Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.021
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Hazard Mater ; 474: 134801, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38843630

RESUMO

The environmental pollution of organic ultraviolet absorbers (UVAs) has attracted global attention. However, the distribution, sources and risk assessment of UVAs in air from plastic greenhouses are rarely reported. This study was the first to investigate the concentrations of ten UVAs in the air samples from plastic greenhouses. The total concentrations of ten UVAs (∑10UVAs) in the air samples ranged from 5.7 × 103 ng/m3 to 6.3 × 103 ng/m3 (median 5.7 × 103 ng/m3) in greenhouses covered with biodegradable mulch film, 288.2 ng/m3 to 376.4 ng/m3 (median 333.9 ng/m3) in greenhouses covered with PE mulch film, and 97.9 ng/m3 to 142.6 ng/m3 (median 114.9 ng/m3) in greenhouses covered without mulch film. The concentrations of ten UVAs in 65 commercial agricultural films were simultaneously analyzed. Additionally, the potential health risks for greenhouse workers exposed to UVAs were estimated. And the migration simulations showed that the health risk in greenhouses may be higher even if only one UVA is added to the biodegradable mulch film. Therefore, the exposure risk of UVAs in plastic greenhouses needs to be highly prioritized.


Assuntos
Exposição por Inalação , Plásticos , Raios Ultravioleta , Humanos , Medição de Risco , Exposição por Inalação/análise , Exposição Ocupacional/análise , Agricultura , Gases/análise , Poluentes Atmosféricos/análise , Material Particulado/análise
2.
Environ Geochem Health ; 46(7): 230, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849623

RESUMO

Soil in urban and industrial areas is one of the main sinks of pollutants. It is well known that there is a strong link between metal(loid)s bioaccessibility by inhalation pathway and human health. The critical size fraction is < 10 µm (inhalable fraction) since these particles can approach to the tracheobronchial region. Here, soil samples (< 10 µm) from a highly urbanized area and an industrialized city were characterized by combining magnetic measurements, bioaccessibility of metal(loids) and Pb isotope analyses. Thermomagnetic analysis indicated that the main magnetic mineral is impure magnetite. In vitro inhalation analysis showed that Cd, Mn, Pb and Zn were the elements with the highest bioaccessibility rates (%) for both settings. Anthropogenic sources that are responsible for Pb accumulation in < 10 µm fraction are traffic emissions for the highly urbanized environment, and Pb related to steel emissions and coal combustion in cement plant for the industrial setting. We did not establish differences in the Pb isotope composition between pseudo-total and bioaccessible Pb. The health risk assessment via the inhalation pathway showed limited non-carcinogenic risks for adults and children. The calculated risks based on pseudo-total and lung bioaccessible concentrations were identical for the two areas of contrasting anthropogenic pressures. Carcinogenic risks were under the threshold levels (CR < 10-4), with Ni being the dominant contributor to risk. This research contributes valuable insights into the lung bioaccessibility of metal(loids) in urban and industrial soils, incorporating advanced analytical techniques and health risk assessments for a comprehensive understanding.


Assuntos
Chumbo , Poluentes do Solo , Medição de Risco , Humanos , Poluentes do Solo/análise , Chumbo/análise , Exposição por Inalação/análise , Monitoramento Ambiental/métodos , Isótopos/análise , Disponibilidade Biológica , Tamanho da Partícula , Indústrias , Metais Pesados/análise , Criança , Adulto , Urbanização , Solo/química , Cidades
3.
Ann Work Expo Health ; 68(5): 495-509, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38563681

RESUMO

BACKGROUND AND OBJECTIVES: This paper describes an evaluation and analysis of an updated version of ECEL v3.0-an integrated risk management measure (RMM) library developed as part of a CEFIC LRI initiative. The occupational module contains extensive data on the quantitative effectiveness of RMMs to control inhalation and dermal exposure in the workplace. The objective was to investigate the effectiveness and variability in effectiveness of RMM and to explore the difference between optimal and non-optimal RMM applications in the workplace. METHODS: A new database structure and interface were developed and the content of the database was updated with a systematic literature review and integration with other databases (totalling 3373 records from 548 studies). To analyse the data, Bayesian linear mixed models were constructed with the study as a random effect and various study characteristics and RMM categories as fixed effects individually in separate models. A multivariate mixed model was used on a stratified dataset to test (amongst others) the conditions of RMM use. RESULTS: Analyses of the data indicated effectiveness values for each RMM category (for example ~87% for technical emission controls compared with ~60% for technical dispersion controls). Substantial variability in effectiveness was observed within and between different types of RMM. Seven study characteristics (covariables) were included in the analyses, which indicated a pronounced difference in as-built (optimal/experimental) and as-used (workplace) conditions of RMM use (93.3% and 74.6%, respectively). CONCLUSIONS: This library provides a reliable evidence base to derive base estimates of RMM effectiveness-beneficial for both registrant and downstream users. It stresses the importance of optimal use of RMMs in the workplace (technical design/functioning, use, and maintenance). Various challenges are foreseen to further update ECEL to improve guidance, for deriving improved estimates and ensure user-friendliness of the library.


Assuntos
Exposição Ocupacional , Gestão de Riscos , Local de Trabalho , Humanos , Exposição Ocupacional/prevenção & controle , Gestão de Riscos/métodos , Teorema de Bayes , Exposição por Inalação/análise , Bases de Dados Factuais
4.
Regul Toxicol Pharmacol ; 149: 105627, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621522

RESUMO

CropLife Europe collected literature values from monitoring studies measuring air concentrations of Plant Protection Products (PPPs) that may be inhaled by humans located in rural areas but not immediately adjacent to PPP applications. The resulting "Combined Air Concentration Database" (CACD) was used to determine whether air concentrations of PPPs reported by the French "Agency for Food, Environmental and Occupational Health & Safety" (ANSES) are consistent with those measured by others to increase confidence in values of exposure to humans. The results were put into risk assessment context. Results show that 25-90% of samples do not contain measurable PPP concentrations. Measured respirable fractions were below EU default air concentrations used for risk assessment for resident exposure by the European Food Safety Authority. All measured exposures in the CACD were also below established toxicological endpoints, even when considering the highest maximum average reported concentrations and very conservative inhalation rates. The highest recorded air concentration was for prosulfocarb (0.696 µg/m³ measured over 48 h) which is below the EFSA default limit of 1 µg/m³ for low volatility substances. In conclusion, based on the CACD, measured air concentrations of PPPs are significantly lower than EFSA default limits and relevant toxicological reference values.


Assuntos
Poluentes Atmosféricos , Bases de Dados Factuais , Monitoramento Ambiental , Medição de Risco , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Exposição por Inalação/efeitos adversos
5.
J Hazard Mater ; 471: 134307, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678702

RESUMO

This systematic review and meta-analysis investigated studies on formaldehyde (FA) inhalation exposure in indoor environments and related carcinogenic (CR) and non-carcinogenic (HQ) risk. Studies were obtained from Scopus, PubMed, Web of Science, Medline, and Embase databases without time limitation until November 21, 2023. Studies not meeting the criteria of Population, Exposure, Comparator, and Outcomes (PECO) were excluded. The 45 articles included belonged to the 5 types of sites: dwelling environments, educational centers, kindergartens, vehicle cabins, and other indoor environments. A meta-analysis determined the average effect size (ES) between indoor FA concentrations, CR, and HQ values in each type of indoor environment. FA concentrations ranged from 0.01 to 1620 µg/m3. The highest FA concentrations were stated in water pipe cafés and the lowest in residential environments. In more than 90% of the studies uncertain (1.00 ×10-6 1.00 ×10-4) due to FA inhalation exposure was reported and non-carcinogenic risk was stated acceptable. The meta-analysis revealed the highest CR values due to inhalation of indoor FA in high-income countries. As 90% of the time is spent indoors, it is crucial to adopt effective strategies to reduce FA concentrations, especially in kindergartens and schools, with regular monitoring of indoor air quality.


Assuntos
Poluição do Ar em Ambientes Fechados , Formaldeído , Exposição por Inalação , Formaldeído/análise , Formaldeído/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Exposição por Inalação/análise , Medição de Risco , Humanos
6.
Chemosphere ; 357: 141975, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615960

RESUMO

This study investigated the determinants of personal exposures (PE) to coarse (PM2.5-10) and fine particulate matter (PM2.5) for elderly communities in Hong Kong. The mean PE PM2.5 and PM2.5-10 were 23.6 ± 10.8 and 13.5 ± 22.1 µg/m3, respectively during the sampling period. Approximately 76% of study subjects presented statistically significant differences between PE and ambient origin for PM2.5 compared to approximately 56% for PM2.5-10, possibly due to the coarse-size particles being more influenced by similar sources (road dust and construction dust emissions) compared to the PM2.5 particles. Individual PE to ambient (P/A) ratios for PM2.5 all exceeded unity (≥1), suggesting the dominant influences of non-ambient particles contributed towards total PE values. There were about 80% individual P/A ratios (≤1) for PM2.5-10, implying possible effective infiltration prevention of larger size particulate matter particles leading to dominant influences from the outdoor sources. The higher concentration of NO3- and SO42- in PM2.5-10 compared to PM2.5 suggests possible heterogeneous reactions of alkaline minerals leading to the formation of NO3- and SO42- in PM2.5-10 particles. The PE and ambient OC/EC ratios in PM2.5 (8.8 ± 3.3 and 10.4 ± 22.4, respectively) and in PM2.5-10 (6.0 ± 1.9 and 3.0 ± 1.1, respectively) suggest possible secondary formed OC from surrounding rural areas. Heterogeneous distributions (COD >0.2) between the PE and ambient concentrations were found for both the PM2.5 and PM2.5-10 samples. The calibration coefficient as the association between personal and surrogate exposure measure of PE to PM2.5 (0.84) was higher than PM2.5-10 (0.52). The findings further confirm that local sources were the dominant contributor to the coarse particles and these coefficients can potentially be used to estimate different PE to PM2.5 and PM2.5-10 conditions. A comprehensive understanding of the PE to determinants in coarse particles is essential to further reduce potential exposure misclassification.


Assuntos
Poluição do Ar , Exposição por Inalação , Material Particulado , Humanos , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Masculino , Feminino , Material Particulado/análise , Exposição por Inalação/estatística & dados numéricos , Poluição do Ar/estatística & dados numéricos , Hong Kong , Tamanho da Partícula , Monitoramento Ambiental , Nitratos/análise , Sulfatos/análise
7.
Toxicol Sci ; 199(2): 172-193, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547404

RESUMO

Formaldehyde is recognized as carcinogenic for the portal of entry sites, though conclusions are mixed regarding lymphohematopoietic (LHP) cancers. This systematic review assesses the likelihood of a causal relationship between formaldehyde and LHP cancers by integrating components recommended by NASEM. Four experimental rodent bioassays and 16 observational studies in humans were included following the implementation of the a priori protocol. All studies were assessed for risk of bias (RoB), and meta-analyses were conducted on epidemiological studies, followed by a structured assessment of causation based on GRADE and Bradford Hill. RoB analysis identified systemic limitations precluding confidence in the epidemiological evidence due to inadequate characterization of formaldehyde exposure and a failure to adequately adjust for confounders or effect modifiers, thus suggesting that effect estimates are likely to be impacted by systemic bias. Mixed findings were reported in individual studies; meta-analyses did not identify significant associations between formaldehyde inhalation (when measured as ever/never exposure) and LHP outcomes, with meta-SMRs ranging from 0.50 to 1.51, depending on LHP subtype. No associations with LHP-related lesions were reported in reliable animal bioassays. No biologically plausible explanation linking the inhalation of FA and LHP was identified, supported primarily by the lack of systemic distribution and in vivo genotoxicity. In conclusion, the inconsistent associations reported in a subset of the evidence were not considered causal when integrated with the totality of the epidemiological evidence, toxicological data, and considerations of biological plausibility. The impact of systemic biases identified herein could be quantitatively assessed to better inform causality and use in risk assessment.


Assuntos
Formaldeído , Exposição por Inalação , Formaldeído/toxicidade , Humanos , Animais , Exposição por Inalação/efeitos adversos , Neoplasias Hematológicas/induzido quimicamente , Neoplasias Hematológicas/epidemiologia , Medição de Risco , Carcinógenos/toxicidade
8.
Environ Pollut ; 347: 123633, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38423272

RESUMO

Nanoplastics are widely distributed in indoor and outdoor air and can be easily inhaled into human lungs. However, limited studies have investigated the impact of nanoplastics on inhalation toxicities, especially on the initiation and progression of chronic obstructive pulmonary disease (COPD). To fill the gap, the present study used oronasal aspiration to develop mice models. Mice were exposed to polystyrene nanoplastics (PS-NPs) at three concentrations, as well as the corresponding controls, for acute, subacute, and subchronic exposure. As a result, PS-NPs could accumulate in exposed mice lungs and influence lung organ coefficient. Besides, PS-NPs induced local and systemic oxidative stress, inflammation, and protease-antiprotease imbalance, resulting in decreased respiratory function and COPD-like lesions. Meanwhile, PS-NPs could trigger the subcellular mechanism to promote COPD development by causing mitochondrial dysfunctions and endoplasmic reticulum (ER) stress. Mechanistically, ferroptosis played an important role in the COPD-like lung injury induced by PS-NPs. In summary, the present study comprehensively and systematically indicates that PS-NPs can damage human respiratory health and increase the risk for COPD.


Assuntos
Lesão Pulmonar , Nanopartículas , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Exposição por Inalação/efeitos adversos , Microplásticos , Poliestirenos/toxicidade , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente
9.
Inhal Toxicol ; 36(2): 90-99, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38407183

RESUMO

OBJECTIVE: Nail salons offer a developing and diverse occupation for many women, especially the new generation. Due to the increasing apprehension surrounding heavy metals in dust caused by filing nails containing dried nail polish, the present study was designed aimed to health risk assessment of heavy metals in breathing zone of nail salon technicians (NSTs). METHODS: This is a cross-sectional study that was conducted in NSTs. The concentration of Cadmium (Cd), Lead (Pb), Nickel (Ni), Chromium (Cr) and Manganese (Mn)in breathing zone of 20 NSTs was determined using ICP-OES. RESULTS: The metal concentrations were in the following order: Mn > Pb > Ni > Cr > Cd with corresponding arithmetic mean values of0.008, 0.0023, 0.0021, 0.001 and 0.0006 mg m-3, respectively, which are exceeded the recommended levels stated in the indoor air guidelines. The average lifetime carcinogenic risk (LCR) for Cr, Cd, Ni and Pb was calculated 0.0084, 0.00054, 0.00026 and 1.44 E - 05, respectively. The LCR values of all metals (except Pb) exceeded the acceptable level set by the USEPA. The mean of Hazard quotients (HQ) for Mn, Cd, Cr, Ni and Pb were calculated to be23.7, 4.74, 2.19, 0.51 and 0.0.24, respectively. The sensitivity analysis showed that, the exposure frequency (EF) for Cr and Ni had the strong effects on generation of both LCR and HQ. Furthermore, the concentrations of Mn, Cd and Pb had strong impacts on the HQ generation and the concentration of Cd and Pb had main effects on LCR generation. CONCLUSION: To effectively reduce pollutant concentration, it is recommended to install a ventilation system near nail salon work tables and conduct continuous monitoring and quality control of nail products.


Assuntos
Cádmio , Metais Pesados , Humanos , Feminino , Cádmio/análise , Exposição por Inalação/efeitos adversos , Exposição por Inalação/análise , Monitoramento Ambiental , Método de Monte Carlo , Estudos Transversais , Chumbo/análise , Unhas/química , Metais Pesados/toxicidade , Metais Pesados/análise , Cromo/toxicidade , Níquel/toxicidade , Manganês , Medição de Risco , China
10.
Environ Int ; 183: 108420, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38199131

RESUMO

The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk. Considering the SSbD and the NAMs frameworks, within the ASINA H2020 project, we developed new NAMs devoted at improving the hazard and risk definition of different Ag and TiO2 NPs. The NAMs are developed considering two air liquid interface exposure systems, the Vitrocell Cloud-α and the Cultex Compact module and the relevant steps to obtain reproducible exposures are described. The new NAMs build on the integration of environmental monitoring campaigns at nano-coating production sites, allowing the quantification by the multiple-path particle dosimetry (MPPD) model of the expected lung deposited dose in occupational settings. Starting from this information, laboratory exposures to the aerosolized NPs are performed by using air liquid interface exposure equipment and human alveolar cells (epithelial cells and macrophages), replicating the doses of exposure estimated in workers by MPPD. Preliminary results on cell viability and inflammatory responses are reported. The proposed NAMs may represent possible future reference procedures for assessing the NPs inhalation toxicology, supporting risk assessment at real exposure doses.


Assuntos
Exposição por Inalação , Nanoestruturas , Humanos , Exposição por Inalação/análise , Pulmão , Células Epiteliais , Medição de Risco
11.
Ann Work Expo Health ; 68(2): 170-179, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38096573

RESUMO

There is a significant silicosis risk for workers fabricating engineered stone (ES) products containing crystalline silica. The aims of this study by SafeWork NSW were to: (i) assess current worker exposure to respirable dust (RD) and respirable crystalline silica (RCS) following a 5-y awareness and compliance program of inspections in ES workshops and (ii) to identify improvements in work practices from the available evidence base to further reduce exposures. One hundred and twenty-three personal full shift samples taken on as many workers and 34 static samples across 27 workshops fabricating ES were included in the final assessment. The exposure assessment was conducted using Casella Higgins-Dewell cyclones (Casella TSI) placed in the breathing zone of workers attached to SKC Air Check XR 5000 or SKC Chek TOUCH sampling pumps. Sample filters were sent to an ISO (2017) 17025:2017 accredited laboratory for gravimetric analysis for RD and X-Ray Diffraction (XRD) analysis to determine the amount of deposited RCS i.e. alpha-quartz and cristobalite. All workshops used wet methods of fabrication. The geometric mean (GM) of the pooled result for respirable dust (RD) was 0.09 mg/m3 TWA-8 h and 0.034 mg/m3 TWA-8 h for RCS. The highest exposed workers with a GM RCS of 0.062 mg/m3 TWA-8 h were those using pneumatic hand tools for cutting or grinding combined with polishing tasks. Workers operating semiautomated routers and edge polishers had the lowest GM RCS exposures of 0.022 mg/m3 TWA-8 h and 0.018 mg/m3 TWA-8 h respectively. Although ES workers remain exposed to RCS above the workplace exposure limit (WEL) of 0.05 mg/m 3 TWA-8 h, these results point to a very substantial reduction in exposures compared to poorly controlled dry methods of fabrication. Therefore, the wearing of respiratory protection by workers remains necessary until further control measures are more widely adopted across the entire industry e.g. reduction in the crystalline silica content of ES.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Humanos , Dióxido de Silício/análise , Exposição Ocupacional/análise , Poluentes Ocupacionais do Ar/análise , Poeira/análise , Exposição por Inalação/análise
12.
Pest Manag Sci ; 80(2): 837-845, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794292

RESUMO

BACKGROUND: Assessment of the risk of pesticide inhalation in populations around farmland is necessary because inhalation is one of the ways in which pesticides can risk human health. This study aimed to identify the inhalation risk of difenoconazole on humans by using dose-response and exposure assessments. RESULTS: In the field simulation application, respiratory exposure in populations around farmland ranged from 71 to 430 ng/m3 . Using response surface methodology, the maximum bioaccessibility of difenoconazole in three simulated lung fluids was 35.33% in Gamble's solution (GS), 34.12% in artificial lysosomal fluid (ALF), and 42.06% in simulated interstitial lung fluid (SLF). Taking the proliferation activity of the A549 cell model as the endpoint, the benchmark dose limit and benchmark dose of difenoconazole on A549 cells were 16.36 and 5.60 mg/kg, respectively. The margin of exposure to difenoconazole in GS, ALF and SLF were, respectively, 8.66 × 105 to 5.28 × 106 , 8.97 × 105 to 5.47 × 106 and 7.28 × 105 to 4.44 × 106 . CONCLUSION: The risk assessment results indicate that under all circumstances, applying difenoconazole is safe for populations around farmland. However, a fan-shaped nozzle, suspension concentrate and greater inhalation height increase the risk of inhalation. © 2023 Society of Chemical Industry.


Assuntos
Dioxolanos , Exposição por Inalação , Material Particulado , Triazóis , Humanos , Material Particulado/análise , Exposição por Inalação/análise , Medição de Risco , Atmosfera
13.
ALTEX ; 41(1): 91-103, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37843016

RESUMO

In vitro methods provide a key opportunity to model human-relevant exposure scenarios for hazard identification of inhaled toxicants. Compared to in vivo tests, in vitro methods have the advantage of assessing effects of inhaled toxicants caused by differences in dosimetry, e.g., variations in con­centration (exposure intensity), exposure duration, and exposure frequency, in an easier way. Variations in dosimetry can be used to obtain information on adverse effects in human-relevant exposure scenarios that can be used for risk assessment. Based on the published literature of exposure approaches using air-liquid interface models of the respiratory tract, supplemented with additional experimental data from the EU H2020 project "PATROLS" and research funded by the Dutch Ministry of Agriculture, Nature and Food Quality, the advantages and disadvantages of dif­ferent exposure methods and considerations to design an experimental setup are summarized and discussed. As the cell models used are models for the respiratory epithelium, our focus is on the local effects in the airways. In conclusion, in order to generate data from in vitro methods for risk assessment of inhaled toxicants it is recommended that (1) it is considered what information really is needed for hazard or risk assessment; (2) the exposure system that is most suitable for the chemical to be assessed is chosen; (3) a deposited dose that mimics deposition in the human respiratory tract is used, and (4) the post-exposure sampling methodology should be carefully considered and relevant to the testing strategy used.


The impact of airborne pollutants on human health is determined by what pollutant it is, how much we breathe in, for how long and how often. Testing in animals is cumbersome and results may not reflect human health impacts. Advanced cell models of the human lung allow prediction of the health impact of many different exposure scenarios. Here, we compare different models and exposure methods and provide criteria that may assist in designing experiments, interpreting the results, and thus assessing the risks posed by airborne pollutants. We recommend (1) determining what infor­mation is needed to plan the experiment, (2) choosing an exposure method that is suitable for the pollutant of interest, (3) determining the amount of pollutant that interacts with the human lung, to relate this to realistic deposition in the lung, and (4) considering the time between the exposure and measurement of the effect.


Assuntos
Exposição por Inalação , Sistema Respiratório , Humanos , Exposição por Inalação/efeitos adversos , Medição de Risco/métodos , Substâncias Perigosas/toxicidade
14.
J Expo Sci Environ Epidemiol ; 34(2): 345-355, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145997

RESUMO

BACKGROUND: For healthcare workers, surface disinfections are daily routine tasks. An assessment of the inhalation exposure to hazardous substances, in this case the disinfectant´s active ingredients, is necessary to ensure workers safety. However, deciding which exposure model is best for exposure assessment remains difficult. OBJECTIVE: The aim of the study was to evaluate the applicability of different exposure models for disinfection of small surfaces in healthcare settings. METHODS: Measurements of the air concentration of active ingredients in disinfectants (ethanol, formaldehyde, glutaraldehyde, hydrogen peroxide, peroxyacetic acid) together with other exposure parameters were recorded in a test chamber. The measurements were performed using personal and stationary air sampling. In addition, exposure modelling was performed using three deterministic models (unsteady 1-zone, ConsExpo and 2-component) and one modifying-factor model (Stoffenmanager®). Their estimates were compared with the measured values using various methods to assess model quality (like accuracy and level of conservatism). RESULTS: The deterministic models showed overestimation predominantly in the range of two- to fivefold relative to the measured data and high conservatism for all active ingredients of disinfectants with the exception of ethanol. With Stoffenmanager® an exposure distribution was estimated for ethanol, which was in good accordance with the measured data. IMPACT STATEMENT: To date, workplace exposure assessments often involve expensive and time consuming air measurements. Reliable exposure models can be used to assess occupational inhalation exposure to hazardous substances, in this case surface disinfectants. This study describes the applicability of three deterministic and one modifying-factor model for disinfection of small surfaces in healthcare settings, in direct comparison to measurements performed and will facilitate future exposure assessments at these workplaces.


Assuntos
Desinfetantes , Desinfecção , Exposição por Inalação , Exposição Ocupacional , Exposição Ocupacional/análise , Humanos , Exposição por Inalação/análise , Desinfetantes/análise , Desinfecção/métodos , Modelos Teóricos , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos
15.
Sci Total Environ ; 912: 169428, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104815

RESUMO

Wearing masks to prevent infectious diseases, especially during the COVID-19 pandemic, is common. However, concerns arise about inhalation exposure to microplastics (MPs) when disposable masks are improperly reused. In this study, we assessed whether disposable masks release inhalable MPs when reused in simulated wearing conditions. All experiments were conducted using a controlled test chamber setup with a constant inspiratory flow. Commercially available medical masks with a three-layer material, composition comprising polypropylene (PP in the outer and middle layers) and polyethylene (PE in the inner layer), were used as the test material. Brand-new masks with and without hand rubbing, as well as reused medical masks, were tested. Physical properties (number, size, and shape) and chemical composition (polymers) were identified using various analytical techniques such as fluorescence staining, fluorescence microscopy, and micro-Fourier Transform Infrared Spectroscopy (µFTIR). Scanning Electron Microscopy (SEM) was used to scrutinize the surface structure of reused masks across different layers, elucidating the mechanism behind the MP generation. The findings revealed that brand-new masks subjected to hand rubbing exhibited a higher cumulative count of MPs, averaging approximately 1.5 times more than those without hand rubbing. Fragments remained the predominant shape across all selected size classes among the released MPs from reused masks, primarily through a physical abrasion mechanism, accounting for >90 % of the total MPs. The numbers of PE particles were higher than PP particles, indicating that the inner layer of the mask contributed more inhalable MPs than the middle and outer layers combined. The released MPs from reused masks reached their peak after 8 h of wearing. This implies that regularly replacing masks serves as a preventive measure and mitigates associated health risks of inhalation exposure to MPs.


Assuntos
Exposição por Inalação , Poluentes Químicos da Água , Humanos , Exposição por Inalação/prevenção & controle , Máscaras , Microplásticos , Pandemias , Plásticos , Polietileno
16.
Environ Int ; 182: 108317, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37963425

RESUMO

The Internet of Things (IoT) and low-cost sensor technology have become common tools for environmental exposure monitoring; however, their application in measuring respirable dust (RD) in the workplace remains limited. This study aimed to develop a predictive model for RD using artificial intelligence (AI) algorithms and low-cost sensors and subsequently assess its validity using a standard sampling approach. Various low-cost sensors were combined into an RD sensor module and mounted on a portable aerosol monitor (GRIMM 11-D) for two weeks. AI algorithms were used to capture data per minute over 14 days to establish predictive RD models. The best-fitting model was validated using an aluminum cyclone equipped with an air pump and polytetrafluoroethylene filters to sample the 8-hour RD for 5 days at an aircraft manufacturing company. This module was continuously monitored for two weeks to evaluate its stability. The RD concentration measured by GRIMM 11-D in a general outdoor environment over two weeks was 28.1 ± 16.1 µg/m3 (range: 2.4-85.3 µg/m3). Among the various established models, random forest regression was observed to have the best prediction capacity (R2 = 0.97 and root mean square error = 2.82 µg/m3) in comparison to the other 19 methods. Field-based validation revealed that the predicted RD concentration (35.9 ± 4.1 µg/m3, range: 32.7-42.9 µg/m3) closely approximated the results obtained by the traditional method (38.1 ± 8.9 µg/m3, range: 28.1-52.5 µg/m3), and a strong positive Spearman correlation was observed between the two (rs = 0.70). The average bias was -2.2 µg/m3 and the precision was 5.8 µg/m3, resulting in an accuracy of 6.2 µg/m3 (94.2 %). Data completeness was 99.7 % during the continuous two-week monitoring period. The developed sensor module of RD exhibited excellent predictive performance and good data stability that can be applied to exposure assessments in occupational epidemiological studies.


Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Poeira/análise , Exposição Ocupacional/análise , Inteligência Artificial , Exposição Ambiental , Monitoramento Ambiental/métodos , Local de Trabalho , Exposição por Inalação/análise
17.
Toxicology ; 499: 153642, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37863466

RESUMO

New Approach Methodologies (NAMs) are being widely used to reduce, refine, and replace, animal use in studying toxicology. For respiratory toxicology, this includes both in silico and in vitro alternatives to replace traditional in vivo inhalation studies. 1,3-Dichloropropene (1,3-DCP) is a volatile organic compound that is widely used in agriculture as a pre-planting fumigant. Short-term exposure of humans to 1,3-DCP can result in mucous membrane irritation, chest pain, headache, and dizziness. In our previous work, we exposed differentiated cells representing different parts of the respiratory epithelium to 1,3-DCP vapor, measured cytotoxicity, and did In Vitro to In Vivo Extrapolation (IVIVE). We have extended our previous study with 1,3-DCP vapors by conducting transcriptomics on acutely exposed nasal cultures and have implemented a separate 5-day repeated exposure with multiple endpoints to gain further molecular insight into our model. MucilAir™ Nasal cell culture models, representing the nasal epithelium, were exposed to six sub-cytotoxic concentrations of 1,3-DCP vapor at the air-liquid interface, and the nasal cultures were analyzed by different methodologies, including histology, transcriptomics, and glutathione (GSH) -depletion assays. We observed the dose-dependent effect of 1,3-DCP in terms of differential gene expression, change in cellular morphology from pseudostratified columnar epithelium to squamous epithelium, and depletion of GSH in MucilAir™ nasal cultures. The MucilAir™ nasal cultures were also exposed to 3 concentrations of 1,3-DCP using repeated exposure 4 h per day for 5 days and the histological analyses indicated changes in cellular morphology and a decrease in ciliated bodies and an increase in apoptotic bodies, with increasing concentrations of 1,3-DCP. Altogether, our results suggest that sub-cytotoxic exposures to 1,3-DCP lead to several molecular and cellular perturbations, providing significant insight into the mode-of-action (MoA) of 1,3-DCP using an innovative NAM model.


Assuntos
Compostos Alílicos , Hidrocarbonetos Clorados , Praguicidas , Humanos , Animais , Determinação de Ponto Final , Administração por Inalação , Compostos Alílicos/toxicidade , Compostos Alílicos/metabolismo , Hidrocarbonetos Clorados/toxicidade , Exposição por Inalação/efeitos adversos
18.
Sci Total Environ ; 900: 166314, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37604366

RESUMO

Methylsiloxanes (MSs) are widely used in industrial production and have attracted much attention due to their potential health risks to humans. MSs are present in emissions from petroleum refining, and it is therefore important to assess the health risks to residents living near refineries. In this study, we evaluated the pollution characteristics and human exposure risks of three cyclic MS (CMS) oligomers (D4-D6) in areas upwind and downwind of a petroleum refinery. The concentrations of total CMSs were 4-33 times higher in the downwind than upwind areas. At the same sampling site, the concentrations of CMSs were higher indoors than outdoors. The maximum concentration of CMSs was found in the indoor environment 200 m downwind of the petroleum refinery (75 µg/m3 in air and 2.3 µg/g in dust). The concentrations and detection rates of CMSs in plasma samples were higher in the downwind than upwind residents. Although residents living downwind of the petroleum refinery were a non-occupationally exposed population, they should be considered a highly CMS-exposed population because of their extremely high internal exposure doses. Inhalation exposure was the main source of CMSs in the plasma of these residents. When different exposure pathways were investigated, inhalation exposure was the major contributor to the average daily dose in residents of locations near the petroleum refinery, whereas the dermal absorption of personal care products was the major contributor at other sites. Although the overall risks of exposure to total CMSs were below the chronic reference dose for all exposure pathways, the combined joint toxic effects of various CMSs remain unclear. Further studies are therefore required to determine the exposure risks and subsequent health effects of CMSs for the residents of these areas.


Assuntos
Poeira , Petróleo , Humanos , Poluição Ambiental , Indústrias , Exposição por Inalação
19.
Environ Sci Technol ; 57(21): 7978-7988, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37162498

RESUMO

The inhalation exposure of pesticide applicators and residents who live close to pesticide-treated fields is a worldwide concern in public health. Quantitative assessment of exposure to pesticide inhalation health risk highlights the need to accurately assess the bioaccessibility rather than the total content in ambient air. Herein, we developed an in vitro method to estimate the inhalation bioaccessibility of emamectin benzoate and validated its applicability using a rat plasma pharmacokinetic bioassay. Emamectin benzoate was extracted using the Gamble solution, with an optimized solid-to-liquid ratio (1/250), extraction time (24 h), and agitation (200 rpm), which obtained in vitro inhalation bioaccessibility consistent with its inhalation bioavailability in vivo (32.33%). The margin of exposure (MOE) was used to assess inhalation exposure risk. The inhalation unit exposures to emamectin benzoate of applicators and residents were 11.05-28.04 and 0.02-0.04 ng/m3, respectively, varying markedly according to the methods of application, e.g., formulations and nozzles. The inhalation risk assessment using present application methods appeared to be acceptable; however, the MOE of emamectin benzoate might be overestimated by 32% without considering inhalation bioaccessibility. Collectively, our findings contribute insights into the assessment of pesticide inhalation exposure based on bioaccessibility and provide guidance for the safe application of pesticides.


Assuntos
Resíduos de Praguicidas , Praguicidas , Animais , Ratos , Exposição por Inalação , Ivermectina/análise , Resíduos de Praguicidas/análise
20.
Artigo em Inglês | MEDLINE | ID: mdl-36767885

RESUMO

The benefits of metal 3D printing seem unquestionable. However, this additive manufacturing technology brings concerns to occupational safety and health professionals, since recent studies show the existence of airborne nanomaterials in these workplaces. This article explores different approaches to manage the risk of exposure to these incidental nanomaterials, on a case study conducted in a Portuguese organization using Selective Laser Melting (SLM) technology. A monitoring campaign was performed using a condensation particle counter, a canning mobility particle sizer and air sampling for later scanning electron microscopy and energy dispersive X-ray analysis, proving the emission of nano-scale particles and providing insights on number particle concentration, size, shape and chemical composition of airborne matter. Additionally, Control Banding Nanotool v2.0 and Stoffenmanager Nano v1.0 were applied in this case study as qualitative tools, although designed for engineered nanomaterials. This article highlights the limitations of using these quantitative and qualitative approaches when studying metal 3D Printing workstations. As a result, this article proposes the IN Nanotool, a risk management method for incidental nanomaterials designed to overcome the limitations of other existing approaches and to allow non-experts to manage this risk and act preventively to guarantee the safety and health conditions of exposed workers.


Assuntos
Poluentes Ocupacionais do Ar , Nanoestruturas , Exposição Ocupacional , Humanos , Poluentes Ocupacionais do Ar/análise , Tamanho da Partícula , Exposição Ocupacional/prevenção & controle , Exposição Ocupacional/análise , Nanoestruturas/análise , Metais/análise , Gestão de Riscos , Exposição por Inalação/análise , Monitoramento Ambiental/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA