Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
2.
Nat Immunol ; 21(5): 513-524, 2020 05.
Article in English | MEDLINE | ID: mdl-32284594

ABSTRACT

Oxidative stress is a central part of innate immune-induced neurodegeneration. However, the transcriptomic landscape of central nervous system (CNS) innate immune cells contributing to oxidative stress is unknown, and therapies to target their neurotoxic functions are not widely available. Here, we provide the oxidative stress innate immune cell atlas in neuroinflammatory disease and report the discovery of new druggable pathways. Transcriptional profiling of oxidative stress-producing CNS innate immune cells identified a core oxidative stress gene signature coupled to coagulation and glutathione-pathway genes shared between a microglia cluster and infiltrating macrophages. Tox-seq followed by a microglia high-throughput screen and oxidative stress gene network analysis identified the glutathione-regulating compound acivicin, with potent therapeutic effects that decrease oxidative stress and axonal damage in chronic and relapsing multiple sclerosis models. Thus, oxidative stress transcriptomics identified neurotoxic CNS innate immune populations and may enable discovery of selective neuroprotective strategies.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/genetics , Gene Expression Profiling/methods , Microglia/physiology , Multiple Sclerosis/genetics , Neurogenic Inflammation/genetics , Animals , Antioxidants/therapeutic use , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Gene Regulatory Networks , High-Throughput Screening Assays , Humans , Immunity, Innate , Isoxazoles/therapeutic use , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Multiple Sclerosis/drug therapy , Neurogenic Inflammation/drug therapy , Oxidative Stress , Sequence Analysis, RNA , Single-Cell Analysis
3.
Nat Immunol ; 19(11): 1212-1223, 2018 11.
Article in English | MEDLINE | ID: mdl-30323343

ABSTRACT

Activation of innate immunity and deposition of blood-derived fibrin in the central nervous system (CNS) occur in autoimmune and neurodegenerative diseases, including multiple sclerosis (MS) and Alzheimer's disease (AD). However, the mechanisms that link disruption of the blood-brain barrier (BBB) to neurodegeneration are poorly understood, and exploration of fibrin as a therapeutic target has been limited by its beneficial clotting functions. Here we report the generation of monoclonal antibody 5B8, targeted against the cryptic fibrin epitope γ377-395, to selectively inhibit fibrin-induced inflammation and oxidative stress without interfering with clotting. 5B8 suppressed fibrin-induced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and the expression of proinflammatory genes. In animal models of MS and AD, 5B8 entered the CNS and bound to parenchymal fibrin, and its therapeutic administration reduced the activation of innate immunity and neurodegeneration. Thus, fibrin-targeting immunotherapy inhibited autoimmunity- and amyloid-driven neurotoxicity and might have clinical benefit without globally suppressing innate immunity or interfering with coagulation in diverse neurological diseases.


Subject(s)
Antibodies, Monoclonal/immunology , Fibrinogen/antagonists & inhibitors , Neurodegenerative Diseases/immunology , Animals , Epitopes , Humans , Inflammation/immunology , Mice , Rats
4.
Proc Natl Acad Sci U S A ; 119(46): e2210247119, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36343260

ABSTRACT

Genetic variants in SLC22A5, encoding the membrane carnitine transporter OCTN2, cause the rare metabolic disorder Carnitine Transporter Deficiency (CTD). CTD is potentially lethal but actionable if detected early, with confirmatory diagnosis involving sequencing of SLC22A5. Interpretation of missense variants of uncertain significance (VUSs) is a major challenge. In this study, we sought to characterize the largest set to date (n = 150) of OCTN2 variants identified in diverse ancestral populations, with the goals of furthering our understanding of the mechanisms leading to OCTN2 loss-of-function (LOF) and creating a protein-specific variant effect prediction model for OCTN2 function. Uptake assays with 14C-carnitine revealed that 105 variants (70%) significantly reduced transport of carnitine compared to wild-type OCTN2, and 37 variants (25%) severely reduced function to less than 20%. All ancestral populations harbored LOF variants; 62% of green fluorescent protein (GFP)-tagged variants impaired OCTN2 localization to the plasma membrane of human embryonic kidney (HEK293T) cells, and subcellular localization significantly associated with function, revealing a major LOF mechanism of interest for CTD. With these data, we trained a model to classify variants as functional (>20% function) or LOF (<20% function). Our model outperformed existing state-of-the-art methods as evaluated by multiple performance metrics, with mean area under the receiver operating characteristic curve (AUROC) of 0.895 ± 0.025. In summary, in this study we generated a rich dataset of OCTN2 variant function and localization, revealed important disease-causing mechanisms, and improved upon machine learning-based prediction of OCTN2 variant function to aid in variant interpretation in the diagnosis and treatment of CTD.


Subject(s)
Carnitine , Organic Cation Transport Proteins , Humans , Solute Carrier Family 22 Member 5/genetics , Solute Carrier Family 22 Member 5/metabolism , Organic Cation Transport Proteins/genetics , Organic Cation Transport Proteins/metabolism , HEK293 Cells , Carnitine/genetics , Carnitine/metabolism , Genomics
5.
Chembiochem ; : e202400214, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738787

ABSTRACT

Protein-protein interactions (PPIs) are of utmost importance for maintenance of cellular homeostasis. Herein, a central role can be found for 14-3-3 proteins. These hub-proteins are known to bind hundreds of interaction partners, thereby regulating their activity, localization, and/or stabilization. Due to their ability to bind a large variety of client proteins, studies of 14-3-3 protein complexes flourished over the last decades, aiming to gain greater molecular understanding of these complexes and their role in health and disease. Because of their crucial role within the cell, 14-3-3 protein complexes are recognized as highly interesting therapeutic targets, encouraging the discovery of small molecule modulators of these PPIs. We discuss various examples of 14-3-3-mediated regulation of its binding partners on a mechanistic level, highlighting the versatile and multi-functional role of 14-3-3 within the cell. Furthermore, an overview is given on the development of stabilizers of 14-3-3 protein complexes, from initially used natural products to fragment-based approaches. These studies show the potential of 14-3-3 PPI stabilizers as novel agents in drug discovery and as tool compounds to gain greater molecular understanding of the role of 14-3-3-based protein regulation.

6.
J Am Chem Soc ; 145(44): 23939-23947, 2023 11 08.
Article in English | MEDLINE | ID: mdl-37748140

ABSTRACT

Autophagy is responsible for the degradation of large intracellular contents, such as unwanted protein aggregates and organelles. Impaired autophagy can therefore lead to the accumulation of pathological aggregates, correlating with aging and neurodegenerative diseases. However, a broadly applicable methodology is not available for the targeted degradation of protein aggregates or organelles in mammalian cells. Herein, we developed a series of autophagy receptor-inspired targeting chimeras (AceTACs) that can induce the targeted degradation of aggregation-prone proteins and protein aggregates (e.g., huntingtin, TDP-43, and FUS mutants), as well as organelles (e.g., mitochondria, peroxisomes, and endoplasmic reticulum). These antibody-fusion-based AceTAC degraders were designed to mimic the function of autophagy receptors, simultaneously binding with the cellular targets and the LC3 proteins on the autophagosomal membrane, eventually transporting the target to the autophagy-lysosomal process for degradation. The AceTAC degradation system provides design principles for antibody-based degradation through autophagy, largely expanding the scope of intracellular targeted degradation technologies.


Subject(s)
Autophagy , Protein Aggregates , Animals , Endoplasmic Reticulum/metabolism , Lysosomes , Peroxisomes/metabolism , Mammals
7.
J Am Chem Soc ; 145(12): 6741-6752, 2023 03 29.
Article in English | MEDLINE | ID: mdl-36926879

ABSTRACT

Molecules that stabilize protein-protein interactions (PPIs) are invaluable as tool compounds for biophysics and (structural) biology, and as starting points for molecular glue drug discovery. However, identifying initial starting points for PPI stabilizing matter is highly challenging, and chemical optimization is labor-intensive. Inspired by chemical crosslinking and reversible covalent fragment-based drug discovery, we developed an approach that we term "molecular locks" to rapidly access molecular glue-like tool compounds. These dual-covalent small molecules reversibly react with a nucleophilic amino acid on each of the partner proteins to dynamically crosslink the protein complex. The PPI between the hub protein 14-3-3 and estrogen-related receptor γ (ERRγ) was used as a pharmacologically relevant case study. Based on a focused library of dual-reactive small molecules, a molecular glue tool compound was rapidly developed. Biochemical assays and X-ray crystallographic studies validated the ternary covalent complex formation and overall PPI stabilization via dynamic covalent crosslinking. The molecular lock approach is highly selective for the specific 14-3-3/ERRγ complex, over other 14-3-3 complexes. This selectivity is driven by the interplay of molecular reactivity and molecular recognition of the composite PPI binding interface. The long lifetime of the dual-covalent locks enabled the selective stabilization of the 14-3-3/ERRγ complex even in the presence of several other competing 14-3-3 clients with higher intrinsic binding affinities. The molecular lock approach enables systematic, selective, and potent stabilization of protein complexes to support molecular glue drug discovery.


Subject(s)
Drug Discovery , Receptors, Estrogen , Humans , Protein Binding , 14-3-3 Proteins/chemistry , Amino Acids/metabolism
8.
J Am Chem Soc ; 145(37): 20328-20343, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37676236

ABSTRACT

The stabilization of protein-protein interactions (PPIs) has emerged as a promising strategy in chemical biology and drug discovery. The identification of suitable starting points for stabilizing native PPIs and their subsequent elaboration into selective and potent molecular glues lacks structure-guided optimization strategies. We have previously identified a disulfide fragment that stabilized the hub protein 14-3-3σ bound to several of its clients, including ERα and C-RAF. Here, we show the structure-based optimization of the nonselective fragment toward selective and highly potent small-molecule stabilizers of the 14-3-3σ/ERα complex. The more elaborated molecular glues, for example, show no stabilization of 14-3-3σ/C-RAF up to 150 µM compound. Orthogonal biophysical assays, including mass spectrometry and fluorescence anisotropy, were used to establish structure-activity relationships. The binding modes of 37 compounds were elucidated with X-ray crystallography, which further assisted the concomitant structure-guided optimization. By targeting specific amino acids in the 14-3-3σ/ERα interface and locking the conformation with a spirocycle, the optimized covalent stabilizer 181 achieved potency, cooperativity, and selectivity similar to the natural product Fusicoccin-A. This case study showcases the value of addressing the structure, kinetics, and cooperativity for molecular glue development.


Subject(s)
Biological Products , Estrogen Receptor alpha , Humans , Receptors, Estrogen , Amino Acids , Biological Assay
9.
J Am Chem Soc ; 145(18): 10015-10021, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37104712

ABSTRACT

Caspases are a family of cysteine-dependent proteases with important cellular functions in inflammation and apoptosis, while also implicated in human diseases. Classical chemical tools to study caspase functions lack selectivity for specific caspase family members due to highly conserved active sites and catalytic machinery. To overcome this limitation, we targeted a non-catalytic cysteine residue (C264) unique to caspase-6 (C6), an enigmatic and understudied caspase isoform. Starting from disulfide ligands identified in a cysteine trapping screen, we used a structure-informed covalent ligand design to produce potent, irreversible inhibitors (3a) and chemoproteomic probes (13-t) of C6 that exhibit unprecedented selectivity over other caspase family members and high proteome selectivity. This approach and the new tools described will enable rigorous interrogation of the role of caspase-6 in developmental biology and in inflammatory and neurodegenerative diseases.


Subject(s)
Caspases , Cysteine , Humans , Caspase 6 , Apoptosis , Cysteine Proteinase Inhibitors/pharmacology
10.
Haematologica ; 108(5): 1272-1283, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36700399

ABSTRACT

Hypodiploid acute lymphoblastic leukemia (ALL) is an aggressive blood cancer with a poor prognosis despite intensive chemotherapy or stem cell transplant. Children and adolescents with positive end-of-induction minimal residual disease have an overall survival lower than 30%. However, data regarding therapeutic alternatives for this disease is nearly nonexistent, emphasizing the critical need for new or adjunctive therapies that can improve outcomes. We previously reported on the therapeutic efficacy of venetoclax (ABT-199) in hypodiploid B-lineage ALL but with limitations as monotherapy. In this study, we set out to identify drugs enhancing the anti-leukemic effect of venetoclax in hypodiploid ALL. Using a highthroughput drug screen, we identified dinaciclib, a cyclin-dependent kinase inhibitor that worked synergistically with venetoclax to induce cell death in hypodiploid cell lines. This combination eradicated leukemic blasts within hypodiploid ALL patient-derived xenografts mice with low off-target toxicity. Our findings suggest that dual inhibition of BCL-2 (venetoclax) and CDK9/MCL-1 (dinaciclib) is a promising therapeutic approach in hypodiploid ALL, warranting further investigation to inform clinical trials in this high-risk patient population.


Subject(s)
Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Animals , Mice , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Cell Line, Tumor , Apoptosis , Proto-Oncogene Proteins c-bcl-2 , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Antineoplastic Agents/pharmacology
11.
Nature ; 550(7677): 534-538, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29045385

ABSTRACT

The ubiquitin system regulates essential cellular processes in eukaryotes. Ubiquitin is ligated to substrate proteins as monomers or chains and the topology of ubiquitin modifications regulates substrate interactions with specific proteins. Thus ubiquitination directs a variety of substrate fates including proteasomal degradation. Deubiquitinase enzymes cleave ubiquitin from substrates and are implicated in disease; for example, ubiquitin-specific protease-7 (USP7) regulates stability of the p53 tumour suppressor and other proteins critical for tumour cell survival. However, developing selective deubiquitinase inhibitors has been challenging and no co-crystal structures have been solved with small-molecule inhibitors. Here, using nuclear magnetic resonance-based screening and structure-based design, we describe the development of selective USP7 inhibitors GNE-6640 and GNE-6776. These compounds induce tumour cell death and enhance cytotoxicity with chemotherapeutic agents and targeted compounds, including PIM kinase inhibitors. Structural studies reveal that GNE-6640 and GNE-6776 non-covalently target USP7 12 Å distant from the catalytic cysteine. The compounds attenuate ubiquitin binding and thus inhibit USP7 deubiquitinase activity. GNE-6640 and GNE-6776 interact with acidic residues that mediate hydrogen-bond interactions with the ubiquitin Lys48 side chain, suggesting that USP7 preferentially interacts with and cleaves ubiquitin moieties that have free Lys48 side chains. We investigated this idea by engineering di-ubiquitin chains containing differential proximal and distal isotopic labels and measuring USP7 binding by nuclear magnetic resonance. This preferential binding protracted the depolymerization kinetics of Lys48-linked ubiquitin chains relative to Lys63-linked chains. In summary, engineering compounds that inhibit USP7 activity by attenuating ubiquitin binding suggests opportunities for developing other deubiquitinase inhibitors and may be a strategy more broadly applicable to inhibiting proteins that require ubiquitin binding for full functional activity.


Subject(s)
Aminopyridines/chemistry , Aminopyridines/pharmacology , Indazoles/chemistry , Indazoles/pharmacology , Phenols/chemistry , Phenols/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Ubiquitin/metabolism , Animals , Binding, Competitive , Cell Line, Tumor , Drug Synergism , Female , Humans , Mice , Mice, SCID , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/pathology , Protein Binding , Proto-Oncogene Proteins c-mdm2/metabolism , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Substrate Specificity , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Ubiquitin/chemistry , Ubiquitin-Specific Peptidase 7/chemistry , Ubiquitin-Specific Peptidase 7/deficiency , Ubiquitin-Specific Peptidase 7/metabolism
12.
Angew Chem Int Ed Engl ; 62(37): e202308004, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37455289

ABSTRACT

Small-molecule stabilization of protein-protein interactions (PPIs) is a promising strategy in chemical biology and drug discovery. However, the systematic discovery of PPI stabilizers remains a largely unmet challenge. Herein we report a fragment-linking approach targeting the interface of 14-3-3 and a peptide derived from the estrogen receptor alpha (ERα) protein. Two classes of fragments-a covalent and a noncovalent fragment-were co-crystallized and subsequently linked, resulting in a noncovalent hybrid molecule in which the original fragment interactions were largely conserved. Supported by 20 crystal structures, this initial hybrid molecule was further optimized, resulting in selective, 25-fold stabilization of the 14-3-3/ERα interaction. The high-resolution structures of both the single fragments, their co-crystal structures and those of the linked fragments document a feasible strategy to develop orthosteric PPI stabilizers by linking to an initial tethered fragment.


Subject(s)
14-3-3 Proteins , Estrogen Receptor alpha , 14-3-3 Proteins/chemistry , Estrogen Receptor alpha/metabolism , Protein Binding , Drug Discovery/methods
13.
Biochemistry ; 61(21): 2295-2302, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36264309

ABSTRACT

Autophagy is a catabolic cellular process in which unwanted proteins and organelles are degraded by lysosomes. It is characterized by the formation of the double-membrane autophagosome decorated with LC3B, a protein that mediates autophagosomal fusion with lysosomes. The cysteine protease ATG4b acts at two stages in the life cycle of LC3B. We set out to characterize the protein-protein interaction between LC3B and ATG4b. Through biochemical and biophysical studies, we show that the ubiquitin-like core of LC3B (residues 1-115; "LC3B-115"), which lacks the C-terminal cleavage site (between residue 120 and 121), binds to full-length ATG4b with a surprisingly tight dissociation constant (KD) in the low nanomolar range; 10-30-fold tighter than that of the substrate pro-LC3B (residues 1-125) or the product LC3B-I (residues 1-120). Consequently, LC3B-115 is a potent inhibitor of the ATG4b-mediated cleavage of pro-LC3B (IC50 = 15 nM). Binding of the LC3B-115 has no effect on the conformation of the active site of ATG4b, as judged by the turnover of a peptide substrate ("substrate-33"), derived from LC3B-I residues 116-120. Conversely, truncations of ATG4b show that binding and proteolysis of LC3B critically depend on the C-terminal tail of ATG4b, whereas proteolysis of the peptide substrate-33 does not require the C-terminal tail of ATG4b. These results support a bipartite model for LC3B-ATG4b binding in which the core of LC3B binds to ATG4b and the C-terminal tail of pro-LC3B organizes the ATG4b active site; additionally, the C-terminal tail of ATG4b contributes at least 1000-fold higher binding affinity to the LC3B-ATG4b interaction and likely wraps around the LC3B-ubiquitin core. PPIs are often described as containing an energetic "hot spot" for binding; in the case of LC3B-ATG4b, however, the substrate-enzyme complex contains multiple, energetically relevant domains that differentially affect binding affinity and catalytic efficiency.


Subject(s)
Cysteine Endopeptidases , Peptide Hydrolases , Autophagy-Related Proteins , Cysteine Endopeptidases/metabolism , Autophagy , Autophagy-Related Protein 8 Family , Peptides/pharmacology , Microtubule-Associated Proteins/metabolism
14.
J Am Chem Soc ; 144(29): 13218-13225, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35819848

ABSTRACT

Protein-protein interactions (PPIs) form complex networks to drive cellular signaling and cellular functions. Precise modulation of a target PPI helps explain the role of the PPI in cellular events and possesses therapeutic potential. For example, valosin-containing protein (VCP/p97) is a hub protein that interacts with more than 30 adaptor proteins involved in various cellular functions. However, the role of each p97 PPI during the relevant cellular event is underexplored. The development of small-molecule PPI modulators remains challenging due to a lack of grooves and pockets in the relatively large PPI interface and the fact that a common binding groove in p97 binds to multiple adaptors. Here, we report an antibody fragment-based modulator for the PPI between p97 and its adaptor protein NSFL1C (p47). We engineered these antibody modulators by phage display against the p97-interacting domain of p47 and minimizing binding to other p97 adaptors. The selected antibody fragment modulators specifically disrupt the intracellular p97/p47 interaction. The potential of this antibody platform to develop PPI inhibitors in therapeutic applications was demonstrated through the inhibition of Golgi reassembly, which requires the p97/p47 interaction. This study presents a unique approach to modulate specific intracellular PPIs using engineered antibody fragments, demonstrating a method to dissect the function of a PPI within a convoluted PPI network.


Subject(s)
Adenosine Triphosphatases , Cell Cycle Proteins , Adaptor Proteins, Signal Transducing/chemistry , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/chemistry , Immunoglobulin Fragments , Protein Binding , Valosin Containing Protein/metabolism
15.
Neuropathol Appl Neurobiol ; 48(5): e12819, 2022 08.
Article in English | MEDLINE | ID: mdl-35508761

ABSTRACT

AIM: Tau truncation (tr-tau) by active caspase-6 (aCasp-6) generates tau fragments that may be toxic. Yet the relationship between aCasp-6, different forms of tr-tau and hyperphosphorylated tau (p-tau) accumulation in human brains with Alzheimer's disease (AD) and other tauopathies remains unclear. METHODS: We generated two neoepitope monoclonal antibodies against tr-tau sites (D402 and D13) targeted by aCasp-6. Then, we used five-plex immunofluorescence to quantify the neuronal and astroglial burden of aCasp-6, tr-tau, p-tau and their co-occurrence in healthy controls, AD and primary tauopathies. RESULTS: Casp-6 activation was strongest in AD and Pick's disease (PiD) but almost absent in 4-repeat (4R) tauopathies. In neurons, the tr-tau burden was much more abundant in AD and PiD than in 4R tauopathies and disproportionally higher when normalising by p-tau pathology. Tr-tau astrogliopathy was detected in low numbers in 4R tauopathies. Unexpectedly, about half of tr-tau positive neurons in AD and PiD lacked p-tau aggregates, a finding we confirmed using several p-tau antibodies. CONCLUSIONS: Early modulation of aCasp-6 to reduce tr-tau pathology is a promising therapeutic strategy for AD and PiD but is unlikely to benefit 4R tauopathies. The large percentage of tr-tau-positive neurons lacking p-tau suggests that many vulnerable neurons to tau pathology go undetected when using conventional p-tau antibodies. Therapeutic strategies against tr-tau pathology could be necessary to modulate the extent of tau abnormalities in AD. The disproportionally higher burden of tr-tau in AD and PiD supports the development of biofluid biomarkers against tr-tau to detect AD and PiD and differentiate them from 4R tauopathies at a patient level.


Subject(s)
Alzheimer Disease , Tauopathies , Alzheimer Disease/diagnosis , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Brain/pathology , Caspase 6 , Humans , Neurons/pathology , Tauopathies/diagnosis , Tauopathies/pathology , Tauopathies/therapy , tau Proteins/metabolism
16.
Annu Rev Genomics Hum Genet ; 19: 263-288, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29799800

ABSTRACT

The genetic determinants of many diseases, including monogenic diseases and cancers, have been identified; nevertheless, targeted therapy remains elusive for most. High-throughput screening (HTS) of small molecules, including high-content analysis (HCA), has been an important technology for the discovery of molecular tools and new therapeutics. HTS can be based on modulation of a known disease target (called reverse chemical genetics) or modulation of a disease-associated mechanism or phenotype (forward chemical genetics). Prominent target-based successes include modulators of transthyretin, used to treat transthyretin amyloidoses, and the BCR-ABL kinase inhibitor Gleevec, used to treat chronic myelogenous leukemia. Phenotypic screening successes include modulators of cystic fibrosis transmembrane conductance regulator, splicing correctors for spinal muscular atrophy, and histone deacetylase inhibitors for cancer. Synthetic lethal screening, in which chemotherapeutics are screened for efficacy against specific genetic backgrounds, is a promising approach that merges phenotype and target. In this article, we introduce HTS technology and highlight its contributions to the discovery of drugs and probes for monogenic diseases and cancer.


Subject(s)
Genetic Diseases, Inborn/drug therapy , Small Molecule Libraries/therapeutic use , Fusion Proteins, bcr-abl/antagonists & inhibitors , High-Throughput Screening Assays , Humans , Imatinib Mesylate/pharmacology , Imatinib Mesylate/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
17.
Protein Expr Purif ; 179: 105780, 2021 03.
Article in English | MEDLINE | ID: mdl-33115654

ABSTRACT

BACKGROUND: The heterologous expression of human kinases in good purity and in a monomeric, soluble and active form can be challenging. Most of the reported successful attempts are carried out in insect cells as a host. The use of E. coli for expression is limited to a few kinases and usually is facilitated by large solubility tags that can limit biophysical studies and affect protein-protein interactions. In this report, we evaluate the methylotrophic yeast Pichia pastoris (P. pastoris) as a general-purpose host for expression of human kinases. METHODS: Six diverse kinases were chosen due to their therapeutic importance in human cancers. Tested proteins include serine/threonine kinases cyclin-dependent kinases 4 and 6 (CDK4 and 6) and aurora kinase A (AurKA), receptor tyrosine kinase erbB-2 (HER2), and dual specificity kinase mitogen-activated protein kinase kinase 3 (MKK3b). Noting that positively charged kinases expressed with higher yield, we sought to improve expression of two challenging targets, CDK6 and HER2, by fusing the highly basic, N-terminal domain of the secreted tyrosine-protein kinase VLK. The standard expression procedure for P. pastoris was adopted, followed by purification using affinity chromatography. Purity and activity of the proteins were confirmed and compared to published values. RESULTS: Some kinases were purified with good yield and purity and with comparable activity to commercially available versions. Addition of the VLK domain improved expression and decreased aggregation of CDK6 and HER2.


Subject(s)
Protein Kinases , Recombinant Fusion Proteins , Saccharomycetales , Animals , Chromatography, Affinity , Humans , Protein Domains/genetics , Protein Kinases/genetics , Protein Kinases/isolation & purification , Protein Kinases/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Saccharomycetales/genetics , Saccharomycetales/metabolism , Sf9 Cells , Solubility
18.
J Am Chem Soc ; 141(8): 3524-3531, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30707565

ABSTRACT

Modulation of protein-protein interactions (PPIs) by small molecules has emerged as a valuable approach in drug discovery. Compared to direct inhibition, PPI stabilization is vastly underexplored but has strong advantages, including the ability to gain selectivity by targeting an interface formed only upon association of proteins. Here, we present the application of a site-directed screening technique based on disulfide trapping (tethering) to select for fragments that enhance the affinity between protein partners. We target the phosphorylation-dependent interaction between the hub protein 14-3-3σ and a peptide derived from Estrogen Receptor α (ERα), an important breast cancer target that is negatively regulated by 14-3-3σ. We identify orthosteric stabilizers that increase 14-3-3/ERα affinity up to 40-fold and propose the mechanism of stabilization based on X-ray crystal structures. These fragments already display partial selectivity toward ERα-like motifs over other representative 14-3-3 clients. This first of its kind study illustrates the potential of the tethering approach to overcome the hurdles in systematic PPI stabilizer discovery.


Subject(s)
14-3-3 Proteins/chemistry , Breast Neoplasms/chemistry , Drug Discovery , Estrogen Receptor alpha/chemistry , 14-3-3 Proteins/metabolism , Breast Neoplasms/metabolism , Crystallography, X-Ray , Drug Evaluation, Preclinical , Estrogen Receptor alpha/metabolism , Female , Humans , Models, Molecular , Phosphorylation , Protein Binding/drug effects , Protein Conformation , Protein Stability/drug effects
19.
Proc Natl Acad Sci U S A ; 112(14): E1705-14, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25775548

ABSTRACT

Dominant mutations in p97/VCP (valosin-containing protein) cause a rare multisystem degenerative disease with varied phenotypes that include inclusion body myopathy, Paget's disease of bone, frontotemporal dementia, and amyotrophic lateral sclerosis. p97 disease mutants have altered N-domain conformations, elevated ATPase activity, and altered cofactor association. We have now discovered a previously unidentified disease-relevant functional property of p97 by identifying how the cofactors p37 and p47 regulate p97 ATPase activity. We define p37 as, to our knowledge, the first known p97-activating cofactor, which enhances the catalytic efficiency (kcat/Km) of p97 by 11-fold. Whereas both p37 and p47 decrease the Km of ATP in p97, p37 increases the kcat of p97. In contrast, regulation by p47 is biphasic, with decreased kcat at low levels but increased kcat at higher levels. By deleting a region of p47 that lacks homology to p37 (amino acids 69-92), we changed p47 from an inhibitory cofactor to an activating cofactor, similar to p37. Our data suggest that cofactors regulate p97 ATPase activity by binding to the N domain. Induced conformation changes affect ADP/ATP binding at the D1 domain, which in turn controls ATPase cycling. Most importantly, we found that the D2 domain of disease mutants failed to be activated by p37 or p47. Our results show that cofactors play a critical role in controlling p97 ATPase activity, and suggest that lack of cofactor-regulated communication may contribute to p97-associated disease pathogenesis.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Mutation , Adenosine Triphosphate/metabolism , Autophagy , Bone Diseases/metabolism , Cell Line, Tumor , Chromatography, Gel , Golgi Apparatus , Homeostasis , Humans , Muscular Diseases/metabolism , Neurodegenerative Diseases/metabolism , Phenotype , Protein Structure, Tertiary , Surface Plasmon Resonance , Valosin Containing Protein
20.
PLoS Pathog ; 11(7): e1005058, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26186534

ABSTRACT

Unbiased phenotypic screens enable identification of small molecules that inhibit pathogen growth by unanticipated mechanisms. These small molecules can be used as starting points for drug discovery programs that target such mechanisms. A major challenge of the approach is the identification of the cellular targets. Here we report GNF7686, a small molecule inhibitor of Trypanosoma cruzi, the causative agent of Chagas disease, and identification of cytochrome b as its target. Following discovery of GNF7686 in a parasite growth inhibition high throughput screen, we were able to evolve a GNF7686-resistant culture of T. cruzi epimastigotes. Clones from this culture bore a mutation coding for a substitution of leucine by phenylalanine at amino acid position 197 in cytochrome b. Cytochrome b is a component of complex III (cytochrome bc1) in the mitochondrial electron transport chain and catalyzes the transfer of electrons from ubiquinol to cytochrome c by a mechanism that utilizes two distinct catalytic sites, QN and QP. The L197F mutation is located in the QN site and confers resistance to GNF7686 in both parasite cell growth and biochemical cytochrome b assays. Additionally, the mutant cytochrome b confers resistance to antimycin A, another QN site inhibitor, but not to strobilurin or myxothiazol, which target the QP site. GNF7686 represents a promising starting point for Chagas disease drug discovery as it potently inhibits growth of intracellular T. cruzi amastigotes with a half maximal effective concentration (EC50) of 0.15 µM, and is highly specific for T. cruzi cytochrome b. No effect on the mammalian respiratory chain or mammalian cell proliferation was observed with up to 25 µM of GNF7686. Our approach, which combines T. cruzi chemical genetics with biochemical target validation, can be broadly applied to the discovery of additional novel drug targets and drug leads for Chagas disease.


Subject(s)
Antifungal Agents/pharmacology , Chagas Disease/drug therapy , Chagas Disease/microbiology , Cytochromes b/metabolism , Trypanosoma cruzi/drug effects , Animals , Antimycin A/metabolism , Chagas Disease/genetics , Cytochromes b/genetics , Electron Transport/drug effects , Electron Transport/immunology , Genomics , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mutation , Oxygen Consumption/drug effects , Trypanosoma cruzi/isolation & purification , Trypanosoma cruzi/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL