Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Am J Hum Genet ; 82(6): 1270-80, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18514160

ABSTRACT

Thyroid-stimulating hormone (TSH) controls thyroid growth and hormone secretion through binding to its G protein-coupled receptor (TSHR) and production of cyclic AMP (cAMP). Serum TSH is a sensitive indicator of thyroid function, and overt abnormalities in thyroid function lead to common endocrine disorders affecting approximately 10% of individuals over a life span. By genotyping 362,129 SNPs in 4,300 Sardinians, we identified a strong association (p = 1.3 x 10(-11)) between alleles of rs4704397 and circulating TSH levels; each additional copy of the minor A allele was associated with an increase of 0.13 muIU/ml in TSH. The single-nucleotide polymorphism (SNP) is located in intron 1 of PDE8B, encoding a high-affinity cAMP-specific phosphodiesterase. The association was replicated in 4,158 individuals, including additional Sardinians and two genetically distant cohorts from Tuscany and the Old Order Amish (overall p value = 1.9 x 10(-20)). In addition to association of TSH levels with SNPs in PDE8B, our genome scan provided evidence for association with PDE10A and several biologically interesting candidates in a focused analysis of 24 genes. In particular, we found evidence for association of TSH levels with SNPs in the THRB (rs1505287, p = 7.3 x 10(-5)), GNAQ (rs10512065, p = 2.0 x 10(-4)), TG (rs2252696, p = 2.2 x 10(-3)), POU1F1 (rs1976324, p = 3.9 x 10(-3)), PDE4D (rs27178, p = 8.3 x 10(-3)), and TSHR (rs4903957, p = 8.6 x 10(-3)) loci. Overall, the results suggest a primary effect of PDE8B variants on cAMP levels in the thyroid. This would affect production of T4 and T3 and feedback to alter TSH release by the pituitary. PDE8B may thus provide a candidate target for the treatment of thyroid dysfunction.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/genetics , Genetic Variation , Thyroid Gland/enzymology , Thyroid Gland/physiology , Thyrotropin/blood , Adolescent , Adult , Aged , Aged, 80 and over , Chromosome Mapping , Cyclic AMP/metabolism , Feedback , Female , Humans , Linkage Disequilibrium , Male , Middle Aged , Pituitary Gland/physiology , Polymorphism, Single Nucleotide , Thyroid Diseases/enzymology , Thyroid Diseases/genetics , Thyroid Diseases/physiopathology , Thyroxine/biosynthesis , Triiodothyronine/biosynthesis
2.
Proc Natl Acad Sci U S A ; 105(5): 1620-5, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18245381

ABSTRACT

beta-Thalassemia and sickle cell disease both display a great deal of phenotypic heterogeneity, despite being generally thought of as simple Mendelian diseases. The reasons for this are not well understood, although the level of fetal hemoglobin (HbF) is one well characterized ameliorating factor in both of these conditions. To better understand the genetic basis of this heterogeneity, we carried out genome-wide scans with 362,129 common SNPs on 4,305 Sardinians to look for genetic linkage and association with HbF levels, as well as other red blood cell-related traits. Among major variants affecting HbF levels, SNP rs11886868 in the BCL11A gene was strongly associated with this trait (P < 10(-35)). The C allele frequency was significantly higher in Sardinian individuals with elevated HbF levels, detected by screening for beta-thalassemia, and patients with attenuated forms of beta-thalassemia vs. those with thalassemia major. We also show that the same BCL11A variant is strongly associated with HbF levels in a large cohort of sickle cell patients. These results indicate that BCL11A variants, by modulating HbF levels, act as an important ameliorating factor of the beta-thalassemia phenotype, and it is likely they could help ameliorate other hemoglobin disorders. We expect our findings will help to characterize the molecular mechanisms of fetal globin regulation and could eventually contribute to the development of new therapeutic approaches for beta-thalassemia and sickle cell anemia.


Subject(s)
Carrier Proteins/genetics , Fetal Hemoglobin/analysis , Fetal Hemoglobin/metabolism , Genetic Linkage , Nuclear Proteins/genetics , beta-Thalassemia/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Gene Frequency , Genome, Human , Humans , Italy , Male , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Repressor Proteins
3.
PLoS Genet ; 3(7): e115, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17658951

ABSTRACT

The obesity epidemic is responsible for a substantial economic burden in developed countries and is a major risk factor for type 2 diabetes and cardiovascular disease. The disease is the result not only of several environmental risk factors, but also of genetic predisposition. To take advantage of recent advances in gene-mapping technology, we executed a genome-wide association scan to identify genetic variants associated with obesity-related quantitative traits in the genetically isolated population of Sardinia. Initial analysis suggested that several SNPs in the FTO and PFKP genes were associated with increased BMI, hip circumference, and weight. Within the FTO gene, rs9930506 showed the strongest association with BMI (p = 8.6 x10(-7)), hip circumference (p = 3.4 x 10(-8)), and weight (p = 9.1 x 10(-7)). In Sardinia, homozygotes for the rare "G" allele of this SNP (minor allele frequency = 0.46) were 1.3 BMI units heavier than homozygotes for the common "A" allele. Within the PFKP gene, rs6602024 showed very strong association with BMI (p = 4.9 x 10(-6)). Homozygotes for the rare "A" allele of this SNP (minor allele frequency = 0.12) were 1.8 BMI units heavier than homozygotes for the common "G" allele. To replicate our findings, we genotyped these two SNPs in the GenNet study. In European Americans (N = 1,496) and in Hispanic Americans (N = 839), we replicated significant association between rs9930506 in the FTO gene and BMI (p-value for meta-analysis of European American and Hispanic American follow-up samples, p = 0.001), weight (p = 0.001), and hip circumference (p = 0.0005). We did not replicate association between rs6602024 and obesity-related traits in the GenNet sample, although we found that in European Americans, Hispanic Americans, and African Americans, homozygotes for the rare "A" allele were, on average, 1.0-3.0 BMI units heavier than homozygotes for the more common "G" allele. In summary, we have completed a whole genome-association scan for three obesity-related quantitative traits and report that common genetic variants in the FTO gene are associated with substantial changes in BMI, hip circumference, and body weight. These changes could have a significant impact on the risk of obesity-related morbidity in the general population.


Subject(s)
Obesity/genetics , Proteins/genetics , Adiposity/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Alleles , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Body Mass Index , Body Weight/genetics , Female , Genetic Predisposition to Disease , Genetic Variation , Genome, Human , Humans , Linkage Disequilibrium , Male , Middle Aged , Obesity/pathology , Phosphofructokinases/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci
4.
PLoS Genet ; 3(11): e194, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17997608

ABSTRACT

High serum uric acid levels elevate pro-inflammatory-state gout crystal arthropathy and place individuals at high risk for cardiovascular morbidity and mortality. Genome-wide scans in the genetically isolated Sardinian population identified variants associated with serum uric acid levels as a quantitative trait. They mapped within GLUT9, a Chromosome 4 glucose transporter gene predominantly expressed in liver and kidney. SNP rs6855911 showed the strongest association (p = 1.84 x 10(-16)), along with eight others (p = 7.75 x 10(-16) to 6.05 x 10(-11)). Individuals homozygous for the rare allele of rs6855911 (minor allele frequency = 0.26) had 0.6 mg/dl less uric acid than those homozygous for the common allele; the results were replicated in an unrelated cohort from Tuscany. Our results suggest that polymorphisms in GLUT9 could affect glucose metabolism and uric acid synthesis and/or renal reabsorption, influencing serum uric acid levels over a wide range of values.


Subject(s)
Glucose Transport Proteins, Facilitative/genetics , Uric Acid/blood , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Genome, Human/genetics , Genotype , Humans , Italy , Linkage Disequilibrium , Male , Middle Aged , Molecular Sequence Data , Polymorphism, Single Nucleotide/genetics
5.
PLoS Genet ; 2(8): e132, 2006 Aug 25.
Article in English | MEDLINE | ID: mdl-16934002

ABSTRACT

In family studies, phenotypic similarities between relatives yield information on the overall contribution of genes to trait variation. Large samples are important for these family studies, especially when comparing heritability between subgroups such as young and old, or males and females. We recruited a cohort of 6,148 participants, aged 14-102 y, from four clustered towns in Sardinia. The cohort includes 34,469 relative pairs. To extract genetic information, we implemented software for variance components heritability analysis, designed to handle large pedigrees, analyze multiple traits simultaneously, and model heterogeneity. Here, we report heritability analyses for 98 quantitative traits, focusing on facets of personality and cardiovascular function. We also summarize results of bivariate analyses for all pairs of traits and of heterogeneity analyses for each trait. We found a significant genetic component for every trait. On average, genetic effects explained 40% of the variance for 38 blood tests, 51% for five anthropometric measures, 25% for 20 measures of cardiovascular function, and 19% for 35 personality traits. Four traits showed significant evidence for an X-linked component. Bivariate analyses suggested overlapping genetic determinants for many traits, including multiple personality facets and several traits related to the metabolic syndrome; but we found no evidence for shared genetic determinants that might underlie the reported association of some personality traits and cardiovascular risk factors. Models allowing for heterogeneity suggested that, in this cohort, the genetic variance was typically larger in females and in younger individuals, but interesting exceptions were observed. For example, narrow heritability of blood pressure was approximately 26% in individuals more than 42 y old, but only approximately 8% in younger individuals. Despite the heterogeneity in effect sizes, the same loci appear to contribute to variance in young and old, and in males and females. In summary, we find significant evidence for heritability of many medically important traits, including cardiovascular function and personality. Evidence for heterogeneity by age and sex suggests that models allowing for these differences will be important in mapping quantitative traits.


Subject(s)
Cardiovascular Diseases/genetics , Cardiovascular Physiological Phenomena , Personality/genetics , Quantitative Trait, Heritable , Adolescent , Adult , Aged , Aged, 80 and over , Aging , Analysis of Variance , Chromosomes, Human, X/genetics , Cohort Studies , Female , Genes, Mitochondrial , Humans , Italy , Male , Middle Aged , Models, Genetic , Multifactorial Inheritance , Sex Characteristics , Siblings
6.
Nat Genet ; 40(2): 161-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18193043

ABSTRACT

To identify genetic variants influencing plasma lipid concentrations, we first used genotype imputation and meta-analysis to combine three genome-wide scans totaling 8,816 individuals and comprising 6,068 individuals specific to our study (1,874 individuals from the FUSION study of type 2 diabetes and 4,184 individuals from the SardiNIA study of aging-associated variables) and 2,758 individuals from the Diabetes Genetics Initiative, reported in a companion study in this issue. We subsequently examined promising signals in 11,569 additional individuals. Overall, we identify strongly associated variants in eleven loci previously implicated in lipid metabolism (ABCA1, the APOA5-APOA4-APOC3-APOA1 and APOE-APOC clusters, APOB, CETP, GCKR, LDLR, LPL, LIPC, LIPG and PCSK9) and also in several newly identified loci (near MVK-MMAB and GALNT2, with variants primarily associated with high-density lipoprotein (HDL) cholesterol; near SORT1, with variants primarily associated with low-density lipoprotein (LDL) cholesterol; near TRIB1, MLXIPL and ANGPTL3, with variants primarily associated with triglycerides; and a locus encompassing several genes near NCAN, with variants strongly associated with both triglycerides and LDL cholesterol). Notably, the 11 independent variants associated with increased LDL cholesterol concentrations in our study also showed increased frequency in a sample of coronary artery disease cases versus controls.


Subject(s)
Cholesterol, HDL/genetics , Cholesterol, LDL/genetics , Coronary Artery Disease/genetics , Lipids/genetics , Triglycerides/genetics , Alleles , Case-Control Studies , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cohort Studies , Computer Simulation , Coronary Artery Disease/blood , Coronary Artery Disease/pathology , Gene Frequency , Genetic Variation , Genome, Human , Haplotypes , Humans , Likelihood Functions , Lipids/blood , Markov Chains , Polymorphism, Single Nucleotide , Probability , Risk Factors , Triglycerides/blood
7.
Nat Genet ; 40(2): 198-203, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18193045

ABSTRACT

Identifying genetic variants that influence human height will advance our understanding of skeletal growth and development. Several rare genetic variants have been convincingly and reproducibly associated with height in mendelian syndromes, and common variants in the transcription factor gene HMGA2 are associated with variation in height in the general population. Here we report genome-wide association analyses, using genotyped and imputed markers, of 6,669 individuals from Finland and Sardinia, and follow-up analyses in an additional 28,801 individuals. We show that common variants in the osteoarthritis-associated locus GDF5-UQCC contribute to variation in height with an estimated additive effect of 0.44 cm (overall P < 10(-15)). Our results indicate that there may be a link between the genetic basis of height and osteoarthritis, potentially mediated through alterations in bone growth and development.


Subject(s)
Body Height/genetics , Bone Morphogenetic Proteins/genetics , Genetic Variation , Osteoarthritis/genetics , 5' Untranslated Regions , Black or African American , Aged , Alleles , Body Mass Index , Bone Morphogenetic Proteins/metabolism , Chromosomes, Human, Pair 20 , Confounding Factors, Epidemiologic , Female , Gene Dosage , Gene Frequency , Genetic Markers , Genome, Human , Growth Differentiation Factor 5 , HMGA2 Protein/genetics , Haplotypes , Humans , Linkage Disequilibrium , Male , Middle Aged , Polymorphism, Single Nucleotide , Probability , Recombinant Proteins/metabolism , Regression Analysis
SELECTION OF CITATIONS
SEARCH DETAIL