Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29647, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38655335

RESUMO

Cities are the main carriers of social and economic development, and they are also important sources of carbon emissions. Therefore, it is essential to explore the impact of urban expansion and form changes on carbon emissions. Here, we attempted to analyzes the relationship between urban expansion and carbon emissions at the county level in the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) from 1997 to 2017. It further decomposes the driving effects of carbon emissions from multiple factors, and considers the spatial heterogeneity between different urban form changes and driving effects. The results show that: The relationship between urban expansion and carbon emissions in the GBA has gone through three stages from 1997 to 2017, with 2012 as a turning point. Optimization of economic development models and strict protection of the ecological environment can effectively control carbon emissions. After 2012, the economic development effect (GE) and population scale effect (PE) are the driving factors of carbon emissions, while the carbon emission intensity effect (CE) and urban land intensity effect (UE) are the inhibitory factors of carbon emissions. The contribution rate of UE to carbon emission reduction can reach 86 %. The impact of urban form changes on carbon emissions has spatial heterogeneity. The changes in urban form have a significant impact on the carbon emissions of counties in Dongguan and Shenzhen. The increase in fragmentation indirectly promotes carbon emissions. In 2007-2012, the increase in centrality significantly weakened the economic development effect, which is conducive to emission reduction. After 2007, the increase in compactness in counties in the eastern part of the GBA, including Zhongshan and Zhuhai, is not conducive to emission reduction.

2.
Sci Total Environ ; 929: 172727, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38663603

RESUMO

Uncovering the decoupling degree and its influencing factors is an important work to look for the carbon abatement and sustainable development in China's construction industry (CCI). To arrive at a solution, we proposed a research framework by taking into account the Tapio decoupling model and biased directional distance function based on global meta-frontier DEA, so as to reveal out the motive force and resistance that can help decouple construction industry economy from its carbon emissions. Discussion results indicate that during the sample period: (1) China's construction economy and carbon emissions exhibited weak decoupling. The advances of energy/production technology were two dominant factors in helping construction economy decoupled from carbon emissions, while construction economic activity exerted the largest effects in impeding decoupling process. (2) The decoupling degree and driving effects differed significantly in three regions. Regional energy/production technology disparity narrowed in central and western region, and further contributed to their decoupling. Energy-biased and output-biased scale change exerted impeding effects on the decoupling in eastern and central region, while exerted diametrically opposite effects on western region's decoupling. Besides, the change of energy/production resource allocation efficiency in eastern and western region acted motivating effects in their decoupling, while formed restriction in central region's decoupling.

3.
Environ Sci Pollut Res Int ; 31(17): 25721-25735, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38483717

RESUMO

The explosive growth of the logistics industry has led to an increase in energy consumption and carbon emissions. To reduce emissions and increase the efficiency of the logistics industry, we studied the driving factors and decoupling effects of carbon emissions of logistics industry (LICE). First, an energy coefficient method is used to calculate the LICE. Second, the Logarithmic Mean Divisia Index (LMDI) decomposition method is used to decompose the driving factors of LICE into five types. Third, the decoupling model is used to explore the decoupling relationship between economic growth and LICE. Considering Anhui Province as an example, this study describes the method's implementation process based on a comparison of the four Yangtze River Delta provinces and cities. The results indicate that the growth rate of LICE in Anhui Province has decreased during the research period, from 9.7% in 2013 to 2.1% in 2021; however, the Tapio decoupling elasticity has been approximately 0.4 for the last 2 years, remaining in a weak decoupling stage from economic development. The LMDI decomposition results indicate that the average contribution of economic level to carbon emissions is 1.763. This study proposes some solutions and recommendations for the logistics industry's low-carbon development to offer methodological and theoretical support for LICE research.


Assuntos
Dióxido de Carbono , Carbono , Carbono/análise , Dióxido de Carbono/análise , Desenvolvimento Econômico , Indústrias , Rios , China
4.
J Environ Manage ; 355: 120472, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38452620

RESUMO

The contradiction between economic growth demands and the achievement of the "dual-carbon" goals at the regional level is a pressing issue in China. As a significant economic and cultural center in the western region of China, the Guanzhong Plain urban agglomeration has experienced rapid development and urbanization, making it one of the key areas for national development. Therefore, greater attention should be given to carbon emission reduction in this region. This study focuses on the dataset from 2010 to 2019 in the Guanzhong Plain urban agglomeration, utilizing an input-output table to construct a carbon dioxide emission inventory. The research investigates the impact of regional classification on carbon emission levels within the Guanzhong Plain urban agglomeration. Furthermore, the Tapio decoupling analysis method is employed to assess the decoupling coefficient between regional economic development and carbon emissions. Additionally, the Theil index inequality analysis method is utilized to measure the disparities in per capita carbon emissions among cities within the region. Research findings indicate the following: 1) The regional classification of the Guanzhong Plain urban agglomeration is an effective policy for reducing regional carbon emissions and promoting carbon emissions reduction. 2) There exist variations in energy and industrial structures among cities within the urban agglomeration, necessitating tailored measures for low-carbon transition based on the specific circumstances of each city. 3) The regional classification of the urban agglomeration significantly influences the degree of decoupling between economic development and carbon emissions, with a trend towards stronger decoupling. The study suggests that cities within the Guanzhong Plain urban agglomeration should adopt measures aligned with their natural conditions and economic characteristics to achieve a low-carbon transition. Leveraging the regional cooperation capacity of the urban agglomeration is crucial to decouple economic development from carbon emissions, thereby promoting sustainable economic growth and environmental protection in a mutually beneficial manner.


Assuntos
Desenvolvimento Econômico , Urbanização , Cidades , China , Dióxido de Carbono/análise
5.
J Environ Manage ; 353: 120144, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38301478

RESUMO

The reduction and management of construction waste is crucial for the sustainable development of the construction industry. This research aims to explore a comparative analysis on decoupling relationship between economic growth and construction waste generation on European Union (EU) and Chi et al., 2020 to 2020 in the construction industry, through an integrated method framework of "Tapio + Kaya + LMDI". The research results indicate that there are significant differences in construction waste generation among different countries. The growth rates of construction waste in the EU and China from 2004 to 2020 were 2.47 % and 10.5 %, respectively, showing an upward trend. The economic growth of the construction industry in most EU countries is in a decoupling and negative decoupling state with significant regional differences in decoupling status. The construction waste generation in China is mainly in a weak decoupling state. Economic and demographic factors are the main factors promoting the increase in construction waste generation, while technological factors are the main factors inhibiting construction waste generation in EU and China. However, the impact of each factor on construction was generation varies from EU countries. The research reveals the decoupling effect mechanism between construction waste generation and economic growth, and improves the theory of construction waste management, promotes sustainable development. These findings have feasible inspiration for construction waste management in developing countries with different economic growth levels.


Assuntos
Carbono , Desenvolvimento Econômico , União Europeia , Carbono/análise , China , Dióxido de Carbono/análise
6.
J Environ Sci (China) ; 140: 319-330, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331511

RESUMO

To achieve carbon neutrality, the Chinese government needs to gain a comprehensive understanding of the sources and drivers of greenhouse gas (GHG) emissions, particularly at the county level. Anji County in eastern China is a typical example of an industrial transformation from quarrying to a low-carbon economy. This study analyzed the decoupling types and structural characteristics of GHG emissions and the driving factors of carbon dioxide (CO2) emissions in the Anji from 2006 to 2019, and explored the differences between county-level and provincial-level or city-level results. It was observed that energy-related activities are the main source of GHG emissions in Anji and that economic development is the driving factor behind the increasing CO2 emissions. However, industrial transformation and upgradation coupled with the alternative use of clean energy limit the growth of GHG emissions. This study details the GHG emissions of county during the industrial transformation stage and provides corresponding policy recommendations for county governments.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Dióxido de Carbono/análise , Efeito Estufa , China , Desenvolvimento Econômico
7.
Environ Sci Pollut Res Int ; 31(10): 15648-15670, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38300492

RESUMO

The driving factors of China's industrial carbon emissions are decomposed by generalized Divisia index method (GDIM), so as to study the reasons for the change of China's industrial carbon emissions. The decoupling effect of China's industrial carbon emissions and economic growth is examined by speed decoupling and quantity decoupling. The speed decoupling is calculated by Tapio decoupling elasticity and emission reduction effort function, and the quantity decoupling is measured by environmental Kuznets curve (EKC). The results show that the positive driving factors are output size effect > industrial energy consumption effect > population size effect, and the negative driving factors are investment carbon emission effect > output carbon intensity effect > per capita output effect > economic efficiency effect > energy intensity effect. The elasticity of emission reduction is basically greater than that of energy conservation, indicating that there is still abundant room for efforts in emission reduction. The overall decoupling effect of carbon emissions is undecoupling-strong decoupling-undecoupling. Quadratic EKC shape is "U" shape, and the inflection point is 11.0987; the shape of cubic EKC is "N," and the inflection points are - 0.0137 and 2.4069, respectively, which satisfies the hypothesis of EKC curve.


Assuntos
Dióxido de Carbono , Carbono , Carbono/análise , Dióxido de Carbono/análise , China , Desenvolvimento Econômico , Indústrias
8.
Environ Sci Pollut Res Int ; 31(13): 19226-19243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355861

RESUMO

In recent years, there has been a persistent intensification of the global greenhouse effect. Balancing carbon emission reduction with economic growth poses an unprecedented global challenge. To better comprehend the relationship between economic growth and carbon emissions, this study first utilized the Tapio decoupling index to compare the decoupling relationship (the USA, Japan, and Germany) and three developing countries (China, India, and Russia) from 2000-2020. Additionally, the logarithmic mean Divisia index (LMDI) method was employed to investigate the factors influencing changes in carbon emissions. Our findings indicate that (1) the USA and Germany basically achieved strong decoupling; China, India, and Russia mainly showed weak decoupling; and Japan showed recessive decoupling. (2) Economic growth predominantly contributed to increased carbon emissions, with a lesser impact from population growth. A significant reduction in energy intensity restrained carbon emissions growth, as did energy structure replacement in most countries, excluding Japan. Based on this, a decoupling effort index was formulated. It has shown that the decoupling efforts made by developing countries are weaker than those of developed countries, primarily attributed to a lesser degree of decoupling between energy intensity and structure. This paper offers valuable insights for developing countries undergoing a low-carbon economic transformation. They should counterbalance carbon emission escalation resulting from economic growth through technological and energy structure improvements.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , Países em Desenvolvimento , Dióxido de Carbono/análise , Efeito Estufa , China
9.
Environ Sci Pollut Res Int ; 31(13): 20449-20460, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374509

RESUMO

It is crucial to decouple and coordinate human consumption and its environmental pressure for achieving sustainable development. As an important aspect of United Nations Sustainable Development Goal (SDG12), sustainability on material consuming is still in its early stages of research. To address the research gap in sustainable consumption of vegetation net primary productivity (NPP), this study analyzed the spatio-temporal dynamics of human consumption and environmental pressure in the Yangtze River Economic Zone (YREZ) using consumption-based HANPP (cHANPP) and Human Appropriation of Net Primary Production (HANPP) as indicators. Later, we measured their decoupling relationship using Tapio decoupling approach. We found that distribution of HANPP and cHANPP were regionally separated, with the former mainly concentrated in the middle and upper reaches provinces, while the latter concentrated in the lower reach provinces. From 2004 to 2019, the relationship between HANPP and cHANPP changed from strong negative decoupling to weak decoupling in the YREZ. Furthermore, the relationship was differed among different regions. As a whole, developing regions showed a weak decoupling state, experiencing an increase in environmental pressure (i.e., HANPP) alongside increased human consumption (i.e., cHANPP). In contrast, developed regions showed a strong decoupling state, experiencing a decrease in environmental pressure (i.e., HANPP) alongside increased human consumption (i.e., cHANPP). Our study highlights that different countermeasures should be formulated by regions according to their own situation to realize sustainable regional development.


Assuntos
Rios , Desenvolvimento Sustentável , Humanos , China , Desenvolvimento Econômico , Nações Unidas
10.
Heliyon ; 10(1): e23470, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38234890

RESUMO

Evidence of climate change is widespread and severe across all parts of the world. This poses a threat to humanity, and the entire environment. Appropriate policies are therefore required to help reduce greenhouse gas emission levels, limit the rate of global warming and its impact on climate change while pursuing national growth targets. This study employs the Tapio decoupling method to analyse the decoupling relationship (DR) between economic growth and carbon dioxide (CO2) emissions from 1998 to 2018. We also apply the Logarithmic Mean Divisia Index (LMDI) decomposition method on an extended Kaya identity to analyse CO2 emissions drivers in 145 countries. Last, the study examined the relative impacts of trade intensity and trade efficiency on the DR between economic growth and CO2 emissions. The results revealed that regions with relatively many developing and emerging countries (i.e., SSA, EAP, LAC, MENA, and SA) generally performed Weak Decoupling (WD), Expansive Negative Decoupling (END) and Expansive Coupling (EC), and the decoupling process was largely unstable. The ECA and NA regions on the other hand, which are typically composed of developed economies performed stable WD and Strong Decoupling (SD) statuses throughout the study period. The evidence further revealed that while trade intensity, activity, population, output per carbon emission and Carbon Intensity (CI) effects promote CO2 emissions, trade efficiency and energy intensity (EI) hinder emissions. We recommend that developing countries should enforce laws and cooperate with the developed economies to gain access to green technology to promote environmental sustainability.

11.
Sci Total Environ ; 918: 170172, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38278239

RESUMO

With the increasing fragmentation of global production, China's participation in cross-border production sharing activities has had a considerable impact on the nation's economy and carbon dioxide (CO2) emissions. This study applied the Tapio model to quantitatively evaluate the decoupling between CO2 emissions and economic growth in China, dividing the decoupling index based on global value chains (GVCs) and domestic production within the IO framework, and introducing structural decomposition analysis (SDA) to analyze the GVC-related factors to the decoupling. The relevant research results are fourfold. (1) From 2000 to 2018, China achieved weak decoupling between emissions and economic growth. Domestic and GVC effects each had a negative impact on the decoupling; however, after 2008, the GVC effect had a promotional effect and the negative domestic effect declined. (2) Emission intensity was the primary factor promoting decoupling through domestic and GVC effects, while the scale of final demand was the main hindrance. And the negative effects of GVC-related factors declined following the economic crisis. (3) The regional and sectoral structures of GVC production (58.44 % and 56.08 %) had promotional roles in the changes in GVC effects, while GVC production linkages (-20.19 %) had hindering effects. Various factors contributed to the hindering effect from the 2008 to 2011 index, whereas from the 2011 to 2018 index, all factors contributed to the promotional effect. (4) From 2000 to 2018, the average annual global value chain effect promoted the low-carbon development of China's labor-intensive and knowledge-based manufacturing. In order for GVCs to play a positive role in decoupling, China should promote trade facilitation through international platforms, support the advancement of production technology, reasonably guide China's industries to participate in the regional and industrial links of GVCs, and develop strategic emerging industries.

12.
Environ Pollut ; 341: 122944, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37981186

RESUMO

Mercury emission from industrial wastewater has a great impact on the aquatic environment but is not well studied. Inventory analysis, decoupling and decomposition methods have been conducted based on the China Pollution Source Census dataset, which combines industry removal efficiencies to calculate mercury emissions from industrial wastewater in 340 cities in China during 2000-2010. The results show that over these 11 years, total mercury emissions and per capita mercury emissions increased by approximately 5 times, while the emission intensity increased by only about 3%. From 2000 to 2010, only 0.59% of cities showed strong decoupling between economic growth and mercury emissions, and 37.65% of cities showed weak decoupling, whereas 38.82% of cities showed negative decoupling. We attribute the decoupling of economic development and emissions in individual cities to several socioeconomic factors and find that a decline in emission intensity is the main driver. The Gini coefficient indicates a significant imbalance between cities' emissions, but this situation improved during 2000-2010. The objective of this article is to provide a historical perspective on the situation of mercury emissions from wastewater in China, thereby contributing' to the broader understanding of industrial pollution.


Assuntos
Desenvolvimento Econômico , Mercúrio , Humanos , Cidades , Águas Residuárias , Indústrias , China , Dióxido de Carbono/análise , Carbono/análise
13.
J Environ Manage ; 351: 119617, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38039590

RESUMO

Various studies have suggested decoupling material stock from economic output as an important measure for promoting sustainable development. Here, we develop three theoretical hypotheses to describe the evolution features and economic effects of material stock intensity, and predict in theory that (1) Countries with higher material stock intensity are more likely to decouple economic growth from material stock. (2) Material stock intensity follows convergence trends. (3) Higher material stock intensity leads to higher long-run economic growth rates. To examine the adaptability of these hypotheses, we choose steel in-use stock as the proxy for the material capital stock and use panel data in 85 countries from 1950 to 2018 to conduct empirical analysis. Our empirical results in most countries support the theoretical predictions of the hypotheses. In particular, a 0.1t/k$ increase in steel stock intensity leads to a 2.12% increase in the probability of decoupling between steel stock and economic output next year and a 0.34% increase in the long-run GDP per capita growth rate annually. Moreover, steel stock intensity converges to approximately 0.25t/k$ to 0.35t/k$ at mature development stages. We predict that, except China, which is expected to follow decoupling trends, other large developing economies will couple economic output with steel stock. However, the shape of intensity curves is still uncertain for highly developed countries in the future.


Assuntos
Desenvolvimento Econômico , Eficiência , China , Aço , Desenvolvimento Sustentável , Dióxido de Carbono/análise
14.
J Environ Manage ; 350: 119654, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38016232

RESUMO

China has implemented policies like Leading areas for Agricultural Green Development (LAGD) to mitigate livestock and poultry farming pollution while promoting industry growth. However, it remains uncertain whether LAGDs have successfully balanced emission reduction with stable development. This study examines 165 LAGDs to analyze changes in emissions, assess the decoupling of emission reduction from output value, and identify influencing factors. Findings reveal that emissions from livestock and poultry in LAGDs initially increased and then decreased between 2010 and 2019. Cattle were responsible for over 40% of fecal emissions, and pigs for more than 20%. Additionally, pigs contributed to over 61% of urine emissions. From 2010 to 2014, increases in chemical oxygen demand were mainly due to pigs and cattle. Total nitrogen levels were significantly impacted by cattle, while pigs were affected by total phosphorus. From 2014 to 2019, reductions in emissions were largely attributed to a decrease in pig-related pollutants. The decoupling status shifted from strong to weak and then back to strong between 2014 and 2019. Production efficiency played a crucial role in reducing emissions, while changes in industrial structure moved from supporting to hindering this reduction. Economic development was a primary factor in driving these changes. Standard emissions in Chinese regions showed a rising and then declining trend from 2010 to 2019. The Northeast and Northwest regions of China demonstrated emission trends that were in sync with the growth in rural income. This study offers insights into the successes and challenges of LAGDs in achieving a balance between reduced emissions and development, using quantitative analysis. The findings are instrumental in informing policies for a sustainable livestock and poultry industry. Recommendations include evaluating coordinated approaches to pollution reduction and industrial growth, setting decoupling goals, designing policies based on influential factors, conducting regional assessments of livestock and poultry demand, and implementing region-specific strategies.


Assuntos
Gado , Aves Domésticas , Animais , Bovinos , Agricultura , China , Análise da Demanda Biológica de Oxigênio , Desenvolvimento Econômico , Dióxido de Carbono
15.
Environ Sci Pollut Res Int ; 31(5): 7428-7442, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38159181

RESUMO

Building a carbon ecological security (CES) framework helps to scientifically evaluate and manage the regional carbon cycle and eco-environment and support regional ecological security patterns. This paper adopted the pressure-state-response-immune (PSRI) model and the carbon balance index method to evaluate the ecological quality and carbon balance pressure. Then, based on the decoupling model and the improved four-quadrant model, the CES framework was constructed to evaluate the changing trend of the CES of Xuzhou City from 2005 to 2020. The results showed that the carbon balance pressure of Xuzhou City showed a pattern of "low-high-low" from east to west, and most areas tended to have a carbon balance and surplus in 2020. The ecological quality showed an overall upward trend during the study period. Protection and restoration drove the response and immune index growth from 2010 to 2020. In the Thirteenth Five-Year Plan stage, the nine districts of Xuzhou City were in a stable decoupling state, and the overall decoupling process was ideal. The CES of districts showed individual differences in the general upward trend. The carbon balance pressure of Gulou and Quanshan Districts was the main factor restricting the districts' CES. Therefore, based on the empirical results, this research proposes relevant suggestions to enhance carbon ecological security to achieve regional green and low-carbon development.


Assuntos
Ecologia , Ecossistema , Ecologia/métodos , Conservação dos Recursos Naturais/métodos , Modelos Teóricos , Cidades , China , Carbono
16.
PeerJ ; 11: e16575, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107567

RESUMO

Emissions from the non-ferrous metal industry are a major source of carbon emissions in China. Understanding the decoupling of carbon emissions from the non-ferrous metal industry and its influencing factors is crucial for China to achieve its "double carbon" goal. Here, we applied the Tapio decoupling model to measure the decoupling status and developmental trends of carbon output and emissions of the non-ferrous metal industry in China. The panel interaction fixed effects model is used to empirically analyze the influencing factors of carbon emissions in China's non-ferrous metal industry. The results show that carbon emissions from China's non-ferrous metal industry have experienced three main states: strong decoupling, growth connection, and negative growth decoupling. The carbon emissions of the non-ferrous metal industry in some eastern and central provinces from 2000 to 2004 were in a negative decoupling state. Most provinces in the western and central regions were either in a strong or weak decoupling state based on the developmental trend of the decoupling state of carbon emissions. However, from 2015 to 2019, the decoupling status of carbon emissions in most provinces in western and central China had a significantly negative, weakly negative, or a negative growth decoupling status. Energy structure, energy intensity, cost, and non-ferrous metal production all have a positive driving effect on carbon emissions in the non-ferrous metal industry. Production had a mitigating effect on carbon emissions in the non-ferrous metal industry between 2010-2014 in the eastern region of China. From the results of our study, we propose policy recommendations to promote a strong decoupling of carbon emissions from the non-ferrous metal industry by improving energy structure, reducing energy intensity, and optimizing production capacity.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , Dióxido de Carbono/análise , China , Indústrias
17.
Environ Sci Pollut Res Int ; 30(56): 118897-118915, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919506

RESUMO

Green credit is an important topic in the study of green finance system, but it has not been combined with China's carbon emission reduction effect and industrial carbon emissions. This study takes different industries in China as research objects to explore the relationship between green credit and industrial carbon emissions. First, the LMDI decomposition model was used to decompose the driving factors of industrial carbon emissions, and the effects of green credit efficiency and scale on carbon emissions were obtained. Secondly, on this basis, a system dynamics model was established to predict the changing trend of carbon emissions in different industries. By setting different scenarios of green credit, the development and evolution trend of carbon emission system was simulated when parameters changed, and the Tapio decoupling model was further established to analyze the decoupling effect of green credit and carbon emissions under different scenarios. Finally, the research results show that the increase in the scale of green credit can effectively inhibit carbon emissions and has the greatest effect on carbon emissions of the secondary industry. The incentive policy of green credit can effectively encourage industrial upgrading and development. With the growth of the balance of green credit, green credit and carbon emissions gradually reach the best decoupling state. This study provides empirical evidence for the objective evaluation of the implementation effect of China's green credit policy and has important reference value for the improvement and development of future policies.


Assuntos
Dióxido de Carbono , Carbono , Carbono/análise , Dióxido de Carbono/análise , Desenvolvimento Econômico , China , Indústrias
18.
Environ Sci Pollut Res Int ; 30(58): 121569-121583, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37953427

RESUMO

Decoupling economic growth from CO2 emissions is imperative for China. Meanwhile, establishing a consistent and comprehensive decoupling inventory that includes national (N), regional and provincial (RP), and city and county (CC) levels is essential for further policy formulation. This research aims to investigate the decoupling status using the "N-RP-CC" approach while considering changes in decoupling trends at the different levels. A combination of the Tapio decoupling model and cluster analysis is employed to study the decoupling's spatiotemporal characteristics and trends. The study first calculates the decoupling value for "national, 7; regions, 30; provinces, 1501 CCs" in China, 2006-2017. The results show that there continues to be an improvement in the decoupling trend at the national level. Conversely, the regional scale exhibits a more vulnerable decoupling trend compared to the national level, with weak and extended negative decoupling observed in northeastern and northern China. Moreover, provincial heterogeneities are increasingly evident, with poor decoupling statuses appearing in Jilin, Heilongjiang, Liaoning, and Xinjiang, as well as many central provinces. Additionally, although more than half of CCs exhibit weak decoupling during most years, seven different states of decoupling were also identified during the time frame. These findings further indicate that spatiotemporal heterogeneities extend beyond RP scales within CCs. Taking the Yangtze River as a boundary line reveals a severe situation in northern areas along with rapid development trends observed in southern regions. Finally, we clustered 1414 CCs based on their industrial proportions for 2017 which further highlights increasingly prominent heterogeneities that should be carefully considered. Based on these findings, policy recommendations such as spatial organization and optimization and technique investment are proposed to achieve CO2 emission decoupling under the N-RP-CC levels.


Assuntos
Dióxido de Carbono , Carbono , Dióxido de Carbono/análise , Carbono/análise , Indústrias , China , Desenvolvimento Econômico
19.
Environ Sci Pollut Res Int ; 30(57): 120775-120792, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945949

RESUMO

A comprehensive understanding of carbon emission reduction and decoupling in urban agglomerations of the Yellow River Basin (YRB) has significant theoretical and practical value for formulating precise carbon reduction policies and achieving ecological conservation and high-quality development in the region. This study utilized a generalized Divisia index decomposition model to identify the primary driving factors behind carbon emission changes in urban agglomerations of the YRB. Based on this, a model measuring decoupling efforts was constructed to systematically investigate the decoupling relationship between carbon emissions. The research findings indicate that technological progress and output scale are two primary drivers of carbon emission increases in the YRB and its urban agglomerations, whereas technological carbon intensity, output carbon intensity, and energy carbon intensity play key roles in reducing carbon emissions. Except for a few years, the YRB and Jiziwan metropolitan area (JWMA) did not exhibit decoupling effects on carbon emissions. The Shandong Peninsula Urban Agglomeration (SPUA) and Central Plains Urban Agglomeration (CPUA) showed strong decoupling effects from 2016 to 2019. The Guanzhong Plain Urban Agglomeration (GPUA) demonstrated a strong decoupling effect from 2013 to 2019 (except from 2016 to 2017). The Lanxi Urban Agglomeration (LXUA) exhibited a strong decoupling effect from 2014 to 2019. Technological carbon intensity plays a decisive role in the transition from non-decoupling to decoupling. Therefore, the government must increase investments in green and low-carbon technologies and strictly implement carbon reduction measures. Thus, the YRB and its urban agglomerations have considerable potential for carbon emission reduction and strong decoupling effects.


Assuntos
Carbono , Rios , Carbono/análise , Dióxido de Carbono/análise , China , Desenvolvimento Econômico , Cidades
20.
Environ Sci Pollut Res Int ; 30(57): 120422-120460, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945957

RESUMO

Decoupling economic growth from electricity consumption is essential for energy conservation and emission reduction. Firstly, this paper applies the LMDI decomposition model to analyze the driving factors of electricity consumption in the Yangtze River Delta region. Secondly, scenario analysis and Monte Carlo technique are combined to research the evolutionary trend of electricity consumption from 2020 to 2035, so as to further analyze the decoupling state. Finally, using nonparametric kernel density estimation, this paper studies the evolution trend of decoupling state from 2005 to 2035. The results show that (1) economic growth is the main factor that promotes the increase of total electricity consumption. Domestic intensity and population scale contribute to the increase in total electricity consumption. The primary factor inhibiting the increase of total electricity consumption is production intensity, while industrial structure and urbanization level contribute to the decrease in total electricity consumption. (2) From 2005 to 2035, the decoupling level has been optimizing on the whole, and the internal gap has also reduced, but there still exists obvious internal gap. (3) Under the three scenarios, the evolution trend of production and domestic electricity consumption is the same. During 2020-2035, the production and domestic electricity consumption both show an increasing trend, with the total electricity consumption under the baseline scenario being the highest, followed by the general and the enhanced electricity-saving scenario. Combined with the empirical results of this paper, some policy recommendations are proposed.


Assuntos
Carbono , Desenvolvimento Econômico , Carbono/análise , Urbanização , China , Eletricidade , Dióxido de Carbono/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA