our findings suggest that blocking the AHR-CYP1A1 pathway acts as a potential strategy for the treatment of CKD caused by OME. KEY MESSAGES: We provide an omeprazole-induced chronic kidney disease (CKD) mice model. AHR activation and translocation process was involved in renal tubular damage and promoted the occurrence of CKD. The process of omeprazole nephrotoxicity can be ameliorated by blockade of the AHR-CYP1A1 axis.


Assuntos
Citocromo P-450 CYP1A1 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Omeprazol , Receptores de Hidrocarboneto Arílico , Insuficiência Renal Crônica , Animais , Humanos , Masculino , Camundongos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Linhagem Celular , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Túbulos Renais/efeitos dos fármacos , Omeprazol/farmacologia , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/induzido quimicamente , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/genética
14.
J Bioenerg Biomembr ; 56(3): 285-296, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38517565

RESUMO

Acute kidney injury (AKI) is a serious complication of sepsis patients, but the pathogenic mechanisms underlying AKI are still largely unclear. In this view, the roles of the key component of N6-methyladenosine (m6A)-wilms tumor 1 associated protein (WTAP) in AKI progression were investigated. AKI mice model was established by using cecal ligation and puncture (CLP). AKI cell model was established by treating HK-2 cells with LPS. Cell apoptosis was analyzed by TdT-mediated dUTP Nick-End Labeling (TUNEL) staining and flow cytometry analysis. Cell viability was analyzed by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay. The concentrations of inflammatory factors were examined with ELISA kits. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and Fe2+ levels were detected with related kits. Gene expression was detected by western blot assay or quantitative real-time polymerase chain reaction (qRT-PCR) assay. The relation between WTAP and lamin B1 (LMNB1) was verified by Methylated RNA Immunoprecipitation (meRIP) assay, RIP assay, dual-luciferase reporter assay and Actinomycin D assay. CLP induced significant pathological changes in kidney tissues in mice and promoted inflammation, mitochondrial damage and ferroptosis. LMNB1 level was induced in HK-2 cells by LPS. LMNB1 knockdown promoted LPS-mediated HK-2 cell viability and inhibited LPS-mediated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis. Then, WTAP was demonstrated to promote LMNB1 expression by m6A Methylation modification. Moreover, WTAP knockdown repressed LPS-treated HK-2 cell apoptosis, inflammation, mitochondrial damage and ferroptosis, while LMNB1 overexpression reversed the effects. Additionally, WTAP affected the pathways of NF-κB and JAK2/STAT3 by LMNB1. WTAP-mediated m6A promoted the inflammation, mitochondrial damage and ferroptosis in LPS-induced HK-2 cells by regulating LMNB1 expression and activating NF-κB and JAK2/STAT3 pathways.


Assuntos
Injúria Renal Aguda , Adenosina , Ferroptose , Inflamação , Janus Quinase 2 , NF-kappa B , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/patologia , Animais , Inflamação/metabolismo , Inflamação/patologia , Janus Quinase 2/metabolismo , NF-kappa B/metabolismo , Humanos , Masculino , Fator de Transcrição STAT3/metabolismo , Túbulos Renais/patologia , Túbulos Renais/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de RNA/genética , Transdução de Sinais , Camundongos Endogâmicos C57BL
15.
BMJ Open Diabetes Res Care ; 12(2)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38442987

RESUMO

INTRODUCTION: We previously reported the significant upregulation of eight circulating exosomal microRNAs (miRNAs) in patients with diabetic kidney disease (DKD). However, their specific roles and molecular mechanisms in the kidney remain unknown. Among the eight miRNAs, we evaluated the effects of miR-5010-5p on renal tubular epithelial cells under diabetic conditions in this study. RESEARCH DESIGN AND METHODS: We transfected the renal tubular epithelial cell line, HK-2, with an miR-5010-5p mimic using recombinant plasmids. The target gene of hsa-miR-5010-5p was identified using a dual-luciferase assay. Cell viability was assessed via the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay. Moreover, mRNA and protein expression levels were determined via real-time PCR and western blotting, respectively. RESULTS: High glucose levels did not significantly affect the intracellular expression of miR-5010-5p in HK-2 cells. Transfection of the miR-5010-5p mimic caused no change in cell viability. However, miR-5010-5p-transfected HK-2 cells exhibited significantly decreased expression levels of inflammatory cytokines, such as the monocyte chemoattractant protein-1, interleukin-1ß, and tumor necrosis factor-ɑ, under high-glucose conditions. These changes were accompanied by the restored expression of phosphorylated AMP-activated protein kinase (AMPK) and decreased phosphorylation of nuclear factor-kappa B. Dual-luciferase assay revealed that miR-5010-5p targeted the gene, protein phosphatase 2 regulatory subunit B delta (PPP2R2D), a subunit of protein phosphatase 2A, which modulates AMPK phosphorylation. CONCLUSIONS: Our findings suggest that increased miR-5010-5p expression reduces high glucose-induced inflammatory responses in renal tubular epithelial cells via the regulation of the target gene, PPP2R2D, which modulates AMPK phosphorylation. Therefore, miR-5010-5p may be a promising therapeutic target for DKD.


Assuntos
Proteínas Quinases Ativadas por AMP , MicroRNAs , Proteína Fosfatase 2 , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Células Epiteliais , Glucose/metabolismo , Inflamação/metabolismo , Luciferases , MicroRNAs/metabolismo , Proteína Fosfatase 2/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia
16.
Clin Exp Nephrol ; 28(6): 513-521, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38416339

RESUMO

BACKGROUND: Cell division cycle 42 (CDC42) modulates metabolism, inflammation, and fibrosis to engage in the pathology of diabetic complications. This study intended to further investigate the influence of CDC42 on viability, apoptosis, inflammation, epithelial-mesenchymal transition, and fibrosis in high glucose (HG)-treated renal tubular epithelial cells. METHODS: HK-2 cells were exposed to HG medium (30 mM) to establish the diabetic nephropathy (DN) cellular model, then the cells were transfected with scramble overexpression control (oeNC) or CDC42 overexpression (oeCDC42) vectors. RESULTS: Both the level of CDC42 mRNA and protein were decreased in HG-treated HK-2 cells in a dose- and time-dependent manner. Then HG-treated HK-2 cells were proposed for the following experiments. It was found that CDC42 increased CCK-8 detected viability and EdU positive cells. On the contrary, CDC42 reduced cell apoptosis, which was reflected by decreased TUNEL positive rate, increased BCL2, and reduced BAX. Interestingly, CDC42 inhibited fibrosis, which was reflected by increased E-Cadherin, as well as decreased Vimentin, TGF-ß1, Collagen1, and α-SMA. Apart from these, CDC42 also attenuated proinflammatory cytokine production, including TNF-α, IL-1ß, and IL-6. Moreover, CDC42 activated the PAK1/AKT pathway, which was reflected by increased p-PAK1 and p-AKT. However, CDC42 did not affect p-ERK. CONCLUSION: CDC42 may retard DN progression via its regulation of renal tubular epithelial cell functions, which may be due to its stimulation of the PAK1/AKT pathway.


Assuntos
Apoptose , Nefropatias Diabéticas , Células Epiteliais , Transição Epitelial-Mesenquimal , Fibrose , Glucose , Túbulos Renais , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP , Quinases Ativadas por p21 , Quinases Ativadas por p21/metabolismo , Apoptose/efeitos dos fármacos , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Glucose/farmacologia , Glucose/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Túbulos Renais/patologia , Linhagem Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/metabolismo , Nefropatias Diabéticas/patologia , Nefropatias Diabéticas/metabolismo , Inflamação/patologia , Inflamação/metabolismo
17.
J Appl Toxicol ; 44(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37876353

RESUMO

The kidney is a major target organ for the adverse effects of pharmaceuticals; renal tubular epithelial cells (TECs) are particularly vulnerable to drug-induced toxicity. TECs have regenerative capacity; however, maladaptive repair of TECs after injury leads to renal fibrosis, resulting in chronic kidney disease (CKD). We previously reported the specific expression of CD44 in failed-repair TECs of rat CKD model induced by ischemia reperfusion injury. Here, we investigated the pathophysiological role of CD44 in renal fibrogenesis in allopurinol-treated rat CKD model. Dilated or atrophic TECs expressing CD44 in fibrotic areas were collected by laser microdissection and subjected to microarray analysis. Gene ontology showed that extracellular matrix (ECM)-related genes were upregulated and differentiation-related genes were downregulated in dilated/atrophic TECs. Ingenuity Pathway Analysis identified CD44 as an upstream regulator of fibrosis-related genes, including Fn1, which encodes fibronectin. Immunohistochemistry demonstrated that dilated/atrophic TECs expressing CD44 showed decreases in differentiation markers of TECs and clear expression of mesenchymal markers during basement membrane attachment. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of dilated/atrophic TECs, whereas fibronectin was localized in the stroma around these TECs, supporting the production/secretion of ECM by dilated/atrophic TECs. Overall, these data indicated that dilated/atrophic TECs underwent a partial epithelial-mesenchymal transition (pEMT) and that CD44 promoted renal fibrogenesis via induction of ECM production in failed-repair TECs exhibiting pEMT. CD44 was detected in the urine and serum of APL-treated rats, which may reflect the expression of CD44 in the kidney.


Assuntos
Fibronectinas , Insuficiência Renal Crônica , Animais , Ratos , Alopurinol , Células Epiteliais/metabolismo , Fibronectinas/metabolismo , Fibrose , Receptores de Hialuronatos/metabolismo , Rim , Túbulos Renais/patologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
18.
Clin Nephrol ; 101(3): 138-146, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38156782

RESUMO

BACKGROUND: Novel biomarkers can quantify both kidney tubule function, including proximal tubule reabsorptive (urine α-1 microglobulin (uα1m)) and tubule protein synthesis capacities (urine uromodulin (uUMOD)), and tubular injury (urine neutrophil gelatinase-associated lipocalin (uNGAL)). In a blood pressure trial, we reported that lower reabsorptive and synthetic protein capacity at times of health predicted future risk of acute kidney injury (AKI), but most AKI was related to hemodynamic causes in this trial. Associations between tubular function and injury and future AKI related to other causes is unknown. MATERIALS AND METHODS: We performed a case-control study in REGARDS, a population-based cohort study, among participants who provided urine at the baseline visit. We matched each septic AKI case by age, sex, race, and time from baseline to hospital admission 1 : 1 to a participant with sepsis who did not develop AKI (controls). Using conditional logistic regression, we evaluated the associations of uα1m, uUMOD, urine ammonium, and uNGAL with septic AKI. RESULTS: Mean age was 69 ± 8 years, 44% were female, and 39% were Black participants. Median baseline eGFR among cases and controls was 73 (55, 90) and 82 (65, 92) mL/min/1.73m2, and median albuminuria was 19 (8, 87) vs. 9 (5, 22) mg/g, respectively. No independent associations were observed between the tubule function or injury markers and subsequent risk of septic AKI once models were adjusted for baseline albuminuria, estimated glomerular filtration rate, and other risk factors. CONCLUSION: Among community participants, tubule function and injury markers at times of health were not independently associated with future risk of septic AKI.


Assuntos
Injúria Renal Aguda , Túbulos Renais , Sepse , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Albuminúria , Biomarcadores , Estudos de Casos e Controles , Estudos de Coortes , Lipocalina-2 , Sepse/complicações , Túbulos Renais/lesões , Túbulos Renais/patologia
19.
Semin Nephrol ; 43(4): 151437, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37968178

RESUMO

The tubular system of the kidneys is a complex series of morphologic and functional units orchestrating the content of tubular fluid as it flows along the nephron and collecting ducts. Renal tubules maintain body water, regulate electrolytes and acid-base balance, reabsorb precious organic solutes, and eliminate specific metabolites, toxins, and drugs. In addition, decisive mechanisms to adjust blood pressure are governed by the renal tubules. Genetic as well as acquired disorders of these tubular functions may cause serious diseases that manifest both in childhood and adulthood. This article addresses a selection of tubulopathies and the underlying pathomechanisms, while highlighting the important differences in pediatric and adult nephrology care. These range from rare monogenic conditions such as nephrogenic diabetes insipidus, cystinosis, and Bartter syndrome that present in childhood, to the genetic and acquired tubular pathologies causing hypertension or nephrolithiasis that are more prevalent in adults. Both pediatric and adult nephrologists must be aware of these conditions and the age-dependent manifestations that warrant close interaction between the two subspecialties.


Assuntos
Diabetes Insípido Nefrogênico , Nefrologia , Humanos , Criança , Túbulos Renais/patologia , Rim/patologia , Diabetes Insípido Nefrogênico/genética , Diabetes Insípido Nefrogênico/patologia , Néfrons
20.
Mol Med ; 29(1): 146, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884902

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) plays a key role in tubulointerstitial fibrosis, which is a hallmark of diabetic kidney disease (DKD). Our previous studies showed that CRTC2 can simultaneously regulate glucose metabolism and lipid metabolism. However, it is still unclear whether CRTC2 participates in the EMT process in DKD. METHODS: We used protein‒protein network (PPI) analysis to identify genes that were differentially expressed during DKD and EMT. Then, we constructed a diabetic mouse model by administering STZ plus a high-fat diet, and we used HK-2 cells that were verified to confirm the bioinformatics research results. The effects that were exerted by CRTC2 on epithelial-mesenchymal transition in diabetic kidney disease through the CREB-Smad2/3 signaling pathway were investigated in vivo and in vitro by real-time PCR, WB, IHC and double luciferase reporter gene experiments. RESULTS: First, bioinformatics research showed that CRTC2 may promote EMT in diabetic renal tubules through the CREB-Smad2/3 signaling pathway. Furthermore, the Western blotting and real-time PCR results showed that CRTC2 overexpression reduced the expression of E-cadherin in HK-2 cells. The CRTC2 and α-SMA levels were increased in STZ-treated mouse kidneys, and the E-cadherin level was reduced. The luciferase activity of α-SMA, which is the key protein in EMT, was sharply increased in response to the overexpression of CRTC2 and decreased after the silencing of CREB and Smad2/3. However, the expression of E-cadherin showed the opposite trends. In the real-time PCR experiment, the mRNA expression of α-SMA increased significantly when CRTC2 was overexpressed but partially decreased when CREB and Smad2/3 were silenced. However, E-cadherin expression showed the opposite result. CONCLUSION: This study demonstrated that CRTC2 activates the EMT process via the CREB-Smad2/3 signaling pathway in diabetic renal tubules.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Fatores de Transcrição , Animais , Camundongos , Caderinas/metabolismo , Diabetes Mellitus/metabolismo , Nefropatias Diabéticas/patologia , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Rim/metabolismo , Túbulos Renais/patologia , Luciferases/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA