Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(12): 17617-17633, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719589

RESUMO

Highly anthropized areas as ports represent complex scenarios that require accurate monitoring plans aimed to address the environmental status. In this context, the activities of the EU Interreg Project "GEstione dei REflui per il MIglioramento delle Acque portuali (GEREMIA)" were focused on comparing sites differently affected by human presence, as the Port of Genoa and the natural area of the S'Ena Arrubia fishpond: a panel of analyses was carried out on Mugilidae fish sampled in these two areas, aimed to address trace metal accumulation in the liver, gills, and muscle, as well as cytochrome P450 (CYP450) induction in liver and biliary polycyclic aromatic hydrocarbon (PAH) metabolites, and histopathological alterations in the liver and gills. Chemical analyses in the liver, gills, and muscle of specimens collected in the port area showed an overall higher degree of trace metal contamination compared to the natural fishpond, and similar results were obtained in terms of CYP450 induction and biliary PAH metabolites, suggesting a higher exposure to organic compounds. In addition, histopathological analyses revealed a significant alteration and then a loss of functionality of liver and gill tissue in individuals from the port. Overall, this study describes the complex environmental pollution scenario in the Port of Genoa, confirming the importance of using multidisciplinary approaches and different types of analyses to address both the presence and the effects of contaminants in marine environments.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Gerenciamento de Resíduos , Poluentes Químicos da Água , Animais , Humanos , Biomarcadores Ambientais , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Citocromo P-450 CYP1A1/metabolismo , Peixes/metabolismo , Fígado , Nível de Saúde , Hidrocarbonetos Policíclicos Aromáticos/análise , Brânquias/metabolismo
2.
J Hazard Mater ; 459: 132123, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37499498

RESUMO

This study investigates the toxicity of methanolic extracts obtained from compostable plastics (BPs) and conventional plastics (both virgin and recycled). Additionally, it explores the potential influence of plastic photodegradation and composting on toxic responses using a battery of in vitro assays conducted in PLHC-1 cells. The extracts of BPs, but not those of conventional plastics, induced a significant decrease in cell viability (<70%) in PLHC-1 cells after 24 h of exposure. Toxicity was enhanced by either photodegradation or composting of BPs. Extracts of conventional plastics, and particularly those of recycled plastics, induced 7-ethoxyresorufin-O-deethylase (EROD) activity and micronucleus formation in exposed cells, indicating the presence of significant amounts of CYP1A inducers and genotoxic compounds in the extracts, which was enhanced by photodegradation. These findings highlight the importance of investigating the effects of degradation mechanisms such as sunlight and composting on the toxicity of BPs. It is also crucial to investigate the composition of newly developed formulations for BPs, as they may be more harmful than conventional ones.


Assuntos
Plásticos Biodegradáveis , Citocromo P-450 CYP1A1/metabolismo , Plásticos/toxicidade
3.
Environ Sci Pollut Res Int ; 30(20): 58944-58955, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37002518

RESUMO

Mepanipyrim and cyprodinil are widely used to control and/or prevent fungal diseases in fruit culture. They are frequently detected in the aquatic environment and some food commodities. Different from TCDD, mepanipyrim and cyprodinil are more easily metabolised in the environments. However, the risk of their metabolites to the ecological environment is unclear and needs to be further confirmed. In this study, we investigated the temporal pattern of mepanipyrim- and cyprodinil-induced CYP1A and AhR2 expression and EROD enzyme activity at different time frames during zebrafish embryonic and larval development. Then, we assessed the ecological risk of mepanipyrim, cyprodinil, and their metabolites to aquatic organisms. Our results showed that mepanipyrim and cyprodinil exposure could increase the expression level of cyp1a and ahr2 genes and EROD activity by a dynamic pattern in different developmental stages of zebrafish. Besides, their several metabolites showed strong AhR agonistic activity. Importantly, these metabolites could cause potential ecological risks to aquatic organisms and should be paid more attention to. Our results would provide an important reference value for environmental pollution control and the use management of mepanipyrim and cyprodinil.


Assuntos
Praguicidas , Animais , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/metabolismo , Praguicidas/toxicidade , Praguicidas/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Peixe-Zebra
4.
Chemosphere ; 312(Pt 1): 136996, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36336021

RESUMO

The RTgill-W1 (gill), RTG-2 (gonad), and RTL-W1 (liver) cell lines derived from a freshwater fish rainbow trout (Oncorhynchus mykiss), were used to assess the toxicity of polyethylene terephthalate (PET) and two forms of polyvinyl chloride (PVC). Two size fractions (25-µm and 90-µm particles) were tested for all materials. The highest tested concentration was 1 mg/ml, corresponding to from 70 000 ± 9000 to 620 000 ± 57 000 particles/ml for 25-µm particles and from 2300 ± 100 to 11 000 ± 1000 particles/ml for 90-µm particles (depending on the material). Toxicity differences between commercial PVC dry blend powder and secondary microplastics created from a processed PVC were newly described. After a 24-h exposure, the cells were analyzed for changes in viability, 7-ethoxyresorufin-O-deethylase (EROD) activity, and reactive oxygen species (ROS) generation. In addition to the microplastic suspensions, leachates and particles remaining after leaching resuspended in fresh exposure medium were tested. The particles were subjected to leaching for 1, 8, and 15 days. The PVC dry blend (25 µm and 90 µm) and processed PVC (25 µm) increased ROS generation, to which leached chemicals appeared to be the major contributor. PVC dry blend caused substantially higher ROS induction than processed PVC, showing that the former is not suitable for toxicity testing, as it can produce different results from those of secondary PVC. The 90-µm PVC dry blend increased ROS generation only after prolonged leaching. PET did not induce any changes in ROS generation, and none of the tested polymers had any effect on viability or EROD activity. The importance of choosing realistic extraction procedures for microplastic toxicity experiments was emphasized. Conducting long-term experiments is crucial to detect possible environmentally relevant effects. In conclusion, the tested materials showed no acute toxicity to the cell lines.


Assuntos
Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Oncorhynchus mykiss/metabolismo , Plásticos/toxicidade , Plásticos/metabolismo , Cloreto de Polivinila/toxicidade , Cloreto de Polivinila/metabolismo , Polietilenotereftalatos/toxicidade , Polietilenotereftalatos/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise , Linhagem Celular
5.
Artigo em Inglês | MEDLINE | ID: mdl-35886113

RESUMO

Humans are routinely exposed to complex mixtures such as polycyclic aromatic hydrocarbons (PAHs) rather than to single compounds, as are often assessed for hazards. Cytochrome P450 enzymes (CYPs) metabolize PAHs, and multiple PAHs found in mixtures can compete as substrates for individual CYPs (e.g., CYP1A1, CYP1B1, etc.). The objective of this study was to assess competitive inhibition of metabolism of PAH mixtures in humans and evaluate a key assumption of the Relative Potency Factor approach that common human exposures will not cause interactions among mixture components. To test this objective, we co-incubated binary mixtures of benzo[a]pyrene (BaP) and dibenzo[def,p]chrysene (DBC) in human hepatic microsomes and measured rates of enzymatic BaP and DBC disappearance. We observed competitive inhibition of BaP and DBC metabolism and measured inhibition coefficients (Ki), observing that BaP inhibited DBC metabolism more potently than DBC inhibited BaP metabolism (0.061 vs. 0.44 µM Ki, respectively). We developed a physiologically based pharmacokinetic (PBPK) interaction model by integrating PBPK models of DBC and BaP and incorporating measured metabolism inhibition coefficients. The PBPK model predicts significant increases in BaP and DBC concentrations in blood AUCs following high oral doses of PAHs (≥100 mg), five orders of magnitude higher than typical human exposures. We also measured inhibition coefficients of Supermix-10, a mixture of the most abundant PAHs measured at the Portland Harbor Superfund Site, on BaP and DBC metabolism. We observed similar potencies of inhibition coefficients of Supermix-10 compared to BaP and DBC. Overall, results of this study demonstrate that these PAHs compete for the same enzymes and, at high doses, inhibit metabolism and alter internal dosimetry of exposed PAHs. This approach predicts that BaP and DBC exposures required to observe metabolic interaction are much higher than typical human exposures, consistent with assumptions used when applying the Relative Potency Factor approach for PAH mixture risk assessment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Benzo(a)pireno/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo
6.
Environ Sci Technol ; 56(12): 7917-7923, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35580268

RESUMO

Herein, we report the toxicity evaluation of a new prototype dispersant system, silicon dioxide nanoparticles (NPs) functionalized with (3-glycidoxypropyl)triethoxysilane (GPS) and grafted poly(ε-caprolactone)-block-poly[oligo(ethylene glycol)methyl methacrylate mono-methyl ether] (NP-PCL-POEGMA). This serves as a follow up of our previous study where grafted silicon dioxide NPs functionalized with GPS and grafted hyperbranched poly(glycidol) (NP-HPG) were evaluated for reducing the toxicity in embryo, juvenile, and adult fish populations. In this study, the NP-HPG sample is used as a baseline to compare against the new NP-PCL-POEGMA samples. The relative size was established for three NP-PCL-POEGMA samples via cryogenic transmission electron microscopy. A quantitative mortality study determined that these NPs are non-toxic to embryo populations. An ethoxyresorufin-O-deethylase assay was performed on these NP-PCL-POEGMA samples to test for reduced cytochrome P450 1A after the embryos were exposed to the water-accommodated fraction of crude oil. Overall, these NP-PCL-POEGMA NPs better protected the embryo populations than the previous NP-HPG sample (using a protein activity end point), showing a trend in the right direction for prototype dispersants to replace the commercially utilized Corexit.


Assuntos
Nanopartículas , Petróleo , Animais , Citocromo P-450 CYP1A1/metabolismo , Microscopia Eletrônica de Transmissão , Nanopartículas/toxicidade , Petróleo/toxicidade , Poliésteres , Polietilenoglicóis , Dióxido de Silício
7.
Environ Toxicol Pharmacol ; 87: 103704, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34273545

RESUMO

A luciferase reporter gene-based bioassay battery consisting of stress-activated receptors from fish, complemented with traditional fish cell-based bioassays, were used to assess the toxicity of marine sediment samples from the Byfjorden area around the city of Bergen (Norway). The reporter assays covered a wide range of cellular signalling and metabolic pathways, representing different molecular initiating events in the adverse outcome pathway framework. Cytotoxicity, generation of reactive oxygen-species, and induction of 7-ethoxyresorufin-O-deethylase activity were analysed using fish liver and gill cell lines. Chemical analyses of the sediment extracts revealed complex contamination profiles, especially at the innermost stations, which contained a wide array of persistent organic pollutants, polycyclic aromatic hydrocarbons, and metals. Sediment extracts from these sites were more potent in activating the stress-activated receptors than the other extracts, reflecting their toxicant profiles. Importantly, receptor- and cell-based bioassays complemented the chemical analyses and provided important data for future environmental risk assessments of urban marine sediments.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Peixes , Genes Reporter , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/toxicidade , Hidrocarbonetos Clorados/análise , Hidrocarbonetos Clorados/toxicidade , Luciferases/genética , Metais Pesados/análise , Metais Pesados/toxicidade , Noruega , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Poluentes Químicos da Água/análise
8.
Arch Toxicol ; 95(9): 3031-3048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34181028

RESUMO

Cytochrome P450 1A1 (CYP1A1) metabolizes estrogens, melatonin, and other key endogenous signaling molecules critical for embryonic/fetal development. The enzyme has increasing expression during pregnancy, and its inhibition or knockout increases embryonic/fetal lethality and/or developmental problems. Here, we present a virtual screening model for CYP1A1 inhibitors based on the orthosteric and predicted allosteric sites of the enzyme. Using 1001 reference compounds with CYP1A1 activity data, we optimized the decision thresholds of our model and classified the training compounds with 68.3% balanced accuracy (91.0% sensitivity and 45.7% specificity). We applied our final model to 11 known CYP1A1 orthosteric binders and related compounds, and found that our ranking of the known orthosteric binders generally agrees with the relative activity of CYP1A1 in metabolizing these compounds. We also applied the model to 22 new test compounds with unknown/unclear CYP1A1 inhibitory activity, and predicted 16 of them are CYP1A1 inhibitors. The CYP1A1 potency and modes of inhibition of these 22 compounds were experimentally determined. We confirmed that most predicted inhibitors, including drugs contraindicated during pregnancy (amiodarone, bicalutamide, cyproterone acetate, ketoconazole, and tamoxifen) and environmental agents suspected to be endocrine disruptors (bisphenol A, diethyl and dibutyl phthalates, and zearalenone), are indeed potent inhibitors of CYP1A1. Our results suggest that virtual screening may be used as a rapid tier-one method to screen for potential CYP1A1 inhibitors, and flag them out for further experimental evaluations.


Assuntos
Citocromo P-450 CYP1A1/antagonistas & inibidores , Inibidores das Enzimas do Citocromo P-450/farmacologia , Sítio Alostérico , Animais , Simulação por Computador , Citocromo P-450 CYP1A1/metabolismo , Inibidores das Enzimas do Citocromo P-450/toxicidade , Disruptores Endócrinos/farmacologia , Disruptores Endócrinos/toxicidade , Humanos
9.
Aquat Toxicol ; 229: 105653, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33080536

RESUMO

Oil spill accidents are a major concern for aquatic organisms. In recent history, the Deepwater Horizon blowout spilled 500 million liters of crude oil into the Gulf of Mexico. Corexit 9500A was used to disperse the oil since it was the method approved at that time, despite safety concerns about its use. A better solution is necessary for dispersing oil from spills that reduces the toxicity to exposed aquatic organisms. To address this challenge, novel engineered nanoparticles were designed using silica cores grafted with hyperbranched poly(glycidol) branches. Because the silica core and polymers are known to be biocompatible, we hypothesized that these particles are nontoxic to fathead minnows (Pimephales promelas) and would decrease their exposure to oil polyaromatic hydrocarbons. Fathead minnow embryos, juveniles and adult stages were exposed to the particles alone or in combination with a water-accommodated fraction of oil. Acute toxicity of nanoparticles to fish was tested by measuring mortality. Sub-lethal effects were also measured including gene expression of cytochrome P450 1a (cyp1a) mRNA and heart rate in embryos. In addition, a mixture of particles plus the water-accommodated fraction was directly introduced to adult female fathead minnows by gavage. Three different nanoparticle concentrations were used (2, 10, and 50 mg/L) in either artificial fresh water or the water-accommodated fraction of the oil. In addition, nanoparticle-free controls were carried out in the two solutions. No significant mortality was observed for any age group or nanoparticle concentration, suggesting the safety of the nanoparticles. In the presence of the water-accommodated fraction alone, juvenile and adult fathead minnows responded by increasing expression of cyp1a. The addition of nanoparticles to the water-accommodated fraction reduced cyp1a gene expression in treatments. Heart rate was also restored to normal parameters in embryos co-exposed to nanoparticles and to the water-accommodated fraction. Measurement of polyaromatic hydrocarbons confirmed their presence in the tested solutions and the reduction of available PAH in WAF treated with the nanoparticles. Our findings suggest the engineered nanoparticles may be protecting the fish by sequestering polyaromatic hydrocarbons from oil, measured indirectly by the induction of cypa1 mRNAs. Furthermore, chemical analysis showed a reduction in PAH content in the water accommodated fraction with the presence of nanoparticles.


Assuntos
Cyprinidae/metabolismo , Nanopartículas/toxicidade , Poluição por Petróleo/análise , Dióxido de Silício/toxicidade , Testes de Toxicidade , Animais , Cyprinidae/embriologia , Cyprinidae/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Golfo do México , Frequência Cardíaca/efeitos dos fármacos , Micelas , Nanopartículas/química , Petróleo/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Dióxido de Silício/química , Poluentes Químicos da Água/toxicidade
10.
J Food Sci ; 85(6): 1956-1962, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32406939

RESUMO

We evaluated the influence of pine bark extract (PBE) on organs, the cytochrome-P450 (CYP) activities in liver and estrogenic effects in normal and ovariectomized (OVX) female mice. The PBE did not affect organ weights and liver-function indexes (activities of alkaline phosphatase, aspartate amino transferase, and alanine amino transferase) at doses; 0.04%, 0.4%, and 2.0% PBE in the diet, in normal and OVX female mice. In the OVX mice, CYP1A1 activity was significantly higher in the 0.4% and 2.0% PBE groups than in the OVX control group, and in the 0.4% and 2.0% PBE groups were significantly higher than in the 0.04% PBE group. CYP1A2 and 3A4 activities were significantly higher in the 2.0% PBE group than in all other groups. The PBE did not affect uterine weight and femoral bone mineral density at all PBE doses. These results showed that the dose of PBE at the recommended human intake, had no toxic and estrogenic effects in normal female and OVX mice, however, it may need attention to use the excess intake of PBE with some drugs in postmenopausal women.


Assuntos
Osteoporose Pós-Menopausa/tratamento farmacológico , Pinus/química , Casca de Planta/química , Extratos Vegetais/administração & dosagem , Animais , Densidade Óssea/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Feminino , Fêmur/química , Fêmur/crescimento & desenvolvimento , Humanos , Camundongos , Tamanho do Órgão/efeitos dos fármacos , Osteoporose Pós-Menopausa/genética , Osteoporose Pós-Menopausa/metabolismo , Osteoporose Pós-Menopausa/fisiopatologia , Ovariectomia , Ovário/metabolismo , Ovário/cirurgia , Extratos Vegetais/efeitos adversos
11.
Environ Pollut ; 248: 1088-1097, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30871891

RESUMO

Microplastics (MPs), are tiny plastic fragments from 1 µm to 5 mm generally found in the aquatic environment which can be easily ingested by organisms and may cause chronic physical but also toxicological effects. Toxicological assays on fish cell lines are commonly used as an alternative tool to provide fast and reliable assessment of the toxic and ecotoxic properties of chemicals or mixtures. Rainbow trout liver cell line (RTLW-1) was used to evaluate the toxicity of pollutants sorbed to MPs sampled in sandy beaches from different islands around the world during the first Race for Water Odyssey in 2015. The collected MPs were analyzed for polymer composition and associated persistent organic pollutants: polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT). In addition, DMSO-extracts from virgin MPs, MPs artificially coated with B[a]P and environmental MPs were analyzed with different bioassays: MTT reduction assay (MTT), ethoxyresorufin-O-deethylase (EROD) assay and comet assay. Microplastics from sand beaches were dominated by polyethylene, followed by polypropylene fragments with variable proportions. Organic pollutants found on plastic from beach sampling was PAHs (2-71 ng g-1). Samples from Bermuda (Somerset Long Bay) and Hawaii (Makapu'u) showed the highest concentration of PAHs and DDT respectively. No toxicity was observed for virgin microplastics. No cytotoxicity was observed on cells exposed to MP extract. However, EROD activity was induced and differently modulated depending on the MPs locations suggesting presence of different pollutants or additives in extract. DNA damage was observed after exposure to four microplastics samples on the six tested. Modification of EROD activity level and DNA damage rate highlight MPs extract toxicity on fish cell line.


Assuntos
Praias , Monitoramento Ambiental/métodos , Oncorhynchus mykiss/metabolismo , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , DDT/análise , DDT/toxicidade , Dano ao DNA , Havaí , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Oncorhynchus mykiss/genética , Plásticos/análise , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/análise
12.
J Hazard Mater ; 364: 82-90, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30339936

RESUMO

Microplastics have become one of the most pervasive emerging pollutants in the marine environment because of their wide occurrence and high sorption ability for hydrophobic organic contaminants (HOCs). Among the associated HOCs, dioxin-like chemicals (DLCs) can pose severe health risks; however, information on effects of microplastics bound DLCs is lacking. To fill this knowledge gap, this study integrated chemical analysis and in vitro bioassays to elucidate the potential dioxin-like effects of microplastics bound DLCs. Chemical analysis results demonstrated that styrofoams possessed significantly greater DLCs than other coastal or open ocean plastic particles. This was probably due to the presence of additives and greater sorption ability of expanded polystyrene. However, styrofoams did not show as strong dioxin-like effects as predicted by the bioanalysis equivalent model in bioassays. This could be attributed to the decreased DLC bioavailability and increased competition with the presence of styrene oligomers. Besides, bioassay results also demonstrated that aging increased the associated DLC concentrations, since extra sorption from surrounding environment occurred during prolonged retention periods. Finally, it was estimated that the leaching of DLCs could induce dioxin-like effects in marine organisms under 100% (11/11) and 18% (2/11) scenarios for aged pellets and styrofoams through aqueous or dietary exposures.


Assuntos
Dioxinas/química , Microplásticos/química , Bifenilos Policlorados/química , Hidrocarbonetos Policíclicos Aromáticos/química , Poluentes Químicos da Água/química , Adsorção , Animais , Organismos Aquáticos/efeitos dos fármacos , Bioensaio , Aves , Citocromo P-450 CYP1A1/metabolismo , Dioxinas/toxicidade , Peixes , Microplásticos/toxicidade , Modelos Teóricos , Bifenilos Policlorados/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Medição de Risco , Poluentes Químicos da Água/toxicidade
13.
Xenobiotica ; 48(8): 793-803, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28879796

RESUMO

1. AFQ056 phenotyping results indicate that CYP1A1 is responsible for the formation of the oxidative metabolite, M3. In line with the predominant assumption that CYP1A1 is mainly expressed in extrahepatic tissues, only traces of M3 were detected in hepatic systems. The aim of this study was to investigate the pulmonary CYP1A1 mediated metabolism of AFQ056 in rat. 2. Western blot analysis confirmed that CYP1A1 is expressed in rat lung albeit at low levels. M3 formation was clearly observed in recombinant rat CYP1A1, lung microsomes and lung tissue slices and was strongly inhibited by ketoconazole in the incubations. As CYP3A4 and CYP2C9 metabolites were only observed at trace levels, we concluded that the reduced M3 formation was due to CYP1A1 inhibition. 3. AFQ056 lung clearance (CLlung) as estimated from in vitro data was predicted to be negligible (<1% pulmonary blood flow). This was confirmed by in vivo experiments where intravenous and intra-arterial dosing to rats failed to show significant pulmonary extraction. 4. While rat lung may make a contribution to the formation of M3, it is unlikely to be the only organ involved in this process and further experiments are required to investigate the potential metabolic elimination routes for AFQ056.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Indóis/farmacocinética , Pulmão/enzimologia , Animais , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Indóis/farmacologia , Pulmão/irrigação sanguínea , Masculino , Ratos , Ratos Sprague-Dawley
14.
Environ Sci Pollut Res Int ; 25(12): 11192-11204, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28144864

RESUMO

The pharmaceutical products are emerging pollutants continuously released into the environment, because they cannot be effectively removed by the wastewater treatment plants. In recent years, questions have been raised concerning the environmental risks related to these pollutants. The goal of this research was to evaluate the responses in Lemna minor after 7 days and in Corbicula fluminea after differing durations (1, 3, 7, and 19 days) of exposure to the psychoactive drug mixture (valproic acid, citalopram, carbamazepine, cyamemazine, hydroxyzine, oxazepam, norfluoxetine, lorazepam, fluoxetine, and sertraline) in different concentrations (0, 0 + ethanol, drug concentration (DC) 1 = river water concentration, DC2 = effluent concentration, and DC3 = 10× effluent concentration). In this aim, growth parameters of L. minor, gluthathione S-transferase (GSTs), catalase (CAT), ethoxyresorufin-O-deethylase (EROD) and/or gene expressions (pi-gst, cat, cytochrome P450 4 (cyp4), multidrug resistant 1 (mdr1), and superoxide dismutase (sod)) were measured. GST activities increased significantly in L. minor exposed to DC3, but no changes were found in CAT activity. In C. fluminea, EROD activity was induced significantly in both gill and digestive gland tissues after 3 days' exposure to DC3, while a GST increase was observed only in digestive gland tissues, suggesting that these pharmaceuticals induced an oxidative effect. Gene expression analysis revealed transient transcriptomic responses of cyp4, sod, and mdr1 under drug concentrations 2 or 3 and no change of expression for the other genes (cat and pi-gst) or condition (environmental drug concentration) tested. Finally, the data reported in this study represent important ecotoxicological information, confirming that this enzyme family (cyp4, sod, and mdr1) may be considered as a sensible and early indicator of exposure to drugs and emphasizing the involvement of selected genes in detoxification pathways.


Assuntos
Araceae/metabolismo , Carbamazepina/análise , Catalase/metabolismo , Corbicula/efeitos dos fármacos , Citocromo P-450 CYP1A1/metabolismo , Água Doce/análise , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Psicotrópicos/farmacologia , Superóxido Dismutase/metabolismo , Águas Residuárias/análise , Animais , Araceae/química , Citocromo P-450 CYP1A1/química , Ecossistema , Glutationa Transferase/química , Oxirredução , Superóxido Dismutase/química , Poluentes Químicos da Água/análise
15.
Mar Environ Res ; 129: 113-132, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28501102

RESUMO

This study investigates the use of a weight of evidence (WOE) approach to evaluate fish health status and biological effects (BEs) of contaminants for assessment of ecosystem health and discusses its potential application in support of the Marine Strategy Framework Directive (MSFD). External fish disease, liver histopathology and several BEs of contaminant exposure including 7-ethoxy resorufin O-de-ethylase (EROD), acetylcholinesterase (AChE), bile metabolites, vitellogenin (VTG) and alkali labile phosphates (ALP) were measured in two flatfish species from four locations in Ireland. Contaminant levels in fish were generally low with PCBs in fish liver below OSPAR environmental assessment criteria (EAC). There were consistencies with low PCB levels, EROD and PAH bile metabolite levels detected in fish. Dab from Cork, Dublin and Shannon had the highest relative prevalence of liver lesions associated with the carcinogenic pathway. An integrated biomarker response (IBR) showed promise to be useful for evaluation of environmental risk, although more contaminant parameters in liver are required for a full assessment with the present study.


Assuntos
Monitoramento Ambiental/métodos , Peixes/fisiologia , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Bile/química , Biomarcadores/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Irlanda , Fígado/metabolismo , Fígado/patologia , Bifenilos Policlorados/análise , Bifenilos Policlorados/toxicidade , Vitelogeninas/metabolismo , Poluentes Químicos da Água/análise
16.
Environ Sci Pollut Res Int ; 23(15): 15183-92, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27094279

RESUMO

Sediments are the ultimate sink for many toxic organic contaminants released into aquatic environment. The present study evaluated the toxicity effect of 13 surface sediment samples from Huangpu River and Suzhou River, East China using two-hybrid yeast bioassays for estrogenic and thyroidal effects and H4IIE rat hepatoma cell bioassay for ethoxyresorufin O-deethylase (EROD) activity. Toxicity was expressed as 17ß-estradiol equivalent (E2-EQ), 3,3',5-triiodothyronine equivalent (T3-EQ), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQ). At the same time, the causality between the observed EROD activity and concentrations of polycyclic aromatic hydrocarbons (PAHs) was examined. The results showed that the total estrogenic effects in sediments ranged from 0.06 to 1.21 µg E2-EQ kg(-1) dry weight (dw), the thyroidal effects ranged from 4.68 to 69.9 µg T3-EQ kg(-1) dw, and significantly positive correlations were found between lgT3-EQs and lgE2-EQs. The AhR agonist effects varied from 26.5 to 148.3 ng TEQ kg(-1) dw. Chemical analysis-derived TEQs contributed by PAHs ranged from 13.8 to 66.0 ng kg(-1) dw accounting for 27.2-109.9 % with mean of 48.9 % of TEQbio, indicating that PAHs made important contributions to the EROD effects of sediment extracts from the two rivers. The present study would provide meaningful information for further analysis and risk evaluation for organic pollutants in Huangpu River and Suzhou River.


Assuntos
Citocromo P-450 CYP1A1/genética , Sedimentos Geológicos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Rios , Poluentes Químicos da Água/toxicidade , Animais , Linhagem Celular Tumoral , China , Citocromo P-450 CYP1A1/metabolismo , Ratos , Rios/química , Leveduras/efeitos dos fármacos
17.
Sci Total Environ ; 542(Pt A): 495-504, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26520273

RESUMO

To assess the ecological impacts of two independent accidental bitumen releases from two steam assisted gravity drainage (SAGD) wells in the Athabasca oil sands region, a multiple lines of evidence (LOE) approach was developed. Following the release in 2010, action was taken to minimize environmental impact, including the selective removal of the most highly impacted vegetation and the use of oil socks to minimize possible runoff. An ecological risk assessment (ERA) was then conducted based on reported concentrations of bitumen related contaminants in soil, vegetation, and water. Results of biological assessments conducted at the site were also included in the risk characterization. Overall, the conclusion of the ERA was that the likelihood of long-term adverse health effects to ecological receptors in the area was negligible. To provide evidence for this conclusion, a small mammal sampling plan targeting Southern red-back voles (Myodes gapperi) was carried out at two sites and two relevant reference areas. Voles were readily collected at all locations and no statistically significant differences in morphometric measurements (i.e., body mass, length, foot length, and adjusted liver weight) were found between animals collected from impact zones of varying levels of coverage. Additionally, no trends corresponding with bitumen coverage were observed with respect to metal body burden in voles for metals that were previously identified in the source bitumen. Hepatic ethoxyresorufin-O-deethylase (EROD) activity was statistically significantly elevated in voles collected from the high impact zones of sites compared to those collected from the reference areas, a finding that is indicative of continued exposure to contaminants. However, this increase in EROD was not correlated with any observable adverse population-wide biological outcomes. Therefore the biological sampling program supported the conclusion of the initial ERA and supported the hypothesis of no significant long-term population-wide ecological impact of the accidental bitumen releases.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Hidrocarbonetos/análise , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise , Animais , Arvicolinae/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Medição de Risco , Vapor
18.
Environ Res ; 144(Pt A): 43-59, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555843

RESUMO

Methotrexate (MTX) and tamoxifen (TMX) cancer therapeutic drugs have been detected within the aquatic environment. Nevertheless, MTX and TMX research is essentially bio-medically orientated, with few studies addressing the question of its toxicity in fresh water organisms, and none to its' effect in the marine environment. To the authors' knowledge, Environmental Risk Assessments (ERA) for pharmaceuticals has mainly been designed for freshwater and terrestrial environments (European Medicines Agency-EMEA guideline, 2006). Therefore, the purpose of this research was (1) to assess effect of MTX and TMX in marine organism using the EMEA guideline, (2) to develop an ERA methodology for marine environment, and (3) to evaluate the suitability of including a biomarker approach in Phase III. To reach these aims, a risk assessment of MTX and TMX was performed following EMEA guideline, including a 2-tier approach during Phase III, applying lysosomal membrane stability (LMS) as a screening biomarker in tier-1 and a battery of biochemical biomarkers in tier-2. Results from Phase II indicated that MTX was not toxic for bacteria, microalgae and sea urchin at the concentrations tested, thus no further assessment was required, while TMX indicated a possible risk. Therefore, Phase III was performed for only TMX. Ruditapes philippinarum were exposed during 14 days to TMX (0.1, 1, 10, 50 µg L(-1)). At the end of the experiment, clams exposed to environmental concentration indicated significant changes in LMS compared to the control (p<0.01); thus a second tier was applied. A significant induction of biomarkers (activity of Ethoxyresorufin O-deethylase [EROD], glutathione S-transferase [GST], glutathione peroxidase [GPX], and lipid peroxidation [LPO] levels) was observed in digestive gland tissues of clams compared with control (p<0.01). Finally, this study indicated that MTX was not toxic at an environmental concentration, whilst TMX was potentially toxic for marine biota. This study has shown the necessity to create specific guidelines in order to evaluate effects of pharmaceuticals in marine environment which includes sensitive endpoints. The inadequacy of current EMEA guideline to predict chemotherapy agents toxicity in Phase II was displayed whilst the usefulness of other tests were demonstrated. The 2-tier approach, applied in Phase III, appears to be suitable for an ERA of cancer therapeutic drugs in the marine environment.


Assuntos
Antineoplásicos/toxicidade , Metotrexato/toxicidade , Medição de Risco/métodos , Tamoxifeno/toxicidade , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antineoplásicos/análise , Biomarcadores/metabolismo , Bivalves/efeitos dos fármacos , Bivalves/genética , Bivalves/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Dano ao DNA , Fertilização/efeitos dos fármacos , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Haptófitas/efeitos dos fármacos , Haptófitas/crescimento & desenvolvimento , Peroxidação de Lipídeos/efeitos dos fármacos , Luminescência , Lisossomos/metabolismo , Metotrexato/análise , Paracentrotus/efeitos dos fármacos , Paracentrotus/fisiologia , Proteobactérias/efeitos dos fármacos , Proteobactérias/metabolismo , Água do Mar , Tamoxifeno/análise , Poluentes Químicos da Água/análise
19.
Environ Sci Pollut Res Int ; 22(7): 5218-27, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25487556

RESUMO

The major objective of this study was to evaluate the human health risks of agricultural land use conversion to other purposes in Hong Kong, based on the levels of polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/Fs) and determined dioxin-like activity in soil using ethoxyresorufin-O-deethylase (EROD) bioassay. Hazard quotient showed soils of open burning site (OBS) and electronic waste open burning site (EW (OBS)) exert a relatively higher non-cancer risk on adults (50.9 and 8.00) and children (407 and 64.0) via the pathway of accidental ingestion of soil particles than other types of land use. In addition, the levels of 17 PCDD/Fs congeners in OBS and EW (OBS) soils indicated high and moderate (1654 and 260 in one million people) cancer risks through the above pathway. Furthermore, the biologically derived TCDD concentrations (TEQbio) were also significantly correlated to the chemically derived toxic equivalent concentrations of dioxin-like chemicals (TEQcal (sum of chemically derived 2,3,7,8-TeCDD toxic equivalent concentrations (TEQPCDD/F) and chemically derived dioxin-like PAHs toxic equivalent concentrations (TEQPAH)) (r = 0.770, p <0.05). PCDD/Fs (95.4 to 99.9%) were the major stressor to the TEQcal in the soil samples, indicating higher concentrations of PCDD/Fs derived from chemical analyses may reflect a higher potency of inducing EROD activity.


Assuntos
Dioxinas/toxicidade , Poluição Ambiental/análise , Furanos/toxicidade , Poluentes do Solo/toxicidade , Adulto , Bioensaio , Criança , Citocromo P-450 CYP1A1/metabolismo , Dioxinas/química , Resíduo Eletrônico , Exposição Ambiental , Monitoramento Ambiental , Furanos/química , Hong Kong , Humanos , Dibenzodioxinas Policloradas/análise , Eliminação de Resíduos , Medição de Risco , Solo , Poluentes do Solo/análise
20.
Sci Total Environ ; 496: 26-34, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25058931

RESUMO

SPMD-based virtual organisms (VOs) were deployed at five to eight sites in the Three Gorges Reservoir (TGR), China for five periods in 2008, 2009 and 2011. The water exposure of aryl hydrocarbon receptor (AhR) agonists was assessed by the VOs. The chosen bioassay response for the extracts of the VOs, the induction of 7-ethoxyresorufin-O-deethylase (EROD) was assayed using a rat hepatoma cell line (H4IIE). The results show that the extracts from the VOs could induce AhR activity significantly, whereas the chemically derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) equivalent (TEQcal) accounted for <11% of the observed AhR responses (TEQbio). Unidentified AhR-active compounds represented a greater proportion of the TCDD equivalent in VOs from TGR. High TEQbio value in diluted extract and low TEQbio in concentrated extract of the same sample was observed suggesting potential non-additive effects in the mixture. The levels of AhR agonists in VOs from upstream TGR were in general higher than those from downstream reservoir, indicating urbanization effect on AhR agonist pollution. The temporal variation showed that levels of AhR agonists in 2009 and 2011 were higher than those in 2008, and the potential non-additive effects in the area close to the dam were also obviously higher in 2009 and 2011 than in 2008, indicating big changes in the composition of pollutants in the area after water level reached a maximum of 175 m. Although the aqueous concentration of AhR agonists of 0.8-4.8 pg TCDDL(-1) in TGR was not alarming, the tendency of accumulating high concentration of AhR agonists in VO lipid and existence of possible synergism or antagonism in the water may exhibit a potential hazard to local biota being exposed to AhR agonists.


Assuntos
Simulação por Computador , Poluentes Químicos da Água/toxicidade , Poluição Química da Água/estatística & dados numéricos , Animais , Bioensaio , China , Citocromo P-450 CYP1A1/metabolismo , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA