Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37652010

ABSTRACT

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Subject(s)
Channelrhodopsins , Rhinosporidium , Humans , Channelrhodopsins/chemistry , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Channelrhodopsins/ultrastructure , Cryoelectron Microscopy , Ion Channels , Potassium/metabolism , Rhinosporidium/chemistry
2.
Cell ; 185(4): 672-689.e23, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35114111

ABSTRACT

ChRmine, a recently discovered pump-like cation-conducting channelrhodopsin, exhibits puzzling properties (large photocurrents, red-shifted spectrum, and extreme light sensitivity) that have created new opportunities in optogenetics. ChRmine and its homologs function as ion channels but, by primary sequence, more closely resemble ion pump rhodopsins; mechanisms for passive channel conduction in this family have remained mysterious. Here, we present the 2.0 Å resolution cryo-EM structure of ChRmine, revealing architectural features atypical for channelrhodopsins: trimeric assembly, a short transmembrane-helix 3, a twisting extracellular-loop 1, large vestibules within the monomer, and an opening at the trimer interface. We applied this structure to design three proteins (rsChRmine and hsChRmine, conferring further red-shifted and high-speed properties, respectively, and frChRmine, combining faster and more red-shifted performance) suitable for fundamental neuroscience opportunities. These results illuminate the conduction and gating of pump-like channelrhodopsins and point the way toward further structure-guided creation of channelrhodopsins for applications across biology.


Subject(s)
Channelrhodopsins/chemistry , Channelrhodopsins/metabolism , Ion Channel Gating , Animals , Channelrhodopsins/ultrastructure , Cryoelectron Microscopy , Female , HEK293 Cells , Humans , Male , Mice, Inbred C57BL , Models, Molecular , Optogenetics , Phylogeny , Rats, Sprague-Dawley , Schiff Bases/chemistry , Sf9 Cells , Structure-Activity Relationship
3.
Mol Cell ; 81(24): 5025-5038.e10, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34890564

ABSTRACT

The Sonic Hedgehog (SHH) morphogen pathway is fundamental for embryonic development and stem cell maintenance and is implicated in various cancers. A key step in signaling is transfer of a palmitate group to the SHH N terminus, catalyzed by the multi-pass transmembrane enzyme Hedgehog acyltransferase (HHAT). We present the high-resolution cryo-EM structure of HHAT bound to substrate analog palmityl-coenzyme A and a SHH-mimetic megabody, revealing a heme group bound to HHAT that is essential for HHAT function. A structure of HHAT bound to potent small-molecule inhibitor IMP-1575 revealed conformational changes in the active site that occlude substrate binding. Our multidisciplinary analysis provides a detailed view of the mechanism by which HHAT adapts the membrane environment to transfer an acyl chain across the endoplasmic reticulum membrane. This structure of a membrane-bound O-acyltransferase (MBOAT) superfamily member provides a blueprint for other protein-substrate MBOATs and a template for future drug discovery.


Subject(s)
Acyltransferases/antagonists & inhibitors , Acyltransferases/metabolism , Enzyme Inhibitors/pharmacology , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Acylation , Acyltransferases/genetics , Acyltransferases/ultrastructure , Allosteric Regulation , Animals , COS Cells , Catalytic Domain , Chlorocebus aethiops , Cryoelectron Microscopy , HEK293 Cells , Heme/metabolism , Humans , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/genetics , Membrane Proteins/ultrastructure , Molecular Dynamics Simulation , Palmitoyl Coenzyme A/metabolism , Protein Conformation , Signal Transduction , Structure-Activity Relationship
4.
Mol Cell ; 72(2): 316-327.e5, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30340023

ABSTRACT

Primary cilia are required for Smoothened to transduce vertebrate Hedgehog signals, but how Smoothened accumulates in cilia and is activated is incompletely understood. Here, we identify cilia-associated oxysterols that promote Smoothened accumulation in cilia and activate the Hedgehog pathway. Our data reveal that cilia-associated oxysterols bind to two distinct Smoothened domains to modulate Smoothened accumulation in cilia and tune the intensity of Hedgehog pathway activation. We find that the oxysterol synthase HSD11ß2 participates in the production of Smoothened-activating oxysterols and promotes Hedgehog pathway activity. Inhibiting oxysterol biosynthesis impedes oncogenic Hedgehog pathway activation and attenuates the growth of Hedgehog pathway-associated medulloblastoma, suggesting that targeted inhibition of Smoothened-activating oxysterol production may be therapeutically useful for patients with Hedgehog-associated cancers.


Subject(s)
Cilia/drug effects , Cilia/metabolism , Oxysterols/pharmacology , Animals , Cell Line , HEK293 Cells , Hedgehog Proteins/metabolism , Humans , Mice , NIH 3T3 Cells , Signal Transduction/drug effects
5.
Nature ; 535(7613): 517-522, 2016 07 28.
Article in English | MEDLINE | ID: mdl-27437577

ABSTRACT

Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzledclass G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked a top the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD-linker domain-TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains.


Subject(s)
Extracellular Space/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Anilides/chemistry , Anilides/metabolism , Anilides/pharmacology , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Binding Sites/genetics , Cholesterol/metabolism , Cholesterol/pharmacology , Crystallography, X-Ray , Cysteine/chemistry , Cysteine/genetics , Cysteine/metabolism , Hedgehog Proteins/metabolism , Humans , Ligands , Models, Molecular , Protein Binding/genetics , Protein Stability/drug effects , Protein Structure, Tertiary/drug effects , Protein Structure, Tertiary/genetics , Pyridines/chemistry , Pyridines/metabolism , Pyridines/pharmacology , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Signal Transduction/drug effects , Smoothened Receptor
6.
J Biol Chem ; 294(7): 2470-2485, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30554144

ABSTRACT

The membrane-associated RING-CH (MARCH) family of membrane-bound E3 ubiquitin ligases regulates the levels of cell-surface membrane proteins, many of which are involved in immune responses. Although their role in ubiquitin-dependent endocytosis and degradation of cell-surface proteins is extensively documented, the features of MARCH proteins and their substrates that drive the molecular recognition events leading to ubiquitin transfer remain poorly defined. In this study, we sought to determine the features of human MARCH9 that are required for regulating the surface levels of its substrate proteins. Consistent with previous studies of other MARCH proteins, we found that susceptibility to MARCH9 activity is encoded in the transmembrane (TM) domains of its substrates. Accordingly, substitutions at specific residues and motifs within MARCH9's TM domains resulted in varying degrees of functional impairment. Most notably, a single serine-to-alanine substitution in the first of its two TM domains rendered MARCH9 completely unable to alter the surface levels of two different substrates: the major histocompatibility class I molecule HLA-A2 and the T-cell co-receptor CD4. Solution NMR analysis of a MARCH9 fragment encompassing the two TM domains and extracellular connecting loop revealed that the residues contributing most to MARCH9 activity are located in the α-helical portions of TM1 and TM2 that are closest to the extracellular face of the lipid bilayer. This observation defines a key region required for substrate regulation. In summary, our biochemical and structural findings demonstrate that specific sequences in the α-helical MARCH9 TM domains make crucial contributions to its ability to down-regulate its protein substrates.


Subject(s)
Down-Regulation , Gene Expression Regulation, Enzymologic , Membrane Proteins/biosynthesis , Ubiquitin-Protein Ligases/biosynthesis , CD4 Antigens/chemistry , CD4 Antigens/genetics , CD4 Antigens/metabolism , HEK293 Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/genetics , HLA-A2 Antigen/metabolism , Humans , Membrane Proteins/chemistry , Membrane Proteins/genetics , Protein Domains , Protein Structure, Secondary , Serine/chemistry , Serine/genetics , Serine/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics
7.
Sci Adv ; 8(22): eabm5563, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35658032

ABSTRACT

Smoothened (SMO) transduces the Hedgehog (Hh) signal across the plasma membrane in response to accessible cholesterol. Cholesterol binds SMO at two sites: one in the extracellular cysteine-rich domain (CRD) and a second in the transmembrane domain (TMD). How these two sterol-binding sites mediate SMO activation in response to the ligand Sonic Hedgehog (SHH) remains unknown. We find that mutations in the CRD (but not the TMD) reduce the fold increase in SMO activity triggered by SHH. SHH also promotes the photocrosslinking of a sterol analog to the CRD in intact cells. In contrast, sterol binding to the TMD site boosts SMO activity regardless of SHH exposure. Mutational and computational analyses show that these sites are in allosteric communication despite being 45 angstroms apart. Hence, sterols function as both SHH-regulated orthosteric ligands at the CRD and allosteric ligands at the TMD to regulate SMO activity and Hh signaling.


Subject(s)
Cysteine , Hedgehog Proteins , Cholesterol/metabolism , Hedgehog Proteins/chemistry , Ligands , Sterols/chemistry
8.
Nat Protoc ; 13(12): 2991-3017, 2018 12.
Article in English | MEDLINE | ID: mdl-30455477

ABSTRACT

Structural, biochemical and biophysical studies of eukaryotic soluble and membrane proteins require their production in milligram quantities. Although large-scale protein expression strategies based on transient or stable transfection of mammalian cells are well established, they are associated with high consumable costs, limited transfection efficiency or long and tedious selection of clonal cell lines. Lentiviral transduction is an efficient method for the delivery of transgenes to mammalian cells and unifies the ease of use and speed of transient transfection with the robust expression of stable cell lines. In this protocol, we describe the design and step-by-step application of a lentiviral plasmid suite, termed pHR-CMV-TetO2, for the constitutive or inducible large-scale production of soluble and membrane proteins in HEK293 cell lines. Optional features include bicistronic co-expression of fluorescent marker proteins for enrichment of co-transduced cells using cell sorting and of biotin ligase for in vivo biotinylation. We demonstrate the efficacy of the method for a set of soluble proteins and for the G-protein-coupled receptor (GPCR) Smoothened (SMO). We further compare this method with baculovirus transduction of mammalian cells (BacMam), using the type-A γ-aminobutyric acid receptor (GABAAR) ß3 homopentamer as a test case. The protocols described here are optimized for simplicity, speed and affordability; lead to a stable polyclonal cell line and milligram-scale amounts of protein in 3-4 weeks; and routinely achieve an approximately three- to tenfold improvement in protein production yield per cell as compared to transient transduction or transfection.


Subject(s)
Lentivirus/genetics , Membrane Proteins/genetics , Plasmids/genetics , Transduction, Genetic/methods , Biotechnology/economics , Biotechnology/methods , Gene Expression , HEK293 Cells , Humans , Time Factors , Transduction, Genetic/economics
9.
J Vis Exp ; (73): e50141, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23486227

ABSTRACT

Physical interactions among the lipid-embedded alpha-helical domains of membrane proteins play a crucial role in folding and assembly of membrane protein complexes and in dynamic processes such as transmembrane (TM) signaling and regulation of cell-surface protein levels. Understanding the structural features driving the association of particular sequences requires sophisticated biophysical and biochemical analyses of TM peptide complexes. However, the extreme hydrophobicity of TM domains makes them very difficult to manipulate using standard peptide chemistry techniques, and production of suitable study material often proves prohibitively challenging. Identifying conditions under which peptides can adopt stable helical conformations and form complexes spontaneously adds a further level of difficulty. Here we present a procedure for the production of homo- or hetero-dimeric TM peptide complexes from materials that are expressed in E. coli, thus allowing incorporation of stable isotope labels for nuclear magnetic resonance (NMR) or non-natural amino acids for other applications relatively inexpensively. The key innovation in this method is that TM complexes are produced and purified as covalently associated (disulfide-crosslinked) assemblies that can form stable, stoichiometric and homogeneous structures when reconstituted into detergent, lipid or other membrane-mimetic materials. We also present carefully optimized procedures for expression and purification that are equally applicable whether producing single TM domains or crosslinked complexes and provide advice for adapting these methods to new TM sequences.


Subject(s)
Disulfides/metabolism , Membrane Proteins/biosynthesis , Membrane Proteins/chemistry , Disulfides/chemistry , Disulfides/isolation & purification , Escherichia coli/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Membrane Proteins/genetics , Membrane Proteins/isolation & purification , Nuclear Magnetic Resonance, Biomolecular/methods , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL