Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 522
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(5): 94, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710898

RESUMO

This study introduces and assesses the potential of a Luliconazole-loaded nanofiber (LUL-NF) patch, fabricated through electrospinning, for enhancing topical drug delivery. The primary objectives involve evaluating the nanofiber structure, characterizing physical properties, determining drug loading and release kinetics, assessing antifungal efficacy, and establishing the long-term stability of the NF patch. LUL-NF patches were fabricated via electrospinning and observed by SEM at approximately 200 nm dimensions. The comprehensive analysis included physical properties (thickness, folding endurance, swelling ratio, weight, moisture content, and drug loading) and UV analysis for drug quantification. In vitro studies explored sustained drug release kinetics, while microbiological assays evaluated antifungal efficacy against Candida albicans and Aspergillus Niger. Stability studies confirmed long-term viability. Comparative analysis with the pure drug, placebo NF patch, LUL-NF patch, and Lulifod gel was conducted using agar diffusion, revealing enhanced performance of the LUL-NF patch. SEM analysis revealed well-defined LUL-NF patches (0.80 mm thickness) with exceptional folding endurance (> 200 folds) and a favorable swelling ratio (12.66 ± 0.73%). The patches exhibited low moisture uptake (3.4 ± 0.09%) and a moisture content of 11.78 ± 0.54%. Drug loading in 1 cm2 section was 1.904 ± 0.086 mg, showing uniform distribution and sustained release kinetics in vitro. The LUL-NF patch demonstrated potent antifungal activity. Stability studies affirmed long-term stability, and comparative analysis highlighted increased inhibition compared to a pure drug, LUL-NF patch, and a commercial gel. The electrospun LUL-NF patch enhances topical drug delivery, promising extended therapy through single-release, one-time application, and innovative drug delivery strategies, supported by thorough analysis.


Assuntos
Antifúngicos , Aspergillus niger , Candida albicans , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Imidazóis , Nanofibras , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Antifúngicos/química , Nanofibras/química , Candida albicans/efeitos dos fármacos , Aspergillus niger/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Imidazóis/química , Imidazóis/administração & dosagem , Imidazóis/farmacologia , Preparações de Ação Retardada , Testes de Sensibilidade Microbiana/métodos , Portadores de Fármacos/química , Estabilidade de Medicamentos
2.
Int J Biol Macromol ; 268(Pt 2): 131832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663704

RESUMO

In this comprehensive investigation, a novel pH-responsive hydrogel system comprising mimosa seed mucilage (MSM), ß-cyclodextrin (ß-CD), and methacrylic acid (MAA) was developed via free radical polymerization technique to promote controlled drug delivery. The hydrogel synthesis involved strategic variations in polymer, monomer, and crosslinker content in fine-tuning its drug-release properties. The resultant hydrogel exhibited remarkable pH sensitivity, selectively liberating the model drug (Capecitabine = CAP) under basic conditions while significantly reducing release in an acidic environment. Morphological, thermal, and structural analyses proved that CAP has a porous texture, high stability, and an amorphous nature. In vitro drug release experiments showcased a sustained and controlled release profile. Optimum release (85.33 %) results were recorded over 24 h at pH 7.4 in the case of MMB9. Pharmacokinetic evaluation in healthy male rabbits confirmed bioavailability enhancement and sustained release capabilities. Furthermore, rigorous toxicity evaluations and histopathological analyses ensured the safety and biocompatibility of the hydrogel. This pH-triggered drug delivery system can be a promising carrier system for drugs involving frequent administrations.


Assuntos
Preparações de Ação Retardada , Liberação Controlada de Fármacos , Hidrogéis , Mimosa , Sementes , beta-Ciclodextrinas , Concentração de Íons de Hidrogênio , Animais , Coelhos , Hidrogéis/química , Mimosa/química , Sementes/química , beta-Ciclodextrinas/química , Masculino , Sistemas de Liberação de Medicamentos , Mucilagem Vegetal/química , Portadores de Fármacos/química , Ácidos Polimetacrílicos/química
3.
Int J Pharm ; 654: 123980, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38460769

RESUMO

Solid lipid microparticles (SLMs) represent a promising approach for drug delivery in anti-acne applications. In this study, asiatic acid-loaded SLMs (AASLMs) were prepared by melt emulsification method in conjunction with freeze-drying. Comprehensive evaluations comprised particle size, %entrapment efficiency (%EE), %labeled amount (%LA), surface morphology, stability, %release, %skin permeation, and anti-acne activity. The AASLMs exhibited an average particle size ranging from 7.46 to 38.86 µm, with %EE and %LA falling within the range of 31.56 to 100.00 and 90.43 to 95.38, respectively. The AASLMs demonstrated a spherical shape under scanning electron microscopy, and maintained stability over a 3-month period. Notably, formulations with 10 % and 15 % cetyl alcohol stabilized with poloxamer-188 (specifically F6 and F12) displayed a minimum inhibitory concentration (MIC) value of 75 mg/ml against Cutibacterium acnes. Furthermore, F12 exhibited a higher %release and %skin permeation compared to F6 over 24 h. In a single-blind clinical trial involving fifteen participants with mild-to-moderate acne, F12 showcased its potential not only in reducing porphyrin intensity and enhancing skin barriers but also in significantly improving skin hydration and brightness. However, further investigations with larger subject cohorts encompassing diverse age groups and genders are necessary to thoroughly establish the performance of the developed AASLMs.


Assuntos
Acne Vulgar , Sistemas de Liberação de Medicamentos , Triterpenos Pentacíclicos , Feminino , Humanos , Masculino , Acne Vulgar/tratamento farmacológico , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/métodos , Lipídeos , Tamanho da Partícula , Método Simples-Cego
4.
Med Oncol ; 41(5): 95, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526657

RESUMO

5-Fluorouracil (5-FU) is an anticancer agent belonging to BCS Class III that exhibits poor release characteristics and low retention in the biological system. The main objective of this investigation was to develop a drug delivery system, i.e., Nanostructure Lipid Carriers (NLCs) loaded with 5-FU to prolong its biological retention through 5-FU-loaded NLCs (5-FUNLC) were designed to manipulate physicochemical characteristics and assessment of in vitro and in vivo performance. The developed NLCs underwent comprehensive characterization, including assessments for particle size, zeta potential, morphological evaluation, and FT-IR spectroscopy. Additionally, specific evaluations were conducted for 5-FUNLCs, encompassing analyses for encapsulation efficiency of the drug, release characteristics in PBS at pH 6.8, and stability study. The lipophilic character of 5-FUNLC was confirmed through the measurement of the partition coefficient (log P). 5-FUNLCs were observed as spherical-shaped particles with a mean size of 300 ± 25 nm. The encapsulation efficiency was determined to be 89%, indicating effective drug loading within the NLCs. Furthermore, these NLCs exhibited a sustained release nature lasting up to 3-4 h, indicating their potential for controlled drug release over time. Lipid components were biocompatible with the 5-FU to determine thermal transition temperature and show good stability for 30 days. Additionally, an in vitro hemolysis study that confirmed the system did not cause any destruction to the RBCs during intravenous administration. The drug's gut permeability was assessed utilizing the optimized 5-FUNLC (F2) in comparison to 5-FU through the intestine or gut sac model (in the apical to basolateral direction, A → B). The permeability coefficient was measured as 4.91 × 10-5 cm/h with a significant difference. Additionally, the antioxidant potential of the NLCs was demonstrated through the DPPH method. The NLCs' performance was further assessed through in vivo pharmacokinetic studies on Wistar Rats, resulting in a 1.5-fold enhancement in their activity compared to free 5-FU. These NLCs offer improved drug solubility and sustained release, which collectively contribute to enhanced therapeutic outcomes and modulate bioavailability. The study concludes by highlighting the potential of 5-FUNLC as an innovative and efficient drug delivery system. The findings suggest that further preclinical investigations are warranted, indicating a promising avenue for the development of more effective and well-tolerated treatments for cancer.


Assuntos
Portadores de Fármacos , Nanoestruturas , Ratos , Animais , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Fluoruracila , Preparações de Ação Retardada , Disponibilidade Biológica , Ratos Wistar , Espectroscopia de Infravermelho com Transformada de Fourier , Hemólise , Lipídeos , Nanoestruturas/química , Permeabilidade
5.
Int J Biol Macromol ; 262(Pt 2): 130078, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340914

RESUMO

Mucoadhesive films based on tamarind seed polysaccharide and guar gum (TSP-GG) were formulated for buccal delivery of resveratrol. Resveratrol-bovine serum albumin nanoparticles (Res-BSA) were prepared and dispersed in TSP-GG to improve its buccal mucoadhesiveness. The impregnation of Res-BSA induced the dense internal structures of TSP-GG and improved its strength and rigidity. Structural characterization showed that resveratrol existed in an amorphous state in the films containing Res-BSA, and hydrogen bonding was formed between Res-BSA and the film matrices. The films containing Res-BSA exhibited good uniformity in thickness, weight, and resveratrol content, and their surface pH was near neutral, ranging between 6.78 and 7.09. Increasing Res-BSA content reduced the water contact angle of TSP-GG (from 75.9° to 59.6°). The swelling and erosion studies indicated the favorable hydration capacity and erosion resistance of the films containing Res-BSA. Additionally, the addition of Res-BSA imparted enhanced ex vivo mucoadhesive force, in the range of 1.53 N to 1.98 N, and extended ex vivo residence time, between 17.9 h and 18.9 h, to TSP-GG. The current study implied that the composite systems of TSP-GG and Res-BSA may be a novel platform for buccal mucosal delivery of resveratrol.


Assuntos
Galactanos , Mananas , Nanopartículas , Gomas Vegetais , Tamarindus , Portadores de Fármacos/química , Resveratrol , Soroalbumina Bovina , Tamarindus/química , Polissacarídeos/química , Nanopartículas/química , Sistemas de Liberação de Medicamentos
6.
Drug Deliv Transl Res ; 14(4): 895-917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37843733

RESUMO

Hesperidin (Hsd), a bioactive phytomedicine, experienced an antidiabetic activity versus both Type 1 and Type 2 Diabetes mellitus. However, its intrinsic poor solubility and bioavailability is a key challenging obstacle reflecting its oral delivery. From such perspective, the purpose of the current study was to prepare and evaluate Hsd-loaded sulfobutylether-ß-cyclodextrin/chitosan nanoparticles (Hsd/CD/CS NPs) for improving the hypoglycemic activity of the orally administered Hsd. Hsd was first complexed with sulfobutylether-ß-cyclodextrin (SBE-ß-CD) and the complex (CX) was found to be formed with percent complexation efficiency and percent process efficiency of 50.53 ± 1.46 and 84.52 ± 3.16%, respectively. Also, solid state characterization of the complex ensured the inclusion of Hsd inside the cavity of SBE-ß-CD. Then, Hsd/CD/CS NPs were prepared using the ionic gelation technique. The prepared NPs were fully characterized to select the most promising one (F1) with a homogenous particle size of 455.7 ± 9.04 nm, a positive zeta potential of + 32.28 ± 1.12 mV, and an entrapment efficiency of 77.46 ± 0.39%. The optimal formula (F1) was subjected to further investigation of in vitro release, ex vivo intestinal permeation, stability, cytotoxicity, and in vivo hypoglycemic activity. The results of the release and permeation studies of F1 manifested a modulated pattern between Hsd and CX. The preferential stability of F1 was observed at 4 ± 1 °C. Also, the biocompatibility of F1 with oral epithelial cell line (OEC) was retained up to a concentration of 100 µg/mL. After oral administration of F1, a noteworthy synergistic hypoglycemic effect was recorded with decreased blood glucose level until the end of the experiment. In conclusion, Hsd/CD/CS NPs could be regarded as a hopeful oral delivery system of Hsd with enhanced antidiabetic activity.


Assuntos
Quitosana , Diabetes Mellitus Tipo 2 , Hesperidina , Nanopartículas , beta-Ciclodextrinas , Humanos , Hipoglicemiantes/farmacologia , Portadores de Fármacos
7.
Sci Rep ; 13(1): 19110, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925581

RESUMO

Fisetin (FST) is a naturally occurring flavonol that has recently emerged as a bioactive phytochemical with an impressive array of biological activities. To the author knowledge, boosting the activity of FST against severe acute pancreatitis (SAP) through a nanostructured delivery system (Nanophytomedicine) has not been achieved before. Thereupon, FST-loaded lipid polymer hybrid nanoparticles (FST-loaded LPHNPs) were prepared through conjoined ultrasonication and double emulsion (w/o/w) techniques. Comprehensive in vitro and in vivo evaluations were conducted. The optimized nanoparticle formula displayed a high entrapment efficiency % of 61.76 ± 1.254%, high loading capacity % of 32.18 ± 0.734, low particle size of 125.39 ± 0.924 nm, low particle size distribution of 0.357 ± 0.012, high zeta potential of + 30.16 ± 1.416 mV, and high mucoadhesive strength of 35.64 ± 0.548%. In addition, it exhibited a sustained in vitro release pattern of FST. In the in vivo study, oral pre-treatment of FST-loaded LPHNPs protected against L-arginine induced SAP and multiple organ injuries in rats compared to both FST alone and plain LPHNPs, as well as the untreated group, proven by both biochemical studies, that included both amylase and lipase activities, and histochemical studies of pancreas, liver, kidney and lungs. Therefore, the study could conclude the potential efficacy of the novel phytopharmaceutical delivery system of FST as a prophylactic regimen for SAP and consequently, associated multiple organ injuries.


Assuntos
Nanopartículas , Pancreatite , Ratos , Animais , Polímeros , Doença Aguda , Lipídeos , Liberação Controlada de Fármacos , Flavonóis , Compostos Fitoquímicos , Tamanho da Partícula , Portadores de Fármacos
8.
Int J Pharm ; 648: 123608, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972670

RESUMO

Breast cancer (BC) is one of the leading fatal diseases affecting females worldwide. Despite the presence of tremendous chemotherapeutic agents, the resistance emergence directs the recent research towards synergistic drugs' combination along with encapsulation inside biocompatible smart nanocarriers. Methotrexate (MTX) and 5-fluorouracil (Fu) are effective against BC and have sequential synergistic activity. In this study, a core-shell nanocarrier composed of mesoporous silica nanoparticles (MSN) as the core and zeolitic imidazolate framework-8 nano metal organic frameworks (ZIF-8 NMOF) as the shell was developed and loaded with Fu and MTX, respectively. The developed nanostructure; Fu-MSN@MTX-NMOF was validated by several characterization techniques and conferred high drugs' entrapment efficiency (EE%). In-vitro assessment revealed a pH-responsive drug release pattern in the acidic pH where MTX was released followed by Fu. The cytotoxicity evaluation indicated enhanced anticancer effect of the Fu-MSN@MTX-NMOF relative to the free drugs in addition to time-dependent fortified cytotoxic effect due to the sequential drugs' release. The in-vivo anticancer efficiency was examined using Ehrlich ascites carcinoma (EAC) animal model where the anticancer effect of the developed Fu-MSN@MTX-NMOF was compared to the sequentially administrated free drugs. The results revealed enhanced anti-tumor effect while maintaining the normal functions of the vital organs as the heart, kidney and liver.


Assuntos
Nanopartículas , Neoplasias , Animais , Feminino , Fluoruracila/química , Metotrexato/farmacologia , Portadores de Fármacos/química , Nanopartículas/química , Concentração de Íons de Hidrogênio
9.
Drug Dev Ind Pharm ; 49(8): 536-549, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37551958

RESUMO

PURPOSE: Bovine serum albumin (BSA) nanoparticles (BSA-MTX-CUR-NPs) encapsulating methotrexate (MTX) and curcumin (CUR) was developed with an aim to co-deliver the drugs at the inflamed joint so as to maximize the therapeutic efficacy and alleviate toxic side effects associated with MTX. METHODS: Nanoparticle albumin-bound technology was used to formulate nanoparticles, followed by characterization for its particle size, polydispersity index, encapsulation efficiency, zeta potential, surface morphology, in-vitro drug release and drug release kinetics. Further, we investigated the pharmacokinetics and pharmacodynamics of the developed nanoparticles in the adjuvant-induced arthritis model. RESULTS: BSA-MTX-CUR-NPs exhibited particle size of 163.05 ± 1.708 nm, polydispersity index of 0.195 ± 0.0024 and % encapsulation efficiency of 68.23 ± 0.640% for MTX and 75.71 ± 0.216% for CUR with controlled release pattern for both the drugs. The scanning electron microscopy revealed nanoparticles exhibited a spherical shape. DSC study confirmed the absence of incompatibility between the drugs and the excipients. Half-life and area under the curve were significantly higher for MTX in the nanoparticulate form in comparison to free MTX. Pharmacodynamic studies revealed that BSA-MTX-CUR-NPs possessed better disease-modifying effects in comparison to free MTX. CONCLUSION: Hence, it can be concluded that albumin nanoparticles constitute a viable method for delivering MTX and CUR to inflamed joints simultaneously, because of the strong affinity of albumin and enhanced permeability and retention effect at the inflamed joint. This combinational therapy of MTX & CUR in nanoparticulate form has the potential for the holistic management of rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Curcumina , Nanopartículas Multifuncionais , Nanopartículas , Humanos , Metotrexato/farmacocinética , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos/farmacologia , Artrite Reumatoide/tratamento farmacológico , Soroalbumina Bovina/uso terapêutico , Tamanho da Partícula
10.
Int J Mol Sci ; 24(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37445886

RESUMO

Pancreatic adenocarcinoma (PDAC) remains largely refractory to chemotherapeutic treatment regimens and, consequently, has the worst survival rate of all cancers. The low efficacy of current treatments results largely from toxicity-dependent dose limitations and premature cessation of therapy. Recently, targeted delivery approaches that may reduce off-target toxicities have been developed. In this paper, we present a preclinical evaluation of a PDAC-specific drug delivery system based on mesoporous silica nanoparticles (MSNs) functionalized with a protease linker that is specifically cleaved by PDAC cells. Our previous work demonstrated that ADAM9 is a PDAC-enriched protease and that paclitaxel-loaded ADAM9-responsive MSNs effectively kill PDAC cells in vitro. Here, we show that paclitaxel-loaded ADAM9-MSNs result in off-target cytotoxicity in clinically relevant models, which spurred the development of optimized ADAM9-responsive MSNs (OPT-MSNs). We found that these OPT-MSNs still efficiently kill PDAC cells but, as opposed to free paclitaxel, do not induce death in neuronal or bone marrow cells. In line with these in vitro data, paclitaxel-loaded OPT-MSNs showed reduced organ damage and leukopenia in a preclinical PDAC xenograft model. However, no antitumor response was observed upon OPT-MSN administration in vivo. The poor in vivo antitumor activity of OPT-MSNs despite efficient antitumor effects in vitro highlights that although MSN-based tumor-targeting strategies may hold therapeutic potential, clinical translation does not seem as straightforward as anticipated.


Assuntos
Adenocarcinoma , Nanopartículas , Neoplasias Pancreáticas , Humanos , Doxorrubicina/farmacologia , Dióxido de Silício , Neoplasias Pancreáticas/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Peptídeo Hidrolases , Porosidade , Portadores de Fármacos/farmacologia , Proteínas de Membrana , Proteínas ADAM , Neoplasias Pancreáticas
11.
J Pharm Sci ; 112(10): 2696-2702, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37478971

RESUMO

Inhalation-based drug delivery systems have gained attention as potential therapeutic options for various respiratory diseases. Among these systems, nanoparticles are being explored as drug carriers because of their ability to deliver therapeutic agents directly to the lungs. It is essential to accurately evaluate the intrapulmonary behavior of nanoparticles to optimize drug delivery and achieve selective targeting of lung lesions. Prior research used the Förster resonance energy transfer (FRET) phenomenon to study the in vivo behavior of nanoparticles as drug carriers. In this study, image reconstruction involving bleed-through compensation was used to quantitatively assess the behavior of FRET nanoparticles in the lungs. When the nanoparticles for FRET fluorescence imaging, which employed 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine, 4-chlorobenzenesulfonate salt (DiD) as the donor and as 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine iodide (DiR) the acceptor, were administered to mouse lungs, whole-body in vivo imaging could not compensate for the influence of respiration and heartbeat. However, ex vivo imaging of excised lungs enabled the quantitative evaluation of the time-concentration profiles and distribution of nanoparticles within the lungs. This imaging technique is particularly useful for the development of inhalable nanoparticles that specifically target the lesions and exhibit controlled-release capabilities within the lungs.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Nanopartículas , Animais , Camundongos , Transferência Ressonante de Energia de Fluorescência/métodos , Polímeros , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos
12.
Eur J Pharm Sci ; 187: 106484, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268092

RESUMO

Tuberculosis (TB) is a life-threatening disease and a main cause of death worldwide. It mainly affects the lungs, and it is attributed to the infection with Mycobacterium tuberculosis (MTB). Current treatments consist of the oral administration of combinations of antibiotics including rifabutin, in high doses and for long periods of time. These therapeutic regimens are associated with many side effects and high rates of drug resistance. To overcome these problems, this study aims at developing a nanosystem for the improved delivery of antibiotics, with potential application in pulmonary delivery. Chitosan-based nanomaterials are widely used in biomedical applications, due to their biodegradability and biocompatibility, as well as their potential antimicrobial effects and lack of toxicity. In addition, this polymer is particularly attractive for mucosal delivery due to its bioadhesive properties. Therefore, the structure of the proposed nanocarrier consists of a chitosan shell and a lipid core with a combination of different oils and surfactants to allow optimal association of the hydrophobic drug rifabutin. These nanocapsules were characterized in terms of size, polydispersity index, surface charge, morphology, encapsulation efficiency and biological stability. The release kinetics of the drug-loaded nanostructures was evaluated in simulated lung media. Moreover, in vitro studies in different cell models (A549 and Raw 264.7 cells) demonstrated the safety of the nanocapsules as well as their efficient internalization. An antimicrobial susceptibility test was performed to evaluate the efficacy of the rifabutin-loaded nanocapsules against Mycobacterium phlei. This study indicated complete inhibition for antibiotic concentrations within the expected susceptibility range of Mycobacterium (≤ 0.25-16 mg/L).


Assuntos
Quitosana , Nanocápsulas , Rifabutina/química , Nanocápsulas/química , Quitosana/química , Portadores de Fármacos/química , Pulmão , Antibacterianos/farmacologia
13.
Int J Nanomedicine ; 18: 1577-1595, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37007986

RESUMO

Purpose: The research objective is to design intranasal brain targeted CLZ loaded lecithin based polymeric micelles (CLZ- LbPM) aiming to improve central systemic CLZ bioavailability. Methods: In our study, intranasal CLZ loaded lecithin based polymeric micelles (CLZ- LbPM) were formulated using soya phosphatidyl choline (SPC) and sodium deoxycholate (SDC) with different CLZ:SPC:SDC ratios via thin film hydration technique aiming to enhance drug solubility, bioavailability and nose to brain targeting efficiency. Optimization of the prepared CLZ-LbPM using Design-Expert® software was achieved showing that M6 which composed of (CLZ:SPC: SDC) in respective ratios of 1:3:10 was selected as the optimized formula. The optimized formula was subjected to further evaluation tests as, Differential Scanning Calorimetry (DSC), TEM, in vitro release profile, ex vivo intranasal permeation and in vivo biodistribution. Results: The optimized formula with the highest desirability exhibiting (0.845), small particle size (12.23±4.76 nm), Zeta potential of (-38 mV), percent entrapment efficiency of > 90% and percent drug loading of 6.47%. Ex vivo permeation test showed flux value of 27 µg/cm².h and the enhancement ratio was about 3 when compared to the drug suspension, without any histological alteration. The radioiodinated clozapine ([131I] iodo-CLZ) and radioiodinated optimized formula ([131I] iodo-CLZ-LbPM) were formulated in an excellent radioiodination yield more than 95%. In vivo biodistribution studies of [131I] iodo-CLZ-LbPM showed higher brain uptake (7.8%± 0.1%ID/g) for intranasal administration with rapid onset of action (at 0.25 h) than the intravenous formula. Its pharmacokinetic behavior showed relative bioavailability, direct transport percentage from nose to brain and drug targeting efficiency of 170.59%, 83.42% and 117% respectively. Conclusion: The intranasal self-assembling lecithin based mixed polymeric micelles could be an encouraging way for CLZ brain targeting.


Assuntos
Clozapina , Micelas , Radioisótopos do Iodo , Clozapina/metabolismo , Lecitinas , Distribuição Tecidual , Sistemas de Liberação de Medicamentos/métodos , Administração Intranasal , Encéfalo , Mucosa Nasal/metabolismo , Polímeros/química , Tamanho da Partícula , Portadores de Fármacos/química
14.
IET Nanobiotechnol ; 17(4): 360-367, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37095723

RESUMO

To assess and evaluate Chitosan-Metamizole nanoparticles for fracture healing and analgesic potential, nanoparticles were formulated using the ionotropic gelation method. The nanoparticles were evaluated for particle size, zeta potential, polydispersity index, loading efficiency, surface characteristics and drug release properties. The analgesic activity was determined in carrageenan-induced arthritic male Wister rats. Further fracture healing potency, mechanical testing, radiographic examination and bone histology of the femur were studied. The drug loading efficiency of 11.38%-17.45%, particle size of 140-220 nm, and zeta potential of 19.12-23.14 mV were observed with a spherical, smooth appearance. Nanoparticles showed sustained release behaviour over a longer period. Nearly 4-fold inhibition of oedema was observed in animals treated with nanoparticles with excellent fracture healing potential. The femurs treated with nanoparticles required greater force to fracture. Nanoparticles significantly improved the strength and healing process. Histopathological studies showed the potential of nanoparticles in the healing process. The study confirmed the potential of nanoparticles in fracture healing and enhancement of analgesic activity.


Assuntos
Quitosana , Nanopartículas , Ratos , Masculino , Animais , Quitosana/farmacologia , Consolidação da Fratura , Dipirona , Ratos Wistar , Tamanho da Partícula , Portadores de Fármacos
15.
Int J Biol Macromol ; 237: 123937, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36882143

RESUMO

Constructing a system to carry medicine for more effective remedy of cancer has been a leading challenge, as the number of cancer cases continues to increase. In this present research, a curcumin-loaded chitosan/halloysite/carbon nanotube nanomixture was fabricated by means of water/oil/water emulsification method. The drug loading efficiency (DL) and entrapment efficiency (EE), as a result, reached 42 % and 88 %, respectively and FTIR and XRD analysis confirmed the bonding between the drug and nanocarrier. Morphological observation through FE-SEM and characterization through DLS analysis demonstrated that the average size of nanoparticles is 267.37 nm. Assessment of release within 96 h in pH 7.4 and 5.4 showed sustained release. For more investigation, release data was analyzed by diverse kinetic models to understand the mechanism in the release procedure. An MTT assay was also carried out, and the results illustrated apoptosis induction on MCF-7 cells and exhibited ameliorated cytotoxicity of the drug-loaded nanocomposite compared to the free curcumin. These findings suggest that the unique pH-responsive chitosan/halloysite/carbon nanotube nanocomposite might make a good option for drug delivery systems, particularly for the cancer treatment.


Assuntos
Quitosana , Curcumina , Nanopartículas , Nanotubos de Carbono , Humanos , Curcumina/química , Quitosana/química , Argila , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
16.
J Microencapsul ; 40(4): 263-278, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989347

RESUMO

The purpose of this study was to evaluate the drug delivery and therapeutic potential of berberine (Br) loaded nanoformulation in rheumatoid arthritis (RA)-induced animal model. The Br-loaded NLCs (nanostructured lipid carriers) were prepared employing melt-emulsification process, and optimised through Box-Behnken design. The prepared NLCs were assessed for in-vitro and in-vivo evaluations. The optimised NLCs exhibited a mean diameter of 180.2 ± 0.31 nm with 88.32 ± 2.43% entrapment efficiency. An enhanced anti-arthritic activity with reduced arthritic scores to 0.66 ± 0.51, reduction in ankle diameter to 5.80 ± 0.27 mm, decline in paw withdrawal timing, and improvements in walking behaviour were observed in the Br-NLCs treated group. The radiographic images revealed a reduction in bone and cartilage deformation. The Br-NLCs showed promising results in the management of RA disease, can be developed as an efficient delivery system at commercial levels, and may be explored for clinical application after suitable experiments in the future.


Assuntos
Artrite Reumatoide , Berberina , Nanoestruturas , Animais , Portadores de Fármacos/uso terapêutico , Berberina/farmacologia , Berberina/uso terapêutico , Sistemas de Liberação de Medicamentos , Artrite Reumatoide/tratamento farmacológico , Modelos Animais , Lipídeos , Tamanho da Partícula
17.
Naunyn Schmiedebergs Arch Pharmacol ; 396(9): 2105-2125, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36929274

RESUMO

The aim of the current study is to evaluate the anti-psoriatic potential of bakuchiol (Bak) loaded solid lipid nanoparticles (SLNs) via modulating inflammatory and oxidative pathways. Bak-loaded SLNs were prepared using hot homogenization method and characterized by various spectroscopic techniques. Bak-SLNs suspension was formulated into gel using Carbopol. Different in vivo assays were executed to explore the role of inflammatory markers and oxidative enzymes in psoriasis. DLS (dynamic light scattering) analysis showed suitable particle size, zeta potential, and polydispersity index (PDI) of developed formulation. TEM (transmission electron microscopy) reveal the spherical shape of Bak-SLNs particles. The release studies confirmed the sustained release of Bak-SLNs-based gel. UV-B-induced psoriatic Wistar rat model showed significant anti-psoriatic effect of Bak via regulating inflammatory markers (NF-kB, IL-6, IL-4, and IL-10) and levels of anti-oxidant enzymes, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-S-transferase (GST). Furthermore, RT-qPCR analysis confirms that Bak downregulates the expression of inflammatory markers, while histology and immunohistology results also confirm the anti-psoriatic effect of Bak. The study indicates that Bak-loaded SLNs-based gel significantly downregulates the level of cytokines and interleukins involve in NF-kB signaling cascade; hence, it can prove to be a novel therapeutic approach to cure psoriasis.


Assuntos
Nanopartículas , Psoríase , Ratos , Animais , NF-kappa B , Ratos Wistar , Psoríase/tratamento farmacológico , Nanopartículas/química , Glutationa , Transdução de Sinais , Portadores de Fármacos/química
18.
Drug Deliv Transl Res ; 13(9): 2340-2352, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36940079

RESUMO

The solid dispersion technique is the most effective and widely used approach for increasing the solubility and release of drugs that have low water solubility. Mirtazapine (MRT) is an atypical antidepressant used to treat severe depression. MRT has a low oral bioavailability (about 50%) due to its low water solubility (BCS class II). The study's goal was to determine optimum conditions for incorporating MRT into various polymer types utilizing the solid dispersion (SD) technique, with the goal of selecting the most suitable formula with the optimal aqueous solubility, loading efficiency, and dissolution rate. The D-optimal design was used to pick the optimal response. The optimum formula was subjected to physicochemical evaluation by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and scanning electron microscopy (SEM). In vivo bioavailability study was conducted on white rabbits' plasma samples. MRT-SDs were prepared by the solvent evaporation method using Eudragit (RL-100, RS-100, E-100, L-100-55), PVP K-30, and PEG 4000 with different drug/polymer percentages (33.33%, 49.99%, and 66.66%). Results showed that the optimum formula obtained using PVP K-30 at a drug percentage of 33.33% gave a loading efficiency of 100.93%, an aqueous solubility of 0.145 mg/ml, and a dissolution rate of 98.12% after 30 min. These findings demonstrated promising enhancement of MRT properties and increasing its oral bioavailability by 1.34-fold more than plain drug.


Assuntos
Química Farmacêutica , Polímeros , Animais , Coelhos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Mirtazapina , Química Farmacêutica/métodos , Disponibilidade Biológica , Polímeros/química , Povidona/química , Difração de Raios X , Solubilidade , Água , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química
19.
Int J Pharm ; 637: 122868, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36958606

RESUMO

Follicle stimulating hormone (FSH) is widely used for the treatment of female infertility, where the level of FSH is suboptimal due to which arrest in follicular development and anovulation takes place. Currently, only parenteral formulations are available for FSH in the market. Due to the drawbacks of parenteral administration and the high market shares of FSH, there is a need for easily accessible oral formulation. Therefore, enteric coated capsules filled with FSH loaded nanostructured lipid carriers (NLCs) or liposomes were prepared. Preliminary studies such as circular dichroism, SDS-PAGE, FTIR and ELISA were conducted to analyze FSH. Prepared formulations were optimized with respect to the size, polydispersity index, zeta potential, and entrapment efficiency using the design of experiments. Optimized formulations were subjected to particle counts and distribution analysis, TEM analysis, in vitro drug release, dissolution of enteric coated capsules, cell line studies, everted sac rat's intestinal uptake study, pharmacokinetics, pharmacodynamics, and stability studies. In the case of liposomes, RGD conjugation was done by carbodiimide chemistry and conjugation was confirmed by FTIR, 1HNMR and Raman spectroscopy. The prepared formulations were discrete and spherical. The release of FSH from enteric coated capsules was slow and sustained. The increased permeability of nano-formulations was observed in Caco-2 monoculture as well as in Caco-2 and Raji-B co-culture models. NLCs and liposomes showed an improvement in oral bioavailability and efficacy of FSH in rats. This may be due to mainly chylomicron-assisted lymphatic uptake of NLCs; whereas, in the case of liposomes, RGD-based targeting of ß1 integrins of M cells on Peyer's patches may be the main reason for the better effect by FSH. FSH was found to be stable chemically and conformationally. Overall, the study reveals the successful development and evaluation of FSH loaded NLCs and liposomes.


Assuntos
Portadores de Fármacos , Nanoestruturas , Humanos , Ratos , Feminino , Animais , Portadores de Fármacos/química , Lipossomos , Hormônio Foliculoestimulante , Células CACO-2 , Nanoestruturas/química , Administração Oral , Cápsulas , Oligopeptídeos , Tamanho da Partícula
20.
Int J Nanomedicine ; 18: 721-742, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816332

RESUMO

Purpose: Pravastatin sodium (PVS) is a hypolipidemic drug which suffers from extensive first-pass metabolism and short half-life. Poly(d,l-lactide-co-glycolide) (PLGA) is considered a promising carrier to improve its hypolipidemic and hepatoprotective activities. Methods: PVS-loaded PLGA nanoparticles (PVS-PLGA-NPs) were prepared by double emulsion method using a full 32 factorial design. The in vitro release and the physical stability studies of the optimized PVS-PLGA-NPs (F5) were performed. Finally, both hypolipidemic and hepatoprotective activities of the optimized F5 NPs were studied and compared to PVS solution. Results: All the studied physical parameters of the prepared NPs were found in the accepted range. The particle size (PS) ranged from 90 ± 0.125 nm to 179.33 ± 4.509 nm, the poly dispersity index (PDI) ranged from 0.121 ± 0.018 to 0.158 ± 0.014. The optimized NPs (F5) have the highest entrapment efficiency (EE%) (51.7 ± 5%), reasonable PS (168.4 ± 2.506 nm) as well as reasonable zeta potential (ZP) (-28.3 ± 1.18mv). Solid-state characterization indicated that PVS is well entrapped into NPs. All NPs have distinct spherical shape with smooth surface. The prepared NPs showed a controlled release profile. F5 showed good stability at 4 ± 2°C during the whole storage period of 3 months. In vivo study and histopathological examination indicated that F5 NPs showed significant increase in PVS hypolipidemic as well as hepatoprotective activity compared to PVS solution. Conclusion: The PVS-PLGA-NPs could be considered a promising model to evade the first-pass effect and showed improvement in the hypolipidemic and hepatoprotective activities compared to PVS solution.


Assuntos
Ácido Láctico , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico , Portadores de Fármacos/metabolismo , Pravastatina , Nanopartículas/metabolismo , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA