ABSTRACT
INTRODUCTION: Gonadotropin-releasing hormone (GnRH) deficiency causes hypogonadotropic hypogonadism (HH), a rare genetic disorder that impairs sexual reproduction. HH can be due to defective GnRH-secreting neuron development or function and may be associated with other clinical signs in overlapping genetic syndromes. With most of the cases being idiopathic, genetics underlying HH is still largely unknown. OBJECTIVE: To assess the contribution of mutated Semaphorin 3G (SEMA3G) in the onset of a syndromic form of HH, characterized by intellectual disability and facial dysmorphic features. METHOD: By combining homozygosity mapping with exome sequencing, we identified a novel variant in the SEMA3G gene. We then applied mouse as a model organism to examine SEMA3Gexpression and its functional requirement in vivo. Further, we applied homology modelling in silico and cell culture assays in vitro to validate the pathogenicity of the identified gene variant. RESULTS: We found that (i) SEMA3G is expressed along the migratory route of GnRH neurons and in the developing pituitary, (ii) SEMA3G affects GnRH neuron development, but is redundant in the adult hypothalamic-pituitary-gonadal axis, and (iii) mutated SEMA3G alters binding properties in silico and in vitro to its PlexinA receptors and attenuates its effect on the migration of immortalized GnRH neurons. CONCLUSION: In silico, in vitro, and in vivo models revealed that SEMA3G regulates GnRH neuron migration and that its mutation affecting receptor selectivity may be responsible for the HH-related defects.
Subject(s)
Gonadotropin-Releasing Hormone/deficiency , Hypogonadism/genetics , Hypothalamo-Hypophyseal System/growth & development , Hypothalamo-Hypophyseal System/metabolism , Semaphorins/physiology , Animals , Cells, Cultured , Consanguinity , Craniofacial Abnormalities/etiology , Developmental Disabilities/etiology , Homozygote , Humans , Hypogonadism/complications , Intellectual Disability/etiology , Male , Mice , Pedigree , Siblings , SyndromeABSTRACT
Myelomonocytic cells play a key role in the progression of many solid tumors. However, very little is known about their contribution to the progression of hematopoietic cancers. We investigated the role of monocytes in the progression of human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). We demonstrated that coculturing human monocytes in vitro with CD19+ BCP-ALL blasts from patients "conditioned" them to an inflammatory phenotype characterized by significant up-regulation of the chemokine, CXCL10. This phenotype was also observable ex vivo in monocytes isolated from BCP-ALL patients, which show elevated CXCL10 production compared with monocytes from healthy donors. Functionally, the "conditioned" monocytes promoted migration and invasive capacity of BCP-ALL cells. Increased invasion was mediated by matrix metalloproteinase 9 expression and activity in the BCP-ALL cells induced by the monocyte-derived CXCL10. However, neither the "conditioned" monocytes nor the CXCL10 produced by these cells had any effect on the proliferation/viability of BCP-ALL cells and angiogenesis. Collectively, our results strongly suggest a protumoral role for human monocytes in BCP-ALL, orchestrated by CXCL10 and its effect on tumor cell migration and invasion. These observations highlight the importance of the CXCL10/CXCR3 chemokine circuit in BCP-ALL progression.
Subject(s)
Cell Movement , Chemokine CXCL10/metabolism , Macrophages/pathology , Monocytes/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Adolescent , Blotting, Western , Cell Adhesion , Cell Proliferation , Child , Child, Preschool , Cytokines/metabolism , Female , Humans , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Macrophages/immunology , Macrophages/metabolism , Male , Matrix Metalloproteinase 9 , Monocytes/immunology , Monocytes/metabolism , Neoplasm Invasiveness , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Signal Transduction , Tumor Cells, CulturedABSTRACT
Innervation of the hypothalamic median eminence by Gonadotropin-Releasing Hormone (GnRH) neurons is vital to ensure puberty onset and successful reproduction. However, the molecular and cellular mechanisms underlying median eminence development and pubertal timing are incompletely understood. Here we show that Semaphorin-6A is strongly expressed by median eminence-resident oligodendrocytes positioned adjacent to GnRH neuron projections and fenestrated capillaries, and that Semaphorin-6A is required for GnRH neuron innervation and puberty onset. In vitro and in vivo experiments reveal an unexpected function for Semaphorin-6A, via its receptor Plexin-A2, in the control of median eminence vascular permeability to maintain neuroendocrine homeostasis. To support the significance of these findings in humans, we identify patients with delayed puberty carrying a novel pathogenic variant of SEMA6A. In all, our data reveal a role for Semaphorin-6A in regulating GnRH neuron patterning by tuning the median eminence vascular barrier and thereby controlling puberty onset.
Subject(s)
Gonadotropin-Releasing Hormone , Semaphorins , Humans , Gonadotropin-Releasing Hormone/metabolism , Median Eminence/metabolism , Capillary Permeability , Neurons/metabolism , Puberty , Semaphorins/genetics , Semaphorins/metabolismABSTRACT
Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.
Subject(s)
Autistic Disorder , Humans , Autistic Disorder/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Gonadotropin-Releasing Hormone/metabolismABSTRACT
A role for long non-coding RNAs (lncRNAs) in endocrine cancer pathogenesis is emerging. However, knowledge regarding their expression pattern, correlation with known genetic defects, and clinical implications in parathyroid tumors is still unclear. Here, we profiled 90 known lncRNAs in a first series of normal (PaN = 2), adenomatous (PAd = 12), and carcinomatous (PCa = 4) parathyroid glands and we confirmed deregulation of 11 lncRNAs using an independent cohort of patients (PaN = 4; PAd = 26; PCa = 9). Expression of lncRNAs was correlated with cytogenetic aberrations, status of genes multiple endocrine neoplasia 1 (MEN1) and cell division cycle 73 (CDC73), or clinical features. Globally, lncRNAs discriminate according to tissue histology. BC200 consistently identifies parathyroid cancers from adenomas and atypical adenomas. Loss-of-heterozygosity (LOH) at chromosomes 1, 11, 15, 21, and 22 significantly impacts expression of lncRNAs in PAds. Silencing of the key parathyroid gene MEN1 modulates the expression of six lncRNAs in primary PAds-derived cultures. Analogous levels of lncRNAs are measured in PAds with the mutation in the MEN1 gene compared with PAds with wild-type MEN1. Similarly, carcinomas with mutated CDC73 differ from PCas with wild-type protein in terms of expression of lncRNAs. PCas harboring CDC73 mutations overexpress BC200 compared to wild-type carcinomas. Overall, these findings shed light on deregulation of lncRNAs in human parathyroid tumors and propose that circuits between lncRNAs and the oncosuppressors MEN1 or CDC73 may have a role in parathyroid tumorigenesis as epigenetic modulators. © 2020 American Society for Bone and Mineral Research (ASBMR).
Subject(s)
Adenoma , Multiple Endocrine Neoplasia Type 1 , Parathyroid Neoplasms , RNA, Long Noncoding , Humans , Loss of Heterozygosity , Multiple Endocrine Neoplasia Type 1/genetics , Parathyroid Neoplasms/genetics , Proto-Oncogene Proteins , RNA, Long Noncoding/genetics , Tumor Suppressor Proteins/geneticsABSTRACT
The activation of nicotinic cholinergic receptors (nAChR) inhibits the reproductive axis; however, it is not clear whether nicotine may directly modulate the release of hypothalamic gonadotropin-releasing hormone (GnRH). Experiments carried out in GT1-1 immortalized GnRH neurons reveal the presence of a single class of high affinity α4ß2 and α7 nAchR subtypes. The exposure of GT1-1 cells to nicotine does not modify the basal accumulation of GnRH. However, nicotine was found to modify GnRH pulsatility in perifusion experiments and inhibits, the release of GnRH induced by prostaglandin E1 or by K+-induced cell depolarization; these effects were reversed by D-tubocurarine and α-bungarotoxin. In conclusion, the results reported here indicate that: functional nAChRs are present on GT1-1 cells, the activation of the α-bungarotoxin-sensitive subclass (α7) produces an inhibitory effect on the release of GnRH and that the direct action of nicotine on GnRH neurons may be involved in reducing fertility of smokers.
Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Nicotine/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Alprostadil/metabolism , Cell Line , Cyclic AMP/metabolism , Humans , Potassium/pharmacologyABSTRACT
Neuronal migration is a fundamental biological process that underlies proper brain development and neuronal circuit formation. In the developing cerebral cortex, distinct neuronal populations, producing excitatory, inhibitory and modulatory neurotransmitters, are generated in different germinative areas and migrate along various routes to reach their final positions within the cortex. Different technical approaches and experimental models have been adopted to study the mechanisms regulating neuronal migration in the cortex. In this review, we will discuss the most common in vitro, ex vivo and in vivo techniques to visualize and study cortical neuronal migration.
ABSTRACT
In mammals fertility depends on timely onset and cyclic secretion of gonadotropin-releasing hormone (GnRH), secreted by scattered hypothalamic neurons (GnRH neurons). These cells originate in the nasal placode and migrate first in the nasal compartment, then through the cribriform plate and finally across the basal forebrain, before they set in their final position in the hypothalamus. This long journey is regulated by many different factors that could be mutated in neuroendocrine syndromes such as congenital hypogonadotropic hypogonadism (CHH), Kallmann Syndrome (KS) and CHARGE syndrome. Recently, semaphorins, a large family of molecules, previously discovered as axon guidance cues, are emerging as key regulators of the neuroendocrine control of GnRH neurons and are acquiring an increasing role in the etiopathogenesis of CHH and KS. Specifically, semaphorins play a multifaceted action in GnRH neuron biology: on one hand regulating their migration and survival during embryonic development and, on the other, controlling the plasticity of the median eminence (ME) in terms of its response to varying sex steroid hormone levels. In this review we will focus our attention on recent studies describing the roles of different semaphorins in the normal and pathological biology of the GnRH neuronal system.
Subject(s)
Gonadotropin-Releasing Hormone/genetics , Hypogonadism/etiology , Hypogonadism/genetics , Semaphorins/genetics , Signal Transduction , Animals , Gonadotropin-Releasing Hormone/metabolism , Humans , Semaphorins/metabolismABSTRACT
BACKGROUND: Human reproduction depends on an intact hypothalamic-pituitary-gonadal (HPG) axis. Hypothalamic gonadotrophin-releasing hormone (GnRH) has been recognized, since its identification in 1971, as the central regulator of the production and release of the pituitary gonadotrophins that, in turn, regulate the gonadal functions and the production of sex steroids. The characteristic peculiar development, distribution and episodic activity of GnRH-producing neurons have solicited an interdisciplinary interest on the etiopathogenesis of several reproductive diseases. The more recent identification of a GnRH/GnRH receptor (GnRHR) system in both the human endometrium and ovary has widened the spectrum of action of the peptide and of its analogues beyond its hypothalamic function. METHODS: An analysis of research and review articles published in international journals until June 2015 has been carried out to comprehensively summarize both the well established and the most recent knowledge on the physiopathology of the GnRH system in the central and peripheral control of female reproductive functions and diseases. RESULTS: This review focuses on the role of GnRH neurons in the control of the reproductive axis. New knowledge is accumulating on the genetic programme that drives GnRH neuron development to ameliorate the diagnosis and treatment of GnRH deficiency and consequent delayed or absent puberty. Moreover, a better understanding of the mechanisms controlling the episodic release of GnRH during the onset of puberty and the ovulatory cycle has enabled the pharmacological use of GnRH itself or its synthetic analogues (agonists and antagonists) to either stimulate or to block the gonadotrophin secretion and modulate the functions of the reproductive axis in several reproductive diseases and in assisted reproduction technology. Several inputs from other neuronal populations, as well as metabolic, somatic and age-related signals, may greatly affect the functions of the GnRH pulse generator during the female lifespan; their modulation may offer new possible strategies for diagnostic and therapeutic interventions. A GnRH/GnRHR system is also expressed in female reproductive tissues (e.g. endometrium and ovary), both in normal and pathological conditions. The expression of this system in the human endometrium and ovary supports its physiological regulatory role in the processes of trophoblast invasion of the maternal endometrium and embryo implantation as well as of follicular development and corpus luteum functions. The GnRH/GnRHR system that is expressed in diseased tissues of the female reproductive tract (both benign and malignant) is at present considered an effective molecular target for the development of novel therapeutic approaches for these pathologies. GnRH agonists are also considered as a promising therapeutic approach to counteract ovarian failure in young female patients undergoing chemotherapy. CONCLUSIONS: Increasing knowledge about the regulation of GnRH pulsatile release, as well as the therapeutic use of its analogues, offers interesting new perspectives in the diagnosis, treatment and outcome of female reproductive disorders, including tumoral and iatrogenic diseases.
Subject(s)
Gonadotropin-Releasing Hormone/physiology , Neurons/physiology , Receptors, LHRH/physiology , Reproduction/physiology , Female , Gonadotropin-Releasing Hormone/analysis , Gonads/metabolism , Humans , Hypogonadism , Hypothalamus , Ovarian DiseasesABSTRACT
Gonadotropin-releasing hormone (GnRH) neurons have a pivotal role in the physiological functions of hypotahlamic-pituitary-gonadal (HPG) axis. The pulsatile releasing of GnRH hormone into the hypophyseal portal circulation at the median eminence represent the first domino in the HPG cascade of events that regulate the development, fertility and aging in all vertebrates. These neurons principally originate in the olfactory placode and migrate during early embryonal stages into the hypothalamus. Alterations in developmental processes or in the releasing of GnRH hormone lead to a rare and complex disorder of the reproductive axis called congenital hypogonadotropic hypogonadism (CHH). Genetic screening of human patients and the use of model systems have led to the identification of several genes involved in the CHH pathogenesis underlying its oligogenic nature. Nevertheless CHH remains, for a large cohort of patients, idiopathic and GnRH neurogenesis processes not fully understood. This is due to intrinsic difficulties that exist in the analysis of earliest embryonic developmental stages and in the methodologies developed to study the CHH-causing genes. In this regard, zebrafish embryos, on account of its external fertilization and development, allow a real-time analysis that could overcome some of the above mentioned limitations. Moreover, the recent availability of several transgenic zebrafish reporter lines makes it an excellent model for the study of the oligogenic mechanisms leading to CHH.
Subject(s)
Gonadotropin-Releasing Hormone/physiology , Hypothalamus/physiology , Reproduction/physiology , Zebrafish/physiology , Animals , Disease Models, Animal , Models, AnimalABSTRACT
Early or late pubertal onset affects up to 5% of adolescents and is associated with adverse health and psychosocial outcomes. Self-limited delayed puberty (DP) segregates predominantly in an autosomal dominant pattern, but the underlying genetic background is unknown. Using exome and candidate gene sequencing, we have identified rare mutations in IGSF10 in 6 unrelated families, which resulted in intracellular retention with failure in the secretion of mutant proteins. IGSF10 mRNA was strongly expressed in embryonic nasal mesenchyme, during gonadotropin-releasing hormone (GnRH) neuronal migration to the hypothalamus. IGSF10 knockdown caused a reduced migration of immature GnRH neurons in vitro, and perturbed migration and extension of GnRH neurons in a gnrh3:EGFP zebrafish model. Additionally, loss-of-function mutations in IGSF10 were identified in hypothalamic amenorrhea patients. Our evidence strongly suggests that mutations in IGSF10 cause DP in humans, and points to a common genetic basis for conditions of functional hypogonadotropic hypogonadism (HH). While dysregulation of GnRH neuronal migration is known to cause permanent HH, this is the first time that this has been demonstrated as a causal mechanism in DP.
Subject(s)
Cell Movement , Immunoglobulins/genetics , Mutant Proteins/genetics , Neurons/physiology , Puberty, Delayed/physiopathology , Adolescent , Animals , DNA Mutational Analysis , Female , Gonadotropin-Releasing Hormone/metabolism , Humans , Hypothalamus/cytology , Male , Models, Animal , Neurons/metabolism , Sequence Analysis, DNA , ZebrafishABSTRACT
Individuals with an inherited deficiency in gonadotropin-releasing hormone (GnRH) have impaired sexual reproduction. Previous genetic linkage studies and sequencing of plausible gene candidates have identified mutations associated with inherited GnRH deficiency, but the small number of affected families and limited success in validating candidates have impeded genetic diagnoses for most patients. Using a combination of exome sequencing and computational modeling, we have identified a shared point mutation in semaphorin 3E (SEMA3E) in 2 brothers with Kallmann syndrome (KS), which causes inherited GnRH deficiency. Recombinant wild-type SEMA3E protected maturing GnRH neurons from cell death by triggering a plexin D1-dependent (PLXND1-dependent) activation of PI3K-mediated survival signaling. In contrast, recombinant SEMA3E carrying the KS-associated mutation did not protect GnRH neurons from death. In murine models, lack of either SEMA3E or PLXND1 increased apoptosis of GnRH neurons in the developing brain, reducing innervation of the adult median eminence by GnRH-positive neurites. GnRH neuron deficiency in male mice was accompanied by impaired testes growth, a characteristic feature of KS. Together, these results identify SEMA3E as an essential gene for GnRH neuron development, uncover a neurotrophic function for SEMA3E in the developing brain, and elucidate SEMA3E/PLXND1/PI3K signaling as a mechanism that prevents GnRH neuron deficiency.
Subject(s)
Glycoproteins/metabolism , Gonadotropin-Releasing Hormone/deficiency , Kallmann Syndrome/metabolism , Membrane Proteins/metabolism , Mutation , Neurons/metabolism , Semaphorins/metabolism , Adult , Animals , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Cytoskeletal Proteins , Exome , Glycoproteins/genetics , Humans , Intracellular Signaling Peptides and Proteins , Kallmann Syndrome/genetics , Kallmann Syndrome/pathology , Male , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Mice , Mice, Mutant Strains , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Semaphorins/genetics , Signal Transduction/geneticsABSTRACT
The present study describes the generation and the characterization of a stable cell line of neural stem cells derived from embryonic mouse hypothalamus. These cells (AC1) grow as an adherent culture in defined serum-free medium and express typical markers of neurogenic radial glia and of hypothalamic precursors. After prolonged expansion, AC1 cells may be efficiently induced to differentiate into neurons and astroglial cells in vitro and start to express some hormonal neuropeptides, like TRH, CRH, and POMC. Based on the capabilities of AC1 cells to be stably expanded and to develop neuroendocrine lineages in vitro, these cells might represent a novel tool to elucidate the mechanisms involved in the development of the hypothalamus and in the specific differentiation of neuroendocrine neurons.
ABSTRACT
UNLABELLED: Although the ETV6-RUNX1 fusion is a frequent initiating event in childhood leukemia, its role in leukemogenesis is only partly understood. The main impact of the fusion itself is to generate and sustain a clone of clinically silent preleukemic B-cell progenitors (BCP). Additional oncogenic hits, occurring even several years later, are required for overt disease. The understanding of the features and interactions of ETV6-RUNX1-positive cells during this "latency" period may explain how these silent cells can persist and whether they could be prone to additional genetic changes. In this study, two in vitro murine models were used to investigate whether ETV6-RUNX1 alters the cellular adhesion and migration properties of BCP. ETV6-RUNX1-expressing cells showed a significant defect in the chemotactic response to CXCL12, caused by a block in CXCR4 signaling, as demonstrated by inhibition of CXCL12-associated calcium flux and lack of ERK phosphorylation. Moreover, the induction of ETV6-RUNX1 caused changes in the expression of cell-surface adhesion molecules. The expression of genes regulating the cytoskeleton was also affected, resulting in a block of CDC42 signaling. The abnormalities described here could alter the interaction of ETV6-RUNX1 preleukemic BCP with the microenvironment and contribute to the pathogenesis of the disease. IMPLICATIONS: Alterations in the expression of cytoskeletal regulatory genes and migration properties of BCP represent early events in the evolution of the disease, from the preleukemic phase to the clinical onset, and suggest new strategies for effective eradication of leukemia.
Subject(s)
Chemokine CXCL12/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Gene Expression Regulation , Oncogene Proteins, Fusion/metabolism , Precursor Cells, B-Lymphoid/cytology , Receptors, CXCR4/metabolism , cdc42 GTP-Binding Protein/metabolism , Animals , Cell Adhesion , Cell Movement , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/genetics , Cytoskeleton/genetics , Cytoskeleton/metabolism , Mice , Models, Biological , Oncogene Proteins, Fusion/genetics , Precursor Cells, B-Lymphoid/metabolism , Signal TransductionABSTRACT
OBJECTIVES: Graft-versus-host disease (GVHD) is a major obstacle to safe allogeneic hematopoietic stem-cell transplantation, leading to significant mortality. Recently, T-helper (TH)-17 cells have been shown to play a central role in mediating several autoimmune diseases. The aim of our study was to investigate the relationship between TH-17 cells and GVHD occurring in transplanted patients. METHODS: Blood samples were collected from 51 hematopoietic stem-cell transplantation patients and 15 healthy donors. Patients with GVHD were monitored for the presence of TH-17 cells by ELISPOT or flow cytometry in the peripheral blood and by confocal microscopy in GVHD lesions. Cytokine plasma levels were detected by ELISA. RESULTS: An increased TH-17 population (up to 4.8% of peripheral blood CD4+T lymphocytes) was observed in patients with acute GVHD and (up to 2.4%) in patients with active chronic GVHD along with an inflammatory process. In contrast, the percentage of TH-17 cells drastically decreased in patients with inactive chronic GVHD. TH-17 cells consisted of both interleukin (IL)-17+/interferon (IFN)-gamma- and IL-17+/IFN-gamma+ subsets and expressed IL-23 receptor. Interestingly, IFN-gamma+ TH-17 cells were able to infiltrate GVHD lesions as observed in liver and skin sections. Moreover, the proportion of TH-17 was inversely correlated with the proportion of regulatory T cells observed in the peripheral blood and tissues affected by GVHD. Finally, we demonstrated a strong correlation between TH-17 levels and the clinical status of patients with GVHD. CONCLUSIONS: These findings support the hypothesis that TH-17 are involved in the active phases of GVHD and may represent a novel cellular target for developing new strategies for GVHD treatment.