Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Nat Immunol ; 20(11): 1506-1516, 2019 11.
Article in English | MEDLINE | ID: mdl-31611698

ABSTRACT

Fibroblastic reticular cells (FRCs) and their specialized collagen fibers termed 'conduits' form fundamental structural units supporting lymphoid tissues. In lymph nodes, conduits are known to transport interstitial fluid and small molecules from afferent lymphatics into the nodal parenchyma. However, the immunological contributions of conduit function have remained elusive. Here, we report that intestinal Peyer's patches (PPs) contain a specialized conduit system that directs the flow of water absorbed across the intestinal epithelium. Notably, PP FRCs responded to conduit fluid flow via the mechanosensitive ion channel Piezo1. Disruption of fluid flow or genetic deficiency of Piezo1 on CCL19-expressing stroma led to profound structural alterations in perivascular FRCs and associated high endothelial venules. This in turn impaired lymphocyte entry into PPs and initiation of mucosal antibody responses. These results identify a critical role for conduit-mediated fluid flow in the maintenance of PP homeostasis and mucosal immunity.


Subject(s)
Immunity, Mucosal , Intestinal Mucosa/immunology , Lymphocytes/immunology , Mechanotransduction, Cellular/immunology , Peyer's Patches/immunology , Animals , Antibodies/immunology , Antibodies/metabolism , Cell Movement/immunology , Chemokine CCL19/metabolism , Female , Intestinal Mucosa/metabolism , Intestine, Small/immunology , Intestine, Small/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Lymphocyte Activation , Lymphocytes/metabolism , Male , Mice , Mice, Knockout , Models, Animal , Peyer's Patches/metabolism , Water/metabolism
2.
Immunity ; 54(5): 903-915, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979587

ABSTRACT

Fibroblasts and macrophages are present in all tissues, and mounting evidence supports that these cells engage in direct communication to influence the overall tissue microenvironment and affect disease outcomes. Here, we review the current understanding of the molecular mechanisms that underlie fibroblast-macrophage interactions in health, fibrosis, and cancer. We present an integrated view of fibroblast-macrophage interactions that is centered on the CSF1-CSF1R axis and discuss how additional molecular programs linking these cell types can underpin disease onset, progression, and resolution. These programs may be tissue and context dependent, affected also by macrophage and fibroblast origin and state, as seen most clearly in cancer. Continued efforts to understand these cells and the means by which they interact may provide therapeutic approaches for the treatment of fibrosis and cancer.


Subject(s)
Fibroblasts/metabolism , Fibrosis/metabolism , Macrophages/metabolism , Neoplasms/metabolism , Animals , Cell Differentiation/physiology , Humans , Macrophage Colony-Stimulating Factor/metabolism , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Tumor Microenvironment/physiology
3.
Immunity ; 52(4): 578-580, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294403

ABSTRACT

The omentum, an adipose tissue rich in fat-associated lymphoid clusters in the peritoneal cavity, is associated with immune surveillance and protection against peritoneal contaminants. In this issue of Immunity, Jackson-Jones et al. reveal how omental stromal cells regulate neutrophil trafficking to control peritonitis.


Subject(s)
Omentum , Peritonitis , Adipose Tissue , Humans , Inflammation , Neutrophils , Stromal Cells
4.
Immunity ; 51(1): 119-130.e5, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31231034

ABSTRACT

Tissue-resident macrophages require specific milieus for the maintenance of defining gene-expression programs. Expression of the transcription factor GATA6 is required for the homeostasis, function and localization of peritoneal cavity-resident macrophages. Gata6 expression is maintained in a non-cell autonomous manner and is elicited by the vitamin A metabolite, retinoic acid. Here, we found that the GATA6 transcriptional program is a common feature of macrophages residing in all visceral body cavities. Retinoic acid-dependent and -independent hallmark genes of GATA6+ macrophages were induced by mesothelial and fibroblastic stromal cells that express the transcription factor Wilms' Tumor 1 (WT1), which drives the expression of two rate-limiting enzymes in retinol metabolism. Depletion of Wt1+ stromal cells reduced the frequency of GATA6+ macrophages in the peritoneal, pleural and pericardial cavities. Thus, Wt1+ mesothelial and fibroblastic stromal cells constitute essential niche components supporting the tissue-specifying transcriptional landscape and homeostasis of cavity-resident macrophages.


Subject(s)
GATA6 Transcription Factor/metabolism , Macrophages/physiology , Pericardium/immunology , Peritoneal Cavity/physiology , Pleural Cavity/immunology , Repressor Proteins/metabolism , Stromal Cells/physiology , Animals , Cell Differentiation , Cells, Cultured , GATA6 Transcription Factor/genetics , Homeostasis , Mice , Mice, Inbred C57BL , Mice, Transgenic , Repressor Proteins/genetics , Tretinoin/metabolism , WT1 Proteins
5.
Nature ; 611(7934): 148-154, 2022 11.
Article in English | MEDLINE | ID: mdl-36171287

ABSTRACT

Recent single-cell studies of cancer in both mice and humans have identified the emergence of a myofibroblast population specifically marked by the highly restricted leucine-rich-repeat-containing protein 15 (LRRC15)1-3. However, the molecular signals that underlie the development of LRRC15+ cancer-associated fibroblasts (CAFs) and their direct impact on anti-tumour immunity are uncharacterized. Here in mouse models of pancreatic cancer, we provide in vivo genetic evidence that TGFß receptor type 2 signalling in healthy dermatopontin+ universal fibroblasts is essential for the development of cancer-associated LRRC15+ myofibroblasts. This axis also predominantly drives fibroblast lineage diversity in human cancers. Using newly developed Lrrc15-diphtheria toxin receptor knock-in mice to selectively deplete LRRC15+ CAFs, we show that depletion of this population markedly reduces the total tumour fibroblast content. Moreover, the CAF composition is recalibrated towards universal fibroblasts. This relieves direct suppression of tumour-infiltrating CD8+ T cells to enhance their effector function and augments tumour regression in response to anti-PDL1 immune checkpoint blockade. Collectively, these findings demonstrate that TGFß-dependent LRRC15+ CAFs dictate the tumour-fibroblast setpoint to promote tumour growth. These cells also directly suppress CD8+ T cell function and limit responsiveness to checkpoint blockade. Development of treatments that restore the homeostatic fibroblast setpoint by reducing the population of pro-disease LRRC15+ myofibroblasts may improve patient survival and response to immunotherapy.


Subject(s)
Cancer-Associated Fibroblasts , Membrane Proteins , Myofibroblasts , Pancreatic Neoplasms , Stromal Cells , Animals , Humans , Mice , Cancer-Associated Fibroblasts/metabolism , CD8-Positive T-Lymphocytes/immunology , Membrane Proteins/metabolism , Myofibroblasts/metabolism , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/pathology , Receptors, Transforming Growth Factor beta , Transforming Growth Factor beta/metabolism , Tumor Microenvironment , B7-H1 Antigen
6.
Nature ; 593(7860): 575-579, 2021 05.
Article in English | MEDLINE | ID: mdl-33981032

ABSTRACT

Fibroblasts are non-haematopoietic structural cells that define the architecture of organs, support the homeostasis of tissue-resident cells and have key roles in fibrosis, cancer, autoimmunity and wound healing1. Recent studies have described fibroblast heterogeneity within individual tissues1. However, the field lacks a characterization of fibroblasts at single-cell resolution across tissues in healthy and diseased organs. Here we constructed fibroblast atlases by integrating single-cell transcriptomic data from about 230,000 fibroblasts across 17 tissues, 50 datasets, 11 disease states and 2 species. Mouse fibroblast atlases and a DptIRESCreERT2 knock-in mouse identified two universal fibroblast transcriptional subtypes across tissues. Our analysis suggests that these cells can serve as a reservoir that can yield specialized fibroblasts across a broad range of steady-state tissues and activated fibroblasts in disease. Comparison to an atlas of human fibroblasts from perturbed states showed that fibroblast transcriptional states are conserved between mice and humans, including universal fibroblasts and activated phenotypes associated with pathogenicity in human cancer, fibrosis, arthritis and inflammation. In summary, a cross-species and pan-tissue approach to transcriptomics at single-cell resolution has identified key organizing principles of the fibroblast lineage in health and disease.


Subject(s)
Fibroblasts/cytology , Transcriptome , Animals , Cells, Cultured , Disease , Female , Fibroblasts/classification , Gene Knock-In Techniques , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasms , Organ Specificity , Phenotype , RNA-Seq , Single-Cell Analysis , Stromal Cells
7.
Eur J Immunol ; 51(1): 76-90, 2021 01.
Article in English | MEDLINE | ID: mdl-32700362

ABSTRACT

Upon viral infection, stressed or damaged cells can release alarmins like IL-33 that act as endogenous danger signals alerting innate and adaptive immune cells. IL-33 coming from nonhematopoietic cells has been identified as important factor triggering the expansion of antiviral CD8+ T cells. In LN the critical cellular source of IL-33 is unknown, as is its potential cell-intrinsic function as a chromatin-associated factor. Using IL-33-GFP reporter mice, we identify fibroblastic reticular cells (FRC) and lymphatic endothelial cells (LEC) as the main IL-33 source. In homeostasis, IL-33 is dispensable as a transcriptional regulator in FRC, indicating it functions mainly as released cytokine. Early during infection with lymphocytic choriomeningitis virus (LCMV) clone 13, both FRC and LEC lose IL-33 protein expression suggesting cytokine release, correlating timewise with IL-33 receptor expression by reactive CD8+ T cells and their greatly augmented expansion in WT versus ll33-/- mice. Using mice lacking IL-33 selectively in FRC versus LEC, we identify FRC as key IL-33 source driving acute and chronic antiviral T-cell responses. Collectively, these findings show that LN T-zone FRC not only regulate the homeostasis of naïve T cells but also their expansion and differentiation several days into an antiviral response.


Subject(s)
Interleukin-33/metabolism , Lymphocytic Choriomeningitis/immunology , Acute Disease , Adaptive Immunity , Animals , CD8-Positive T-Lymphocytes/immunology , Chronic Disease , Endothelial Cells/immunology , Fibroblasts/immunology , Homeostasis , Humans , Immunity, Innate , Interleukin-33/deficiency , Interleukin-33/genetics , Lymph Nodes/immunology , Lymphocytic choriomeningitis virus/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Immunological
8.
Semin Immunol ; 35: 48-58, 2018 02.
Article in English | MEDLINE | ID: mdl-29198601

ABSTRACT

Fibroblasts in secondary lymphoid organs, or fibroblastic reticular cells (FRC), are gate-keepers of immune responses. Here, we frame how these cells regulate immune responses via a three-part scheme in which FRC can setup, support or suppress immune responses. We also review how fibroblasts from non-lymphoid tissues influence immunity and highlight how they resemble and differ from FRC. Overall, we aim to focus attention on the emerging roles of lymphoid tissue and non-lymphoid tissue fibroblasts in control of innate and adaptive immunity.


Subject(s)
Adaptive Immunity , Fibroblasts/immunology , Immunity, Innate , Lymph Nodes/immunology , Lymphoid Tissue/immunology , Animals , Humans , Immunomodulation
9.
Blood ; 129(11): 1503-1513, 2017 03 16.
Article in English | MEDLINE | ID: mdl-28087538

ABSTRACT

B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) is a signaling adaptor expressed in mature hematopoietic cells, including monocytes and neutrophils. Here we investigated the role of BCAP in the homeostasis and development of these myeloid lineages. BCAP-/- mice had more bone marrow (BM) monocytes than wild-type (WT) mice, and in mixed WT:BCAP-/- BM chimeras, monocytes and neutrophils skewed toward BCAP-/- origin, showing a competitive advantage for BCAP-/- myeloid cells. BCAP was expressed in BM hematopoietic progenitors, including lineage-Sca-1+c-kit+ (LSK), common myeloid progenitor, and granulocyte/macrophage progenitor (GMP) cells. At the steady state, BCAP-/- GMP cells expressed more IRF8 and less C/EBPα than did WT GMP cells, which correlated with an increase in monocyte progenitors and a decrease in granulocyte progenitors among GMP cells. Strikingly, BCAP-/- progenitors proliferated and produced more myeloid cells of both neutrophil and monocyte/macrophage lineages than did WT progenitors in myeloid colony-forming unit assays, supporting a cell-intrinsic role of BCAP in inhibiting myeloid proliferation and differentiation. Consistent with these findings, during cyclophosphamide-induced myeloablation or specific monocyte depletion, BCAP-/- mice replenished circulating monocytes and neutrophils earlier than WT mice. During myeloid replenishment after cyclophosphamide-induced myeloablation, BCAP-/- mice had increased LSK proliferation and increased numbers of LSK and GMP cells compared with WT mice. Furthermore, BCAP-/- mice accumulated more monocytes and neutrophils in the spleen than did WT mice during Listeria monocytogenes infection. Together, these data identify BCAP as a novel inhibitor of myelopoiesis in the steady state and of emergency myelopoiesis during demand conditions.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cell Differentiation , Cell Proliferation , Myeloid Progenitor Cells/cytology , Animals , Cell Lineage , Homeostasis , Mice , Monocytes/cytology , Myelopoiesis , Neutrophils/cytology
10.
J Immunol ; 197(7): 2577-82, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27566824

ABSTRACT

During infection, recognition of pathogens and inflammatory cytokines skews hematopoiesis toward myeloid development, although the precise mechanisms responsible for this are unclear. In this study, we show that accelerated myeloid differentiation, known as emergency myelopoiesis, involves recognition of pathogen-associated molecular patterns by the common myeloid progenitor (CMP) and is dependent on type I IFN for monocyte/macrophage differentiation. Direct sensing of TLR agonists by CMP induced rapid proliferation and induction of myeloid-differentiation genes. Lack of type I IFN signaling in CMP abrogated macrophage differentiation in response to TLR stimuli, whereas exogenous type I IFN amplified this process. Mechanistically, TLR7 induced PI3K/mammalian target of rapamycin signaling in CMP, which was enhanced by type I IFN, and this pathway was essential for emergency myelopoiesis. This work identifies a novel mechanism by which TLR and type I IFN synergize to promote monocyte/macrophage development from hematopoietic progenitors, a process critical in triggering rapid immune responses during infection.


Subject(s)
Interferon Type I/antagonists & inhibitors , Membrane Glycoproteins/antagonists & inhibitors , Myeloid Progenitor Cells/immunology , Myelopoiesis/immunology , Phosphatidylinositol 3-Kinases/immunology , TOR Serine-Threonine Kinases/immunology , Toll-Like Receptor 7/antagonists & inhibitors , Animals , Cell Differentiation , Interferon Type I/immunology , Interferon Type I/metabolism , Ligands , Macrophages/cytology , Macrophages/immunology , Membrane Glycoproteins/immunology , Membrane Glycoproteins/metabolism , Mice , Mice, Knockout , Myeloid Progenitor Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Toll-Like Receptor 7/immunology , Toll-Like Receptor 7/metabolism
11.
Retrovirology ; 13: 6, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26767784

ABSTRACT

BACKGROUND: Endogenous retroviruses (ERVs) are remnants of ancient retroviral infections that have invaded the germ line of both humans and non-human primates. Most ERVs are functionally crippled by deletions, mutations, and hypermethylation, leading to the view that they are inert genomic fossils. However, some ERVs can produce mRNA transcripts, functional viral proteins, and even non-infectious virus particles during certain developmental and pathological processes. While there have been reports of ERV-specific immunity associated with ERV activity in humans, adaptive immune responses to ERV-encoded gene products remain poorly defined and have not been investigated in the physiologically relevant non-human primate model of human disease. FINDINGS: Here, we identified the rhesus macaque equivalent of the biologically active human ERV-K (HML-2), simian ERV-K (SERV-K1), which retains intact open reading frames for both Gag and Env on chromosome 12 in the macaque genome. From macaque cells we isolated a spliced mRNA product encoding SERV-K1 Env, which possesses all the structural features of a canonical, functional retroviral Envelope protein. Furthermore, we identified rare, but robust T cell responses as well as frequent antibody responses targeting SERV-K1 Env in rhesus macaques. CONCLUSIONS: These data demonstrate that SERV-K1 retains biological activity sufficient to induce cellular and humoral immune responses in rhesus macaques. As ERV-K is the youngest and most active ERV family in the human genome, the identification and characterization of the simian orthologue in rhesus macaques provides a highly relevant animal model in which to study the role of ERV-K in developmental and disease states.


Subject(s)
Antibodies, Viral/blood , Endogenous Retroviruses/immunology , Gene Products, env/immunology , T-Lymphocytes/immunology , Animals , Endogenous Retroviruses/genetics , Female , Gene Products, env/genetics , Macaca mulatta , Male , Molecular Sequence Data , Sequence Analysis, DNA
12.
Eur J Immunol ; 45(11): 3064-72, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26289159

ABSTRACT

Release of inflammatory monocytes from the bone marrow (BM) into the blood is an important physiological response to infection, but the mechanisms regulating this phenomenon during viral infection are not completely defined. Here, we show that low-dose infection with lymphocytic choriomeningitis virus (LCMV) caused rapid, transient inflammatory monocytosis that required type I interferon (IFN) and Toll-like receptor (TLR) 7 signaling. Type I IFN and TLR7 signals were critical for induction of IFN-stimulated gene expression and CCR2 ligand upregulation in the BM microenvironment in response to LCMV infection. Experiments utilizing BM chimeric mice demonstrated that type I IFN and TLR7 signaling on either hematopoietic or nonhematopoietic cells was sufficient to initiate monocytosis in response to LCMV infection. BM plasmacytoid dendritic cells (pDCs) generated type I IFN directly ex vivo, suggesting that pDCs are a hematopoietic contributor of type I IFN in the BM early during LCMV infection. Overall, we describe novel roles for type I IFN and TLR7 signaling in nonhematopoietic cells and BM pDCs in directing IFN-stimulated gene and CCR2 ligand expression in the BM to initiate an increase in blood inflammatory monocytes during viral infection.


Subject(s)
Arenaviridae Infections/immunology , Interferon Type I/immunology , Lymphocytic choriomeningitis virus , Membrane Glycoproteins/immunology , Monocytes/immunology , Signal Transduction/immunology , Toll-Like Receptor 7/immunology , Animals , Arenaviridae Infections/blood , Cell Separation , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
13.
J Immunol ; 190(3): 886-91, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23303674

ABSTRACT

Mice overexpressing TLR7 (TLR7.1 mice) are a model of systemic lupus erythematosus pathogenesis and exhibit peripheral myeloid expansion. We show that TLR7.1 mice have a dramatic expansion of splenic cells that derive from granulocyte/macrophage progenitors (GMP) compared with wild-type mice. In the bone marrow, TLR7.1 mice exhibited hallmarks of emergency myelopoiesis and contained a discrete population of Sca-1(+) GMP, termed emergency GMP, which are more proliferative and superior myeloid precursors than classical Sca-1(-) GMP. The emergency myelopoiesis and peripheral myeloid expansion in TLR7.1 mice was dependent on type I IFN signaling. TLR7 agonist administration to nontransgenic mice also drove type I IFN-dependent emergency myelopoiesis. TLR7.1 plasmacytoid dendritic cells were cell-intrinsically activated by TLR7 overexpression and constitutively produced type I IFN mRNA. This study shows that type I IFN can act upon myeloid progenitors to promote the development of emergency GMP, which leads to an expansion of their progeny in the periphery.


Subject(s)
Interferon Type I/physiology , Membrane Glycoproteins/physiology , Myelopoiesis/physiology , Toll-Like Receptor 7/physiology , Animals , Antigens, Ly/analysis , Bone Marrow/pathology , Cell Division , Cell Lineage , Dendritic Cells/immunology , Disease Models, Animal , Gene Expression Regulation/immunology , Granulocytes/pathology , Interferon Type I/biosynthesis , Interferon Type I/genetics , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/pathology , Macrophages/pathology , Membrane Glycoproteins/agonists , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Membrane Proteins/analysis , Mice , Mice, Transgenic , Models, Immunological , Myeloid Cells/pathology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Radiation Chimera , Receptor, Interferon alpha-beta/deficiency , Signal Transduction/physiology , Spleen/pathology , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/biosynthesis , Toll-Like Receptor 7/genetics
14.
J Immunol ; 190(6): 2536-43, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23382559

ABSTRACT

TLR7 activation is implicated in the pathogenesis of systemic lupus erythematosus. Mice that overexpress TLR7 develop a lupus-like disease with autoantibodies and glomerulonephritis and early death. To determine whether degradation of the TLR7 ligand RNA would alter the course of disease, we created RNase A transgenic (Tg) mice. We then crossed the RNase Tg to TLR7 Tg mice to create TLR7 × RNase double Tg (DTg) mice. DTg mice had a significantly increased survival associated with reduced activation of T and B lymphocytes and reduced kidney deposition of IgG and C3. We observed massive hepatic inflammation and cell death in TLR7 Tg mice. In contrast, hepatic inflammation and necrosis were strikingly reduced in DTg mice. These findings indicate that high concentrations of serum RNase protect against immune activation and inflammation associated with TLR7 stimulation and that RNase may be a useful therapeutic strategy in the prevention or treatment of inflammation in systemic lupus erythematosus and, possibly, liver diseases.


Subject(s)
Down-Regulation/genetics , Down-Regulation/immunology , Membrane Glycoproteins/biosynthesis , Membrane Glycoproteins/genetics , Ribonuclease, Pancreatic/genetics , Toll-Like Receptor 7/biosynthesis , Toll-Like Receptor 7/genetics , Up-Regulation/genetics , Up-Regulation/immunology , Animals , Cattle , Cells, Cultured , Embryonic Stem Cells , Hepatitis/enzymology , Hepatitis/immunology , Hepatitis/pathology , Humans , Inflammation/enzymology , Inflammation/immunology , Inflammation/prevention & control , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/mortality , Lupus Erythematosus, Systemic/prevention & control , Male , Membrane Glycoproteins/physiology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Transgenic , Ribonuclease, Pancreatic/blood , Ribonuclease, Pancreatic/physiology , Spleen/enzymology , Spleen/immunology , Spleen/pathology , Survival Analysis , Toll-Like Receptor 7/physiology
15.
F1000Res ; 13: 126, 2024.
Article in English | MEDLINE | ID: mdl-38919948

ABSTRACT

Fibroblasts are mesenchymal cells that are responsible for creating and maintaining tissue architecture through the production of extracellular matrix. These cells also play critical roles in processes such as wound repair and immune modulation in normal tissues and various disease states including fibrosis, autoimmunity, and cancer. Fibroblasts have a complex repertoire of functions that vary by organ, inflammatory state, and the developmental stage of an organism. How fibroblasts manage so many functions in such a context-dependent manner represents a gap in our understanding of these cells. One possibility is that a tissue-resident precursor cell state exists that provides the fibroblast lineage with flexibility during growth, inflammation, or other contexts that require dynamic tissue changes. Recent work has suggested that a precursor fibroblast cell state is marked by expression of Peptidase inhibitor 16 ( Pi16). This review aims to concatenate and compare studies on fibroblasts that express Pi16 to clarify the roles of this cell state in fibroblast lineage development and other functions.


Subject(s)
Fibroblasts , Humans , Fibroblasts/metabolism , Fibroblasts/cytology , Animals
16.
Proc Natl Acad Sci U S A ; 106(24): 9791-6, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19478057

ABSTRACT

The precise immunological role played by CD4(+) T cells in retroviral infections is poorly defined. Here, we describe a new function of these cells, the elimination of retrovirus-infected macrophages. After experimental CD8(+) cell depletion, elite controlling macaques with set-point viral loads < or = 500 viral RNA copies/mL mounted robust Gag- and Nef-specific CD4(+) T cell responses during reestablishment of control with > or = 54% of all virus-specific CD4(+) T cells targeting these 2 proteins. Ex vivo, these simian immunodeficiency virus (SIV)-specific CD4(+) T cells neither recognized nor suppressed viral replication in SIV-infected CD4(+) T cells. In contrast, they recognized SIV-infected macrophages as early as 2 h postinfection because of presentation of epitopes derived from virion-associated Gag and Nef proteins. Furthermore, virus-specific CD4(+) T cells displayed direct effector function and eliminated SIV-infected macrophages. These results suggest that retrovirus-specific CD4(+) T cells may contribute directly to elite control by inhibiting viral replication in macrophages.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Gene Products, gag/metabolism , Gene Products, nef/metabolism , Macrophages/virology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Immunodeficiency Virus/physiology , Virus Replication/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Macaca mulatta , RNA, Viral/blood , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/isolation & purification , Viral Load
17.
Cancer Cell ; 40(11): 1273-1275, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36379205

ABSTRACT

In this issue of Cancer Cell, Foster and colleagues explore the heterogeneity in cancer-associated fibroblasts (CAFs) across tissue types and species, and they identify mechanoresponsive (MR), immunomodulatory (IM), and steady-state-like (SSL) CAFs. They show that altering the relative abundance of these CAF subtypes influences tumor progression and response to anti-tumor therapy.


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Myofibroblasts , Fibroblasts , Tumor Microenvironment , Neoplasms/pathology
18.
Mucosal Immunol ; 15(3): 418-427, 2022 03.
Article in English | MEDLINE | ID: mdl-35181738

ABSTRACT

Although eosinophils are important contributors to mucosal immune responses, mechanisms that regulate their accumulation in mucosal-associated lymphoid tissues remain ill-defined. Combining bone marrow chimeras and pharmacological inhibition approaches, here we find that lymphotoxin-beta receptor (LTßR) signaling during the neonatal period is required for the accumulation of eosinophils in the mesenteric lymph nodes (MLN) during an enteric viral infection in adult male and female mice. We demonstrate that MLN stromal cells express genes that are important for eosinophil migration and survival, such as Ccl-11 (eotaxin-1), Ccl7, Ccl9, and Cxcl2, and that expression of most of these genes is downregulated as a consequence of neonatal LTßR blockade. We also find that neonatal LTßR signaling is required for the generation of a rotavirus-specific IgA antibody response in the adult MLN, but eosinophils are dispensable for this response. Collectively, our studies reveal a role for neonatal LTßR signaling in regulating eosinophil numbers in the adult MLN.


Subject(s)
Eosinophils , Lymph Nodes , Animals , Female , Immunity, Mucosal , Immunoglobulin A , Leukocyte Count , Male , Mice
19.
J Virol ; 84(20): 10907-12, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20686015

ABSTRACT

The kinetics of CD8(+) T cell epitope presentation contribute to the antiviral efficacy of these cells yet remain poorly defined. Here, we demonstrate presentation of virion-derived Vpr peptide epitopes early after viral penetration and prior to presentation of Vif-derived epitopes, which required de novo Vif synthesis. Two Rev epitopes exhibited differential presentation kinetics, with one Rev epitope presented within 1 h of infection. We also demonstrate that cytolytic activity mirrors the recognition kinetics of infected cells. These studies show for the first time that Vpr- and Rev-specific CD8(+) T cells recognize and kill simian immunodeficiency virus (SIV)-infected CD4(+) T cells early after SIV infection.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/virology , Gene Products, rev/immunology , Gene Products, vpr/immunology , Simian Immunodeficiency Virus/immunology , Amino Acid Sequence , Animals , Antigen Presentation , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Cytotoxicity, Immunologic , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/immunology , Gene Products, rev/genetics , Gene Products, vpr/genetics , Host-Pathogen Interactions/immunology , In Vitro Techniques , Kinetics , Macaca mulatta , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/enzymology , Simian Immunodeficiency Virus/pathogenicity , Simian Immunodeficiency Virus/physiology
20.
J Virol ; 83(19): 10280-5, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19605480

ABSTRACT

Understanding the correlates of immune protection against human immunodeficiency virus and simian immunodeficiency virus (SIV) will require defining the entire cellular immune response against the viruses. Here, we define two novel translation products from the SIV env mRNA that are targeted by the T-cell response in SIV-infected rhesus macaques. The shorter product is a subset of the larger product, which contains both the first exon of the Rev protein and a translated portion of the rev intron. Our data suggest that the translation of viral alternate reading frames may be an important source of T-cell epitopes, including epitopes normally derived from functional proteins.


Subject(s)
Epitopes, T-Lymphocyte/chemistry , Gene Expression Regulation, Viral , Gene Products, rev/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , RNA, Viral/metabolism , Simian Immunodeficiency Virus/genetics , Amino Acid Sequence , Animals , Epitopes/chemistry , Genes, env , Macaca , Molecular Sequence Data , Open Reading Frames , Simian Acquired Immunodeficiency Syndrome/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL