Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters

Publication year range
1.
Nat Immunol ; 22(8): 947-957, 2021 08.
Article in English | MEDLINE | ID: mdl-34239121

ABSTRACT

One of most challenging issues in tumor immunology is a better understanding of the dynamics in the accumulation of myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment (TIME), as this would lead to the development of new cancer therapeutics. Here, we show that translationally controlled tumor protein (TCTP) released by dying tumor cells is an immunomodulator crucial to full-blown MDSC accumulation in the TIME. We provide evidence that extracellular TCTP mediates recruitment of the polymorphonuclear MDSC (PMN-MDSC) population in the TIME via activation of Toll-like receptor-2. As further proof of principle, we show that inhibition of TCTP suppresses PMN-MDSC accumulation and tumor growth. In human cancers, we find an elevation of TCTP and an inverse correlation of TCTP gene dosage with antitumor immune signatures and clinical prognosis. This study reveals the hitherto poorly understood mechanism of the MDSC dynamics in the TIME, offering a new rationale for cancer immunotherapy.


Subject(s)
Biomarkers, Tumor/metabolism , Chemokine CXCL1/metabolism , Colorectal Neoplasms/immunology , Myeloid-Derived Suppressor Cells/immunology , Toll-Like Receptor 2/immunology , Tumor Microenvironment/immunology , Alarmins/genetics , Alarmins/metabolism , Animals , Biomarkers, Tumor/genetics , Cell Line, Tumor , Female , HEK293 Cells , Humans , Immunotherapy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells , Tumor Protein, Translationally-Controlled 1
2.
J Transl Med ; 20(1): 134, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35303909

ABSTRACT

BACKGROUND: A thorough understanding of a patient's inflammatory response to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is crucial to discerning the associated, underlying immunological processes and to the selection and implementation of treatment strategies. Defining peripheral blood biomarkers relevant to SARS-CoV-2 infection is fundamental to detecting and monitoring this systemic disease. This safety-focused study aims to monitor and characterize the immune response to SARS-CoV-2 infection via analysis of peripheral blood and nasopharyngeal swab samples obtained from patients hospitalized with Coronavirus disease 2019 (COVID-19), in the presence or absence of bamlanivimab treatment. METHODS: 23 patients hospitalized with COVID-19 were randomized to receive a single dose of the neutralizing monoclonal antibody, bamlanivimab (700 mg, 2800 mg or 7000 mg) or placebo, at study initiation (Clinical Trial; NCT04411628). Serum samples and nasopharyngeal swabs were collected at multiple time points over 1 month. A Proximity Extension Array was used to detect inflammatory profiles from protein biomarkers in the serum of hospitalized COVID-19 patients relative to age/sex-matched healthy controls. RNA sequencing was performed on nasopharyngeal swabs. A Luminex serology assay and Elecsys® Anti-SARS-CoV-2 immunoassay were used to detect endogenous antibody formation and to monitor seroconversion in each cohort over time. A mixed model for repeated measures approach was used to analyze changes in serology and serum proteins over time. RESULTS: Levels of IL-6, CXCL10, CXCL11, IFNγ and MCP-3 were > fourfold higher in the serum of patients with COVID-19 versus healthy controls and linked with observations of inflammatory and viral-induced interferon response genes detected in nasopharyngeal swab samples from the same patients. While IgA and IgM titers peaked around 7 days post-dose, IgG titers remained high, even after 28 days. Changes in biomarkers over time were not significantly different between the bamlanivimab and placebo groups. CONCLUSIONS: Similarities observed between nasopharyngeal gene expression patterns and peripheral blood biomarker profiles reveal a connection between the circulation and processes in the nasopharyngeal cavity, reinforcing the potential utility of systemic blood biomarker profiling for therapeutic monitoring of patient response. Serological antibody responses in patients correlated closely with reductions in the COVID-19 inflammatory protein biomarker signature. Bamlanivimab did not affect the biomarker dynamics in this hospitalized patient population.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Neutralizing , Antibodies, Viral , Biomarkers , Gene Expression , Humans , Nasopharynx , SARS-CoV-2
3.
J Allergy Clin Immunol ; 147(1): 107-111, 2021 01.
Article in English | MEDLINE | ID: mdl-32920092

ABSTRACT

BACKGROUND: Physicians treating patients with coronavirus disease 2019 (COVID-19) increasingly believe that the hyperinflammatory acute stage of COVID-19 results in a cytokine storm. The circulating biomarkers seen across the spectrum of COVID-19 have not been characterized compared with healthy controls, but such analyses are likely to yield insights into the pursuit of interventions that adequately reduce the burden of these cytokine storms. OBJECTIVE: To identify and characterize the host inflammatory response to severe acute respiratory syndrome coronavirus 2 infection, we assessed levels of proteins related to immune responses and cardiovascular disease in patients stratified as mild, moderate, and severe versus matched healthy controls. METHODS: Blood samples from adult patients hospitalized with COVID-19 were analyzed using high-throughput and ultrasensitive proteomic platforms and compared with age- and sex-matched healthy controls to provide insights into differential regulation of 185 markers. RESULTS: Results indicate a dominant hyperinflammatory milieu in the circulation and vascular endothelial damage markers within patients with COVID-19, and strong biomarker association with patient response as measured by Ordinal Scale. As patients progress, we observe statistically significant dysregulation of IFN-γ, IL-1RA, IL-6, IL-10, IL-19, monocyte chemoattractant protein (MCP)-1, MCP-2, MCP-3, CXCL9, CXCL10, CXCL5, ENRAGE, and poly (ADP-ribose) polymerase 1. Furthermore, in a limited series of patients who were sampled frequently, confirming reliability and reproducibility of our assays, we demonstrate that intervention with baricitinib attenuates these circulating biomarkers associated with the cytokine storm. CONCLUSIONS: These wide-ranging circulating biomarkers show an association with increased disease severity and may help stratify patients and selection of therapeutic options. They also provide insights into mechanisms of severe acute respiratory syndrome coronavirus 2 pathogenesis and the host response.


Subject(s)
COVID-19/blood , Cytokine Release Syndrome/blood , Cytokines/blood , Poly (ADP-Ribose) Polymerase-1/blood , Proteomics , SARS-CoV-2/metabolism , Adult , Biomarkers/blood , Female , Humans , Male
4.
Clin Exp Immunol ; 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-35020861

ABSTRACT

The pathogenesis of atopic dermatitis (AD) results from complex interactions between environmental factors, barrier defects, and immune dysregulation resulting in systemic inflammation. Therefore, we sought to characterize circulating inflammatory profiles in pediatric AD patients and identify potential signaling nodes which drive disease heterogeneity and progression. We analyzed a sample set of 87 infants that were at high risk for atopic disease based on atopic dermatitis diagnoses. Clinical parameters, serum, and peripheral blood mononuclear cells (PBMCs) were collected upon entry, and at one and four years later. Within patient serum, 126 unique analytes were measured using a combination of multiplex platforms and ultrasensitive immunoassays. We assessed the correlation of inflammatory analytes with AD severity (SCORAD). Key biomarkers, such as IL-13 (rmcorr=0.47) and TARC/CCL17 (rmcorr=0.37), among other inflammatory signals, significantly correlated with SCORAD across all timepoints in the study. Flow cytometry and pathway analysis of these analytes implies that CD4 T cell involvement in type 2 immune responses were enhanced at the earliest time point (year 1) relative to the end of study collection (year 5). Importantly, forward selection modeling identified 18 analytes in infant serum at study entry which could be used to predict change in SCORAD four years later. We have identified a pediatric AD biomarker signature linked to disease severity which will have predictive value in determining AD persistence in youth and provide utility in defining core systemic inflammatory signals linked to pathogenesis of atopic disease.

5.
Exp Dermatol ; 30(11): 1650-1661, 2021 11.
Article in English | MEDLINE | ID: mdl-34003519

ABSTRACT

Atopic dermatitis (AD) is a heterogeneous systemic inflammatory skin disease associated with dysregulated immune responses, barrier dysfunction and activated sensory nerves. To characterize circulating inflammatory profiles and underlying systemic disease heterogeneity within AD patients, blood samples from adult patients (N = 123) with moderate-to-severe AD in a phase 2 study of baricitinib (JAHG) were analysed. Baseline levels of 131 markers were evaluated using high-throughput and ultrasensitive proteomic platforms, patient clusters were generated based on these peripheral markers. We implemented a novel cluster reproducibility method to validate cluster outcomes within our study and used publicly available AD biomarker data set (73 markers, N = 58 patients) to validate our findings. Cluster reproducibility analysis demonstrated best consistency for 2 clusters by k-means, reproducibility of this clustering outcome was validated in an independent patient cohort. These unique JAHG patient subgroups either possessed elevated pro-inflammatory mediators, notably TNFß, MCP-3 and IL-13, among a variety of immune responses (high inflammatory) or lower levels of inflammatory biomarkers (low inflammatory). The high inflammatory subgroup was associated with greater baseline disease severity, demonstrated by greater EASI, SCORAD Index, Itch NRS and DLQI scores, compared with low inflammatory subgroup. African-American patients were predominantly associated with the high inflammatory subgroup and increased baseline disease severity. In patients with moderate-to-severe AD, heterogeneity was identified by the detection of 2 disease subgroups, differential clustering amongst ethnic groups and elevated pro-inflammatory mediators extending beyond traditional polarized immune responses. Therapeutic strategies targeting multiple pro-inflammatory cytokines may be needed to address this heterogeneity.


Subject(s)
Azetidines/therapeutic use , Dermatitis, Atopic/blood , Dermatitis, Atopic/drug therapy , Purines/therapeutic use , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Adult , Biomarkers/blood , Dermatitis, Atopic/complications , Female , Humans , Male , Middle Aged , Severity of Illness Index , Young Adult
6.
Mol Cell Proteomics ; 18(9): 1836-1850, 2019 09.
Article in English | MEDLINE | ID: mdl-31289117

ABSTRACT

Protein biomarkers for epithelial ovarian cancer are critical for the early detection of the cancer to improve patient prognosis and for the clinical management of the disease to monitor treatment response and to detect recurrences. Unfortunately, the discovery of protein biomarkers is hampered by the limited availability of reliable and sensitive assays needed for the reproducible quantification of proteins in complex biological matrices such as blood plasma. In recent years, targeted mass spectrometry, exemplified by selected reaction monitoring (SRM) has emerged as a method, capable of overcoming this limitation. Here, we present a comprehensive SRM-based strategy for developing plasma-based protein biomarkers for epithelial ovarian cancer and illustrate how the SRM platform, when combined with rigorous experimental design and statistical analysis, can result in detection of predictive analytes.Our biomarker development strategy first involved a discovery-driven proteomic effort to derive potential N-glycoprotein biomarker candidates for plasma-based detection of human ovarian cancer from a genetically engineered mouse model of endometrioid ovarian cancer, which accurately recapitulates the human disease. Next, 65 candidate markers selected from proteins of different abundance in the discovery dataset were reproducibly quantified with SRM assays across a large cohort of over 200 plasma samples from ovarian cancer patients and healthy controls. Finally, these measurements were used to derive a 5-protein signature for distinguishing individuals with epithelial ovarian cancer from healthy controls. The sensitivity of the candidate biomarker signature in combination with CA125 ELISA-based measurements currently used in clinic, exceeded that of CA125 ELISA-based measurements alone. The SRM-based strategy in this study is broadly applicable. It can be used in any study that requires accurate and reproducible quantification of selected proteins in a high-throughput and multiplexed fashion.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Ovarian Epithelial/blood , Mass Spectrometry/methods , Ovarian Neoplasms/blood , Proteomics/methods , Animals , Antigens, Neoplasm/blood , Blood Proteins/analysis , CA-125 Antigen/blood , Case-Control Studies , Cohort Studies , Desmoglein 2/blood , Female , Heavy Chain Disease/blood , Humans , Immunoglobulin mu-Chains/blood , Membrane Proteins/blood , Mice, Transgenic , Neural Cell Adhesion Molecule L1/blood , Sensitivity and Specificity , Thrombospondin 1/blood
7.
Nat Methods ; 11(3): 301-4, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24441934

ABSTRACT

Targeted proteomics is a method of choice for accurate and high-throughput quantification of predefined sets of proteins. Many workflows use isotope-labeled reference peptides for every target protein, which is time consuming and costly. We report a statistical approach for quantifying full protein panels with a reduced set of reference peptides. This label-sparse approach achieves accurate quantification while reducing experimental cost and time. It is implemented in the software tool SparseQuant.


Subject(s)
Chemistry Techniques, Analytical/methods , Proteins/analysis , Proteins/chemistry , Proteomics , Animals , Cell Line, Tumor , Humans , Isotope Labeling , Liver/chemistry , Liver/metabolism , Mice , Reference Standards , Time Factors
10.
Mol Cell Proteomics ; 14(3): 739-49, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25561506

ABSTRACT

Targeted mass spectrometry by selected reaction monitoring (S/MRM) has proven to be a suitable technique for the consistent and reproducible quantification of proteins across multiple biological samples and a wide dynamic range. This performance profile is an important prerequisite for systems biology and biomedical research. However, the method is limited to the measurements of a few hundred peptides per LC-MS analysis. Recently, we introduced SWATH-MS, a combination of data independent acquisition and targeted data analysis that vastly extends the number of peptides/proteins quantified per sample, while maintaining the favorable performance profile of S/MRM. Here we applied the SWATH-MS technique to quantify changes over time in a large fraction of the proteome expressed in Saccharomyces cerevisiae in response to osmotic stress. We sampled cell cultures in biological triplicates at six time points following the application of osmotic stress and acquired single injection data independent acquisition data sets on a high-resolution 5600 tripleTOF instrument operated in SWATH mode. Proteins were quantified by the targeted extraction and integration of transition signal groups from the SWATH-MS datasets for peptides that are proteotypic for specific yeast proteins. We consistently identified and quantified more than 15,000 peptides and 2500 proteins across the 18 samples. We demonstrate high reproducibility between technical and biological replicates across all time points and protein abundances. In addition, we show that the abundance of hundreds of proteins was significantly regulated upon osmotic shock, and pathway enrichment analysis revealed that the proteins reacting to osmotic shock are mainly involved in the carbohydrate and amino acid metabolism. Overall, this study demonstrates the ability of SWATH-MS to efficiently generate reproducible, consistent, and quantitatively accurate measurements of a large fraction of a proteome across multiple samples.


Subject(s)
Mass Spectrometry/methods , Proteomics/methods , Saccharomyces cerevisiae Proteins/analysis , Saccharomyces cerevisiae/metabolism , Carbohydrate Metabolism , Osmosis , Peptides/metabolism , Reproducibility of Results
11.
Am J Respir Cell Mol Biol ; 53(5): 689-702, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25874372

ABSTRACT

Statins are widely used to prevent cardiovascular disease. In addition to their inhibitory effects on cholesterol synthesis, statins have beneficial effects in patients with sepsis and pneumonia, although molecular mechanisms have mostly remained unclear. Using human airway epithelial cells as a proper in vitro model, we show that prior exposure to physiological nanomolar serum concentrations of simvastatin (ranging from 10-1,000 nM) confers significant cellular resistance to the cytotoxicity of pneumolysin, a pore-forming toxin and the main virulence factor of Streptococcus pneumoniae. This protection could be demonstrated with a different statin, pravastatin, or on a different toxin, α-hemolysin. Furthermore, through the use of gene silencing, pharmacological inhibitors, immunofluorescence microscopy, and biochemical and metabolic rescue approaches, we demonstrate that the mechanism of protection conferred by simvastatin at physiological nanomolar concentrations could be different from the canonical mevalonate pathways seen in most other mechanistic studies conducted with statins at micromolar levels. All of these data are integrated into a protein synthesis-dependent, calcium-dependent model showing the interconnected pathways used by statins in airway epithelial cells to elicit an increased resistance to pore-forming toxins. This research fills large gaps in our understanding of how statins may confer host cellular protection against bacterial infections in the context of airway epithelial cells without the confounding effect from the presence of immune cells. In addition, our discovery could be potentially developed into a host-centric strategy for the adjuvant treatment of pore-forming toxin associated bacterial infections.


Subject(s)
Bacterial Toxins/antagonists & inhibitors , Epithelial Cells/drug effects , Hemolysin Proteins/antagonists & inhibitors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Immunity, Innate/drug effects , Simvastatin/pharmacology , Streptolysins/antagonists & inhibitors , Animals , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/toxicity , Bacterial Toxins/toxicity , Cell Line, Transformed , Epithelial Cells/immunology , Epithelial Cells/pathology , Hemolysin Proteins/toxicity , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/immunology , Injections, Intraperitoneal , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Mice, Inbred C57BL , Pravastatin/immunology , Pravastatin/pharmacology , Primary Cell Culture , Respiratory Mucosa/drug effects , Respiratory Mucosa/immunology , Respiratory Mucosa/pathology , Simvastatin/immunology , Staphylococcus aureus/chemistry , Streptococcus pneumoniae/chemistry , Streptolysins/toxicity
12.
Bioinformatics ; 30(17): 2524-6, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-24794931

ABSTRACT

UNLABELLED: MSstats is an R package for statistical relative quantification of proteins and peptides in mass spectrometry-based proteomics. Version 2.0 of MSstats supports label-free and label-based experimental workflows and data-dependent, targeted and data-independent spectral acquisition. It takes as input identified and quantified spectral peaks, and outputs a list of differentially abundant peptides or proteins, or summaries of peptide or protein relative abundance. MSstats relies on a flexible family of linear mixed models. AVAILABILITY AND IMPLEMENTATION: The code, the documentation and example datasets are available open-source at www.msstats.org under the Artistic-2.0 license. The package can be downloaded from www.msstats.org or from Bioconductor www.bioconductor.org and used in an R command line workflow. The package can also be accessed as an external tool in Skyline (Broudy et al., 2014) and used via graphical user interface.


Subject(s)
Mass Spectrometry/methods , Proteomics/methods , Software , Data Interpretation, Statistical , Peptides/analysis , Peptides/chemistry , Proteins/analysis , Proteins/chemistry
13.
Inorg Chem ; 54(22): 10918-24, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26513649

ABSTRACT

A fluorescent Zn(II)-salicyaldimine coordination polymer, [Zn(L(salpyca))(H2O)]n (1; H2L(salpyca) = 4-hydroxy-3-(((pyridin-2-yl)methylimino)methyl)benzoic acid), showing a one-dimensional (1D) zigzag chain structure has been hydro(solvo)thermally synthesized. Removal of coordination water molecules in 1 by thermal dehydration gives rise to the dehydration product [Zn(L(salpyca))]n (1'), which has a dizinc-based two-dimensional (2D) gridlike (4,4)-layer structure. X-ray powder diffraction (XRPD) patterns, thermogravimetric (TG) analyses, and infrared (IR) spectra all clearly indicate that the structure of 1 is quite flexible as a result of a reversible 1D-2D single-crystal to single-crystal (SCSC) transformation upon removal and rebinding of coordination water molecules, which accompanies changes in coordination sphere and network dimensionality. Additionally, Zn(II)-salicyaldimine polymers 1 and 1' exhibit different solid-state photoluminescences at 458 and 480 nm, respectively. This is reasonably attributed to the close-packing effect and/or the influences of the differences on the conformation and the coordination mode of the L(salpyca) ligand and the coordination geometry around the Zn(II) center.

14.
Int J Mol Sci ; 16(5): 9504-19, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25923080

ABSTRACT

The high affinity immunoglobulin E (IgE) receptor-FcεR1 is mainly expressed on the surface of effector cells. Cross-linking of IgE Abs bound to FcεR1 by multi-valent antigens can induce the activation of these cells and the secretion of inflammatory mediators. Since FcεR1 plays a central role in the induction and maintenance of allergic responses, this study aimed to investigate the association of FcεR1 with the allergic phenotype of Cε expression and cytokine and histamine release from peripheral leukocytes. Peripheral leukocytes from 67 allergic and 50 non-allergic subjects were used for genotyping analysis. Peripheral mononuclear cells (PBMCs) were used for Cε expression and ELISpot analysis, while polymorphonuclear cells (PMNs) were used for histamine release. The association between genotype polymorphism of the FcεR1α promoter region (rs2427827 and rs2251746) and allergic features of Cε expression and histamine were analyzed, and their effects on leukocytes function were compared with wild type. The genotype polymorphisms of FcεR1α promoter region with CT and TT in rs2427827 and TC in rs2251746 were significantly higher in allergic patients than in non-allergic controls. Patients with single nucleotide polymorphism (SNP) of FcεR1α promoter region had high levels of total IgE, mite-specific Der p 2 (Group 2 allergen of Dermatophagoides pteronyssinus)-specific IgE and IgE secretion B cells. The mRNA expression of FcεR1α was significantly increased after Der p2 stimulation in PBMCs with SNPs of the FcεR1α promoter region. Despite the increased Cε mRNA expression in PBMCs and histamine release from PMNs and the up-regulated mRNA expression of interleukin (IL)-6 and IL-8 secretions after Der p2 stimulation, there was no statistically significant difference between SNPs of the FcεR1α promoter region and the wild type. SNPs of FcεR1α promoter region were associated with IgE expression, IgE producing B cells, and increased Der p2-induced FcεR1α mRNA expression. These SNPs may be used as a disease marker for IgE-mediated allergic inflammation caused by Dermatophagoides pteronyssinus.


Subject(s)
Hypersensitivity, Immediate/genetics , Immunoglobulin Constant Regions/metabolism , Receptors, IgE/genetics , Adolescent , Adult , Alleles , Animals , Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Child , Female , Genotype , Humans , Hypersensitivity, Immediate/immunology , Immunoglobulin Constant Regions/genetics , Immunoglobulin E/biosynthesis , Male , Middle Aged , Neutrophils/cytology , Phenotype , Pilot Projects , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Pyroglyphidae/immunology , RNA, Messenger/metabolism , Young Adult
15.
Mol Syst Biol ; 9: 681, 2013 Jul 16.
Article in English | MEDLINE | ID: mdl-23860498

ABSTRACT

The metabolic syndrome is a collection of risk factors including obesity, insulin resistance and hepatic steatosis, which occur together and increase the risk of diseases such as diabetes, cardiovascular disease and cancer. In spite of intense research, the complex etiology of insulin resistance and its association with the accumulation of triacylglycerides in the liver and with hepatic steatosis remains not completely understood. Here, we performed quantitative measurements of 144 proteins involved in the insulin-signaling pathway and central metabolism in liver homogenates of two genetically well-defined mouse strains C57BL/6J and 129Sv that were subjected to a sustained high-fat diet. We used targeted mass spectrometry by selected reaction monitoring (SRM) to generate accurate and reproducible quantitation of the targeted proteins across 36 different samples (12 conditions and 3 biological replicates), generating one of the largest quantitative targeted proteomics data sets in mammalian tissues. Our results revealed rapid response to high-fat diet that diverged early in the feeding regimen, and evidenced a response to high-fat diet dominated by the activation of peroxisomal ß-oxidation in C57BL/6J and by lipogenesis in 129Sv mice.


Subject(s)
Diet, High-Fat , Fatty Liver/metabolism , Insulin/metabolism , Lipogenesis/genetics , Obesity/metabolism , Peroxisomes/metabolism , Proteome/metabolism , Signal Transduction , Adipogenesis/genetics , Animals , Fatty Liver/etiology , Fatty Liver/genetics , Gene Expression Regulation , Insulin Resistance/genetics , Mass Spectrometry , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Obesity/etiology , Obesity/genetics , Oxidation-Reduction , Peroxisomes/genetics , Proteome/genetics , Species Specificity
16.
Mol Cell Proteomics ; 11(4): M111.014662, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22190732

ABSTRACT

Selected reaction monitoring (SRM) is a targeted mass spectrometry technique that provides sensitive and accurate protein detection and quantification in complex biological mixtures. Statistical and computational tools are essential for the design and analysis of SRM experiments, particularly in studies with large sample throughput. Currently, most such tools focus on the selection of optimized transitions and on processing signals from SRM assays. Little attention is devoted to protein significance analysis, which combines the quantitative measurements for a protein across isotopic labels, peptides, charge states, transitions, samples, and conditions, and detects proteins that change in abundance between conditions while controlling the false discovery rate. We propose a statistical modeling framework for protein significance analysis. It is based on linear mixed-effects models and is applicable to most experimental designs for both isotope label-based and label-free SRM workflows. We illustrate the utility of the framework in two studies: one with a group comparison experimental design and the other with a time course experimental design. We further verify the accuracy of the framework in two controlled data sets, one from the NCI-CPTAC reproducibility investigation and the other from an in-house spike-in study. The proposed framework is sensitive and specific, produces accurate results in broad experimental circumstances, and helps to optimally design future SRM experiments. The statistical framework is implemented in an open-source R-based software package SRMstats, and can be used by researchers with a limited statistics background as a stand-alone tool or in integration with the existing computational pipelines.


Subject(s)
Mass Spectrometry/methods , Models, Statistical , Proteomics/methods , Female , Glycolysis , Humans , Ovarian Neoplasms/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
17.
Mol Cell Proteomics ; 11(7): M111.014746, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22361236

ABSTRACT

Eicosanoids constitute a diverse class of bioactive lipid mediators that are produced from arachidonic acid and play critical roles in cell signaling and inflammatory aspects of numerous diseases. We have previously quantified eicosanoid metabolite production in RAW264.7 macrophage cells in response to Toll-like receptor 4 signaling and analyzed the levels of transcripts coding for the enzymes involved in the eicosanoid metabolite biosynthetic pathways. We now report the quantification of changes in protein levels under similar experimental conditions in RAW264.7 macrophages by multiple reaction monitoring mass spectrometry, an accurate targeted protein quantification method. The data complete the first fully integrated genomic, proteomic, and metabolomic analysis of the eicosanoid biochemical pathway.


Subject(s)
Arachidonic Acid/metabolism , Biosynthetic Pathways/drug effects , Eicosanoids/biosynthesis , Inflammation/metabolism , Macrophages/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Line , Inflammation/chemically induced , Lipid Metabolism/drug effects , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Mass Spectrometry , Metabolomics , Mice , Proteomics , Signal Transduction/drug effects
19.
Sci Rep ; 11(1): 21737, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34741083

ABSTRACT

Allergic rhinitis (AR) and chronic rhinosinusitis (CRS) share some similar pathological mechanisms. In current study, we intend to investigate the impact of AR on CRS. In addition, we explored the efficacy of erythromycin (EM) treatment on CRS mice with or without AR (CRSwoAR, CRSwAR). Study subjects were divided into control, CRSwoAR, and CRSwAR groups. Experimental mice were divided similarly into control, CRSwoAR, and CRSwAR groups. In addition, CRS mice were treated with EM at 0.75, 7.5, or 75 mg/kg or with dexamethasone (Dex) at 1 mg/kg. In our results, allergy exacerbates inflammation that was evident in nasal histology and cytokine expression both in patients and in mice with CRS. Dex 1 mg/kg, EM 7.5 or 75 mg/kg treatments significantly inhibited serum IgE and IgG2a in CRS mice. EM-treated CRS mice had significantly elevated IL-10 levels and had a reversal of Th-1/Th-2 cytokine expression in nasal-associated lymphoid tissue. MUC5AC expressions were significantly reduced in the 7.5 or 75 mg/kg EM-treated mice compared with untreated mice. EM showed inhibitions on immunoglobulin production and mucus secretion stronger than Dex. We concluded that comorbid AR enhanced inflammation of CRS. EM and Dex treatments showed similar anti-inflammatory effects on CRS but through partly different mechanisms.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Erythromycin/therapeutic use , Nasal Mucosa/metabolism , Rhinitis, Allergic/complications , Sinusitis/complications , Adult , Aged , Aged, 80 and over , Animals , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Chronic Disease , Cytokines/metabolism , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Drug Evaluation, Preclinical , Erythromycin/pharmacology , Female , Humans , Immunoglobulin E/metabolism , Male , Mice, Inbred BALB C , Middle Aged , Mucus/metabolism , Rhinitis, Allergic/drug therapy , Rhinitis, Allergic/metabolism , Sinusitis/drug therapy , Sinusitis/metabolism , Young Adult
20.
Am J Vet Res ; 71(12): 1462-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21117998

ABSTRACT

OBJECTIVE: To investigate the effects of heparin administration on urine protein excretion during the developmental stages of experimentally induced laminitis in horses. ANIMALS: 13 horses. Procedures-Horses received unfractionated heparin (80 U/kg, SC, q 8 h; n=7) or no treatment (control group; 6) beginning 3 days prior to induction of laminitis. All horses were given 3 oligofructose loading doses (1 g/kg each) at 24-hour intervals and a laminitis induction dose (10 g of oligofructose/kg) 24 hours following the final loading dose (designated as 0 hours) via nasogastric tube. Serum glucose and insulin concentrations were measured before administration of the first loading dose (baseline) and at 0 and 24 hours; urine protein-to-creatinine (UP:C) ratio was determined at 0 hours and every 4 hours thereafter. Lameness was evaluated every 6 hours, and horses were euthanized when Obel grade 2 lameness was observed. RESULTS: Mean±SD time until euthanasia did not differ significantly between the heparin-treated (28.9±6.5 hours) and control (29.0±6.9 hours) horses. The UP:C ratio was significantly increased from baseline at 20 to 28 hours after induction of laminitis (ie, 4±4 hours before lameness was evident) in control horses but did not change significantly from baseline in heparin-treated horses. Serum glucose or insulin concentration did not change significantly from baseline in either group. CONCLUSIONS AND CLINICAL RELEVANCE: Urine protein excretion increased during the developmental stages of carbohydrate-induced laminitis in horses; administration of heparin prevented that increase, but did not delay onset or decrease severity of lameness.


Subject(s)
Heparin/pharmacology , Horse Diseases/chemically induced , Lameness, Animal/chemically induced , Proteinuria/veterinary , Animals , Blood Glucose/metabolism , Female , Heparin/adverse effects , Horse Diseases/blood , Horses , Insulin/blood , Lameness, Animal/blood , Male , Oligosaccharides/pharmacology , Orchiectomy/veterinary , Proteinuria/chemically induced , Software
SELECTION OF CITATIONS
SEARCH DETAIL