Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Anal Chem ; 95(47): 17263-17272, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37956201

ABSTRACT

Intact protein mass spectrometry (MS) coupled with liquid chromatography was applied to characterize the pharmacokinetics and stability profiles of therapeutic proteins. However, limitations from chromatography, including throughput and carryover, result in challenges with handling large sample numbers. Here, we combined intact protein MS with multiple front-end separations, including affinity capture, SampleStream, and high-field asymmetric waveform ion mobility spectrometry (FAIMS), to perform high-throughput and specific mass measurements of a multivalent antibody with one antigen-binding fragment (Fab) fused to an immunoglobulin G1 (IgG1) antibody. Generic affinity capture ensures the retention of both intact species 1Fab-IgG1 and the tentative degradation product IgG1. Subsequently, the analytes were directly loaded into SampleStream, where each injection occurs within ∼30 s. By separating ions prior to MS detection, FAIMS further offered improvement in signal-overnoise by ∼30% for denatured protein MS via employing compensation voltages that were optimized for different antibody species. When enhanced FAIMS transmission of 1Fab-IgG1 was employed, a qualified assay was established for spiked-in serum samples between 0.1 and 25 µg/mL, resulting in ∼10% accuracy bias and precision coefficient of variation. Selective FAIMS transmission of IgG1 as the degradation surrogate product enabled more sensitive detection of clipped species for intact 1Fab-IgG1 at 5 µg/mL in serum, generating an assay to measure 1Fab-IgG1 truncation between 2.5 and 50% with accuracy and precision below 20% bias and coefficient of variation. Our results revealed that the SampleStream-FAIMS-MS platform affords high throughput, selectivity, and sensitivity for characterizing therapeutic antibodies from complex biomatrices qualitatively and quantitatively.


Subject(s)
Immunoglobulin G , Ion Mobility Spectrometry , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Chromatography, Liquid , Ions/chemistry
2.
J Allergy Clin Immunol ; 150(4): 972-978.e7, 2022 10.
Article in English | MEDLINE | ID: mdl-35487308

ABSTRACT

BACKGROUND: Clinical studies of type 2 (T2) cytokine-related neutralizing antibodies in asthma have identified a substantial subset of patients with low levels of T2 inflammation who do not benefit from T2 cytokine neutralizing antibody treatment. Non-T2 mechanisms are poorly understood in asthma but represent a redefined unmet medical need. OBJECTIVE: We sought to gain a better understanding of genetic contributions to T2-low asthma. METHODS: We utilized an unbiased genome-wide association study of patients with moderate to severe asthma stratified by T2 serum biomarker periostin. We also performed additional expression and biological analysis for the top genetic hits. RESULTS: We identified a novel protective single nucleotide polymorphism at chr19q13.41, which is selectively associated with T2-low asthma and establishes Kallikrein-related peptidase 5 (KLK5) as the causal gene mediating this association. Heterozygous carriers of the single nucleotide polymorphisms have reduced KLK5 expression. KLK5 is secreted by human bronchial epithelial cells and elevated in asthma bronchial alveolar lavage. T2 cytokines IL-4 and IL-13 downregulate KLK5 in human bronchial epithelial cells. KLK5, dependent on its catalytic function, induces epithelial chemokine/cytokine expression. Finally, overexpression of KLK5 in airway or lack of an endogenous KLK5 inhibitor, SPINK5, leads to spontaneous airway neutrophilic inflammation. CONCLUSION: Our data identify KLK5 to be the causal gene at a novel locus at chr19q13.41 associated with T2-low asthma.


Subject(s)
Asthma , Genome-Wide Association Study , Antibodies, Neutralizing/genetics , Asthma/genetics , Chemokines/genetics , Cytokines/metabolism , Humans , Inflammation/genetics , Interleukin-13/genetics , Interleukin-4/genetics , Kallikreins/genetics , Kallikreins/metabolism
3.
Nature ; 529(7584): 97-100, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26700806

ABSTRACT

Colorectal cancer remains a major unmet medical need, prompting large-scale genomics efforts in the field to identify molecular drivers for which targeted therapies might be developed. We previously reported the identification of recurrent translocations in R-spondin genes present in a subset of colorectal tumours. Here we show that targeting RSPO3 in PTPRK-RSPO3-fusion-positive human tumour xenografts inhibits tumour growth and promotes differentiation. Notably, genes expressed in the stem-cell compartment of the intestine were among those most sensitive to anti-RSPO3 treatment. This observation, combined with functional assays, suggests that a stem-cell compartment drives PTPRK-RSPO3 colorectal tumour growth and indicates that the therapeutic targeting of stem-cell properties within tumours may be a clinically relevant approach for the treatment of colorectal tumours.


Subject(s)
Cell Differentiation/drug effects , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Molecular Targeted Therapy , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/metabolism , Thrombospondins/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Antibodies/therapeutic use , Cell Division/drug effects , Colorectal Neoplasms/metabolism , Disease Progression , Female , Gene Expression Regulation/drug effects , Humans , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/drug effects , Intestines/pathology , Male , Mice , Neoplastic Stem Cells/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Thrombospondins/antagonists & inhibitors , Thrombospondins/immunology , Xenograft Model Antitumor Assays
4.
Nature ; 528(7580): 127-31, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26580007

ABSTRACT

Prevailing dogma holds that cell-cell communication through Notch ligands and receptors determines binary cell fate decisions during progenitor cell divisions, with differentiated lineages remaining fixed. Mucociliary clearance in mammalian respiratory airways depends on secretory cells (club and goblet) and ciliated cells to produce and transport mucus. During development or repair, the closely related Jagged ligands (JAG1 and JAG2) induce Notch signalling to determine the fate of these lineages as they descend from a common proliferating progenitor. In contrast to such situations in which cell fate decisions are made in rapidly dividing populations, cells of the homeostatic adult airway epithelium are long-lived, and little is known about the role of active Notch signalling under such conditions. To disrupt Jagged signalling acutely in adult mammals, here we generate antibody antagonists that selectively target each Jagged paralogue, and determine a crystal structure that explains selectivity. We show that acute Jagged blockade induces a rapid and near-complete loss of club cells, with a concomitant gain in ciliated cells, under homeostatic conditions without increased cell death or division. Fate analyses demonstrate a direct conversion of club cells to ciliated cells without proliferation, meeting a conservative definition of direct transdifferentiation. Jagged inhibition also reversed goblet cell metaplasia in a preclinical asthma model, providing a therapeutic foundation. Our discovery that Jagged antagonism relieves a blockade of cell-to-cell conversion unveils unexpected plasticity, and establishes a model for Notch regulation of transdifferentiation.


Subject(s)
Antibodies/therapeutic use , Cell Transdifferentiation , Lung/cytology , Lung/metabolism , Receptors, Notch/metabolism , Animals , Antibodies/immunology , Antibodies/pharmacology , Asthma/drug therapy , Asthma/metabolism , Asthma/pathology , Calcium-Binding Proteins/antagonists & inhibitors , Calcium-Binding Proteins/immunology , Calcium-Binding Proteins/metabolism , Cell Death/drug effects , Cell Division/drug effects , Cell Lineage/drug effects , Cell Tracking , Cell Transdifferentiation/drug effects , Cilia/metabolism , Disease Models, Animal , Female , Goblet Cells/cytology , Goblet Cells/drug effects , Goblet Cells/pathology , Homeostasis/drug effects , Humans , Intercellular Signaling Peptides and Proteins/immunology , Intercellular Signaling Peptides and Proteins/metabolism , Jagged-1 Protein , Jagged-2 Protein , Ligands , Lung/drug effects , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/immunology , Membrane Proteins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Serrate-Jagged Proteins , Signal Transduction/drug effects
5.
J Am Soc Nephrol ; 31(9): 2044-2064, 2020 09.
Article in English | MEDLINE | ID: mdl-32764142

ABSTRACT

BACKGROUND: APOL1 is found in human kidney podocytes and endothelia. Variants G1 and G2 of the APOL1 gene account for the high frequency of nondiabetic CKD among African Americans. Proposed mechanisms of kidney podocyte cytotoxicity resulting from APOL1 variant overexpression implicate different subcellular compartments. It is unclear where endogenous podocyte APOL1 resides, because previous immunolocalization studies utilized overexpressed protein or commercially available antibodies that crossreact with APOL2. This study describes and distinguishes the locations of both APOLs. METHODS: Immunohistochemistry, confocal and immunoelectron microscopy, and podocyte fractionation localized endogenous and transfected APOL1 using a large panel of novel APOL1-specific mouse and rabbit monoclonal antibodies. RESULTS: Both endogenous podocyte and transfected APOL1 isoforms vA and vB1 (and a little of isoform vC) localize to the luminal face of the endoplasmic reticulum (ER) and to the cell surface, but not to mitochondria, endosomes, or lipid droplets. In contrast, APOL2, isoform vB3, and most vC of APOL1 localize to the cytoplasmic face of the ER and are consequently absent from the cell surface. APOL1 knockout podocytes do not stain for APOL1, attesting to the APOL1-specificity of the antibodies. Stable re-transfection of knockout podocytes with inducible APOL1-G0, -G1, and -G2 showed no differences in localization among variants. CONCLUSIONS: APOL1 is found in the ER and plasma membrane, consistent with either the ER stress or surface cation channel models of APOL1-mediated cytotoxicity. The surface localization of APOL1 variants potentially opens new therapeutic targeting avenues.


Subject(s)
Apolipoprotein L1/analysis , Cell Membrane/chemistry , Endoplasmic Reticulum/chemistry , Podocytes/chemistry , Animals , Antibodies/immunology , Apolipoprotein L1/immunology , Apolipoproteins L/analysis , COS Cells , Cells, Cultured , Chlorocebus aethiops , Cross Reactions , Humans , Immunohistochemistry , Mice , Mice, Inbred C57BL , Podocytes/ultrastructure
6.
Diabetologia ; 61(9): 2016-2029, 2018 09.
Article in English | MEDLINE | ID: mdl-29971529

ABSTRACT

AIMS/HYPOTHESIS: Islet transplantation is a treatment option that can help individuals with type 1 diabetes become insulin independent, but inefficient oxygen and nutrient delivery can hamper islet survival and engraftment due to the size of the islets and loss of the native microvasculature. We hypothesised that size-controlled pseudoislets engineered via centrifugal-forced-aggregation (CFA-PI) in a platform we previously developed would compare favourably with native islets, even after taking into account cell loss during the process. METHODS: Human islets were dissociated and reaggregated into uniform, size-controlled CFA-PI in our microwell system. Their performance was assessed in vitro and in vivo over a range of sizes, and compared with that of unmodified native islets, as well as islet cell clusters formed by a conventional spontaneous aggregation approach (in which dissociated islet cells are cultured on ultra-low-attachment plates). In vitro studies included assays for membrane integrity, apoptosis, glucose-stimulated insulin secretion assay and total DNA content. In vivo efficacy was determined by transplantation under the kidney capsule of streptozotocin-treated Rag1-/- mice, with non-fasting blood glucose monitoring three times per week and IPGTT at day 60 for glucose response. A recovery nephrectomy, removing the graft, was conducted to confirm efficacy after completing the IPGTT. Architecture and composition were analysed by histological assessment via insulin, glucagon, pancreatic polypeptide, somatostatin, CD31 and von Willebrand factor staining. RESULTS: CFA-PI exhibit markedly increased uniformity over native islets, as well as substantially improved glucose-stimulated insulin secretion (8.8-fold to 11.1-fold, even after taking cell loss into account) and hypoxia tolerance. In vivo, CFA-PI function similarly to (and potentially better than) native islets in reversing hyperglycaemia (55.6% for CFA-PI vs 20.0% for native islets at 500 islet equivalents [IEQ], and 77.8% for CFA-PI vs 55.6% for native islets at 1000 IEQ), and significantly better than spontaneously aggregated control cells (55.6% for CFA-PI vs 0% for spontaneous aggregation at 500 IEQ, and 77.8% CFA-PI vs 33.4% for spontaneous aggregation at 1000 IEQ; p < 0.05). Glucose clearance in the CFA-PI groups was improved over that in the native islet groups (CFA-PI 18.1 mmol/l vs native islets 29.7 mmol/l at 60 min; p < 0.05) to the point where they were comparable with the non-transplanted naive normoglycaemic control mice at a low IEQ of 500 IEQ (17.2 mmol/l at 60 min). CONCLUSIONS/INTERPRETATION: The ability to efficiently reformat dissociated islet cells into engineered pseudoislets with improved properties has high potential for both research and therapeutic applications.


Subject(s)
Diabetes Mellitus/therapy , Insulin/blood , Islets of Langerhans Transplantation , Islets of Langerhans/cytology , Tissue Engineering , Animals , Apoptosis , Cell Survival , DNA/analysis , Diabetes Mellitus, Experimental/therapy , Female , Gene Expression Profiling , Glucose/metabolism , Graft Survival , Humans , Hyperglycemia , Hypoxia , Insulin/metabolism , Male , Mice , Mice, Transgenic
7.
Nat Commun ; 14(1): 7940, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040762

ABSTRACT

The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.


Subject(s)
Chemokines, CC , Receptors, Chemokine , Humans , Chemokines, CC/metabolism , Chemokines, CC/pharmacology , Receptors, CCR8/genetics , Ligands , Chemokine CCL1/metabolism , Receptors, Chemokine/genetics , Antibodies
8.
J Biol Chem ; 286(43): 37237-48, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21880735

ABSTRACT

The first x-ray crystallographic structure of a CAZY family-52 glycosyltransferase, that of the membrane associated α2,3/α2,6 lipooligosaccharide sialyltransferase from Neisseria meningitidis serotype L1 (NST), has been solved to 1.95 Å resolution. The structure of NST adopts a GT-B-fold common with other glycosyltransferase (GT) families but exhibits a novel domain swap of the N-terminal 130 residues to create a functional homodimeric form not observed in any other class to date. The domain swap is mediated at the structural level by a loop-helix-loop extension between residues Leu-108 and Met-130 (we term the swapping module) and a unique lipid-binding domain. NST catalyzes the creation of α2,3- or 2,6-linked oligosaccharide products from a CMP-sialic acid (Neu5Ac) donor and galactosyl-containing acceptor sugars. Our structures of NST bound to the non-hydrolyzable substrate analog CMP-3F((axial))-Neu5Ac show that the swapping module from one monomer of NST mediates the binding of the donor sugar in a composite active site formed at the dimeric interface. Kinetic analysis of designed point mutations observed in the CMP-3F((axial))-Neu5Ac binding site suggests potential roles of a requisite general base (Asp-258) and general acid (His-280) in the NST catalytic mechanism. A long hydrophobic tunnel adjacent to the dimer interface in each of the two monomers contains electron density for two extended linear molecules that likely belong to either the two fatty acyl chains of a diglyceride lipid or the two polyethylene glycol groups of the detergent Triton X-100. In this work, Triton X-100 maintains the activity and increases the solubility of NST during purification and is critical to the formation of ordered crystals. Together, the mechanistic implications of the NST structure provide insight into lipooligosaccharide sialylation with respect to the association of substrates and the essential membrane-anchored nature of NST on the bacterial surface.


Subject(s)
Bacterial Proteins/chemistry , Neisseria meningitidis/enzymology , Sialyltransferases/chemistry , Bacterial Proteins/metabolism , Catalysis , Catalytic Domain , Crystallography, X-Ray , Cytidine Monophosphate N-Acetylneuraminic Acid/chemistry , Cytidine Monophosphate N-Acetylneuraminic Acid/metabolism , Glycolipids/chemistry , Glycolipids/metabolism , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Sialyltransferases/metabolism
9.
Mol Cancer Ther ; 21(6): 974-985, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35364611

ABSTRACT

New therapeutics and combination regimens have led to marked clinical improvements for the treatment of a subset of colorectal cancer. Immune checkpoint inhibitors have shown clinical efficacy in patients with mismatch-repair-deficient or microsatellite instability-high (MSI-H) metastatic colorectal cancer (mCRC). However, patients with microsatellite-stable (MSS) or low levels of microsatellite instable (MSI-L) colorectal cancer have not benefited from these immune modulators, and the survival outcome remains poor for the majority of patients diagnosed with mCRC. In this article, we describe the discovery of a novel T-cell-dependent bispecific antibody (TDB) targeting tumor-associated antigen LY6G6D, LY6G6D-TDB, for the treatment of colorectal cancer. RNAseq analysis showed that LY6G6D was differentially expressed in colorectal cancer with high prevalence in MSS and MSI-L subsets, whereas LY6G6D expression in normal tissues was limited. IHC confirmed the elevated expression of LY6G6D in primary and metastatic colorectal tumors, whereas minimal or no expression was observed in most normal tissue samples. The optimized LY6G6D-TDB, which targets a membrane-proximal epitope of LY6G6D and binds to CD3 with high affinity, exhibits potent antitumor activity both in vitro and in vivo. In vitro functional assays show that LY6G6D-TDB-mediated T-cell activation and cytotoxicity are conditional and target dependent. In mouse xenograft tumor models, LY6G6D-TDB demonstrates antitumor efficacy as a single agent against established colorectal tumors, and enhanced efficacy can be achieved when LY6G6D-TDB is combined with PD-1 blockade. Our studies provide evidence for the therapeutic potential of LY6G6D-TDB as an effective treatment option for patients with colorectal cancer.


Subject(s)
Antibodies, Bispecific , Colorectal Neoplasms , Immunoglobulins , Animals , Antibodies, Bispecific/immunology , Antibodies, Bispecific/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunoglobulins/immunology , Mice , Microsatellite Instability , T-Lymphocytes/immunology
10.
Sci Transl Med ; 14(675): eabp9159, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36516271

ABSTRACT

The epidermis is a barrier that prevents water loss while keeping harmful substances from penetrating the host. The impermeable cornified layer of the stratum corneum is maintained by balancing continuous turnover driven by epidermal basal cell proliferation, suprabasal cell differentiation, and corneal shedding. The epidermal desquamation process is tightly regulated by balance of the activities of serine proteases of the Kallikrein-related peptidases (KLK) family and their cognate inhibitor lymphoepithelial Kazal type-related inhibitor (LEKTI), which is encoded by the serine peptidase inhibitor Kazal type 5 gene. Imbalance of proteolytic activity caused by a deficiency of LEKTI leads to excessive desquamation due to increased activities of KLK5, KLK7, and KLK14 and results in Netherton syndrome (NS), a debilitating condition with an unmet clinical need. Increased activity of KLKs may also be pathological in other dermatoses such as atopic dermatitis (AD). Here, we describe the discovery of inhibitory antibodies against murine KLK5 and KLK7 that could compensate for the deficiency of LEKTI in NS. These antibodies are protective in mouse models of NS and AD and, when combined, promote improved skin barrier integrity and reduced inflammation. To translate these findings, we engineered a humanized bispecific antibody capable of potent inhibition of human KLK5 and KLK7. A crystal structure of KLK5 bound to the inhibitory Fab revealed that the antibody binds distal to its active site and uses a relatively unappreciated allosteric inhibition mechanism. Treatment with the bispecific anti-KLK5/7 antibody represents a promising therapy for clinical development in NS and other inflammatory dermatoses.


Subject(s)
Dermatitis, Atopic , Netherton Syndrome , Skin Diseases , Mice , Humans , Animals , Netherton Syndrome/genetics , Netherton Syndrome/metabolism , Netherton Syndrome/pathology , Dermatitis, Atopic/pathology , Serine Peptidase Inhibitor Kazal-Type 5/metabolism , Epidermis/pathology , Skin Diseases/metabolism , Antibodies/metabolism , Kallikreins/metabolism
11.
Commun Biol ; 4(1): 916, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34316015

ABSTRACT

Apolipoprotein L1 (ApoL1) is a circulating innate immunity protein protecting against trypanosome infection. However, two ApoL1 coding variants are associated with a highly increased risk of chronic kidney disease. Here we present X-ray and NMR structures of the N-terminal domain (NTD) of ApoL1 and of its closest relative ApoL2. In both proteins, four of the five NTD helices form a four-helix core structure which is different from the classical four-helix bundle and from the pore-forming domain of colicin A. The reactivity with a conformation-specific antibody and structural models predict that this four-helix motif is also present in the NTDs of ApoL3 and ApoL4, suggesting related functions within the small ApoL family. The long helix 5 of ApoL1 is conformationally flexible and contains the BH3-like region. This BH3-like α-helix resembles true BH3 domains only in sequence and structure but not in function, since it does not bind to the pro-survival members of the Bcl-2 family, suggesting a Bcl-2-independent role in cytotoxicity. These findings should expedite a more comprehensive structural and functional understanding of the ApoL immune protein family.


Subject(s)
Apolipoprotein L1/chemistry , Apolipoproteins L/chemistry , Protein Domains , Apolipoprotein L1/genetics , Apolipoprotein L1/metabolism , Apolipoproteins L/genetics , Apolipoproteins L/metabolism , Humans
12.
PLoS One ; 15(12): e0244158, 2020.
Article in English | MEDLINE | ID: mdl-33347473

ABSTRACT

The proactive generation of anti-idiotypic antibodies (anti-IDs) against therapeutic antibodies with desirable properties is an important step in pre-clinical and clinical assay development supporting their bioanalytical programs. Here, we describe a robust platform to generate anti-IDs using rabbit single B cell sorting-culture and cloning technology by immunizing rabbits with therapeutic drug Fab fragment and sorting complementarity determining regions (CDRs) specific B cells using designed framework control as a negative gate to exclude non-CDRs-specific B cells. The supernatants of cultured B cells were subsequently screened for binding to drug-molecule by enzyme-linked immunosorbent assay and the positive hits of B cell lysates were selected for cloning of their immunoglobulin G (IgG) variable regions. The recombinant monoclonal anti-IDs generated with this method have high affinity and specificity with broad epitope coverage and different types. The recombinant anti-IDs were available for assay development to support pharmacokinetic (PK) and immunogenicity studies within 12 weeks from the start of rabbit immunization. Using this novel rapid and efficient in-house approach we have generated a large panel of anti-IDs against a series of 11 therapeutic antibody drugs and successfully applied them to the clinical assay development.


Subject(s)
Antibodies, Anti-Idiotypic/immunology , Antibodies, Monoclonal/immunology , Antibody Affinity , B-Lymphocytes/immunology , Cell Separation/methods , Epitopes/immunology , Animals , Antibodies, Anti-Idiotypic/genetics , Antibodies, Monoclonal/genetics , B-Lymphocytes/classification , Cells, Cultured , Cloning, Molecular/methods , Epitopes/genetics , Humans , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Rabbits
13.
Nat Struct Mol Biol ; 11(2): 163-70, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14730352

ABSTRACT

Sialic acid terminates oligosaccharide chains on mammalian and microbial cell surfaces, playing critical roles in recognition and adherence. The enzymes that transfer the sialic acid moiety from cytidine-5'-monophospho-N-acetyl-neuraminic acid (CMP-NeuAc) to the terminal positions of these key glycoconjugates are known as sialyltransferases. Despite their important biological roles, little is understood about the mechanism or molecular structure of these membrane-associated enzymes. We report the first structure of a sialyltransferase, that of CstII from Campylobacter jejuni, a highly prevalent foodborne pathogen. Our structural, mutagenesis and kinetic data provide support for a novel mode of substrate binding and glycosyl transfer mechanism, including essential roles of a histidine (general base) and two tyrosine residues (coordination of the phosphate leaving group). This work provides a framework for understanding the activity of several sialyltransferases, from bacterial to human, and for the structure-based design of specific inhibitors.


Subject(s)
Campylobacter jejuni/enzymology , Cytidine Monophosphate N-Acetylneuraminic Acid/metabolism , Sialyltransferases/chemistry , Base Sequence , DNA Primers , Kinetics , Models, Molecular , Protein Conformation , Sialyltransferases/metabolism , Substrate Specificity
14.
Clin Cancer Res ; 25(4): 1358-1368, 2019 02 15.
Article in English | MEDLINE | ID: mdl-29959143

ABSTRACT

PURPOSE: The treatment of acute myeloid leukemia (AML) has not significantly changed in 40 years. Cytarabine- and anthracycline-based chemotherapy induction regimens (7 + 3) remain the standard of care, and most patients have poor long-term survival. The reapproval of Mylotarg, an anti-CD33-calicheamicin antibody-drug conjugate (ADC), has demonstrated ADCs as a clinically validated option to enhance the effectiveness of induction therapy. We are interested in developing a next-generation ADC for AML to improve upon the initial success of Mylotarg. EXPERIMENTAL DESIGN: The expression pattern of CLL-1 and its hematopoietic potential were investigated. A novel anti-CLL-1-ADC, with a highly potent pyrrolobenzodiazepine (PBD) dimer conjugated through a self-immolative disulfide linker, was developed. The efficacy and safety profiles of this ADC were evaluated in mouse xenograft models and in cynomolgus monkeys. RESULTS: We demonstrate that CLL-1 shares similar prevalence and trafficking properties that make CD33 an excellent ADC target for AML, but lacks expression on hematopoietic stem cells that hampers current CD33-targeted ADCs. Our anti-CLL-1-ADC is highly effective at depleting tumor cells in AML xenograft models and lacks target independent toxicities at doses that depleted target monocytes and neutrophils in cynomolgus monkeys. CONCLUSIONS: Collectively, our data suggest that an anti-CLL-1-ADC has the potential to become an effective and safer treatment for AML in humans, by reducing and allowing for faster recovery from initial cytopenias than the current generation of ADCs for AML.


Subject(s)
Antibodies, Anti-Idiotypic/pharmacology , Immunoconjugates/pharmacology , Lectins, C-Type/immunology , Leukemia, Myeloid, Acute/drug therapy , Receptors, Mitogen/immunology , Animals , Flow Cytometry , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lectins, C-Type/antagonists & inhibitors , Lectins, C-Type/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Mice , Receptors, Mitogen/antagonists & inhibitors , Receptors, Mitogen/genetics , Sialic Acid Binding Ig-like Lectin 3/genetics , Sialic Acid Binding Ig-like Lectin 3/immunology , Xenograft Model Antitumor Assays
15.
Sci Rep ; 8(1): 8239, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844389

ABSTRACT

Neuregulin 1 (NRG1) is required for development of the central and peripheral nervous system and regulates neurotransmission in the adult. NRG1 and the gene encoding its receptor, ERBB4, are risk genes for schizophrenia, although how alterations in these genes disrupt their function has not been fully established. Studies of knockout and transgenic mice have yielded conflicting results, with both gain and loss of function resulting in similar behavioral and electrophysiological phenotypes. Here, we used high affinity antibodies to NRG1 and ErbB4 to perturb the function of the endogenous proteins in adult mice. Treatment with NRG1 antibodies that block receptor binding caused behavioral alterations associated with schizophrenia, including, hyper-locomotion and impaired pre-pulse inhibition of startle (PPI). Electrophysiological analysis of brain slices from anti-NRG1 treated mice revealed reduced synaptic transmission and enhanced paired-pulse facilitation. In contrast, mice treated with more potent ErbB4 function blocking antibodies did not display behavioral alterations, suggesting a receptor independent mechanism of the anti-NRG1-induced phenotypes. We demonstrate that anti-NRG1 causes accumulation of the full-length transmembrane protein and increases phospho-cofilin levels, which has previously been linked to impaired synaptic transmission, indicating enhancement of non-canonical NRG1 signaling could mediate the CNS effects.


Subject(s)
Central Nervous System/physiology , Electrophysiology/methods , Neuregulin-1/metabolism , Schizophrenia/metabolism , Actin Depolymerizing Factors/metabolism , Animals , Antibodies, Blocking/administration & dosage , Disease Models, Animal , Genetic Predisposition to Disease , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Neuregulin-1/genetics , Neuregulin-1/immunology , Protein Stability , Receptor, ErbB-4/genetics , Receptor, ErbB-4/immunology , Receptor, ErbB-4/metabolism , Risk , Schizophrenia/genetics , Signal Transduction , Synaptic Transmission
16.
Nat Struct Mol Biol ; 24(10): 848-856, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28825733

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma LDL cholesterol (LDL-c) levels by promoting the degradation of liver LDL receptors (LDLRs). Antibodies that inhibit PCSK9 binding to the EGF(A) domain of the LDLR are effective in lowering LDL-c. However, the discovery of small-molecule therapeutics is hampered by difficulty in targeting the relatively flat EGF(A)-binding site on PCSK9. Here we demonstrate that it is possible to target this site, based on the finding that the PCSK9 P' helix displays conformational flexibility. As a consequence, the vacated N-terminal groove of PCSK9, which is adjacent to the EGF(A)-binding site, is in fact accessible to small peptides. In phage-display experiments, the EGF(A)-mimicking peptide Pep2-8 was used as an anchor peptide for the attachment of an extension peptide library directed toward the groove site. Guided by structural information, we further engineered the identified groove-binding peptides into antagonists, which encroach on the EGF(A)-binding site and inhibit LDLR binding.


Subject(s)
Enzyme Inhibitors/metabolism , PCSK9 Inhibitors , Peptides/metabolism , Proprotein Convertase 9/metabolism , Binding Sites , Enzyme Inhibitors/isolation & purification , Humans , Molecular Docking Simulation , Peptide Library , Peptides/isolation & purification
17.
Clin Cardiol ; 40(7): 503-511, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28326559

ABSTRACT

BACKGROUND: Proprotein convertase subtilisin/kexin type 9 (PCSK9) downregulates low-density lipoprotein (LDL) receptors, thereby leading to a rise in circulating LDL cholesterol (LDL-C). RG7652 is a fully human monoclonal antibody against PCSK9. This placebo-controlled, phase 1 ascending-dose study in healthy subjects evaluated the safety of RG7652 and its efficacy as a potential LDL-C-lowering drug. HYPOTHESIS: Anti-PCSK9 antibody therapy safely and effectively reduces LDL-C. METHODS: Subjects (N = 80) were randomized into 10 cohorts. Six sequential single-dose cohorts received 10, 40, 150, 300, 600, or 800 mg of RG7652 via subcutaneous injection. Four multiple-dose cohorts received 40 or 150 mg of RG7652 once weekly for 4 weeks, either with or without statin therapy (atorvastatin). RESULTS: Adverse events (AEs) were generally mild; the most common AEs were temporary injection-site reactions. No serious AEs, severe AEs, AEs leading to study-drug discontinuation, or dose-limiting toxicities were reported. RG7652 monotherapy reduced mean LDL-C levels by up to 64% and as much as 100 mg/dL at week 2; the effect magnitude and duration increased with dose (≥57 days following a single RG7652 dose ≥300 mg). Exploratory analyses showed reduced oxidized LDL, lipoprotein(a), and lipoprotein-associated phospholipase A2 with RG7652. Antidrug antibody against RG7652 tested positive in 2 of 60 (3.3%) RG7652-treated and in 4 of 20 (20.0%) placebo-treated subjects. Simultaneous atorvastatin administration did not appear to impact the pharmacokinetic profile or lipid-lowering effects of RG7652. CONCLUSIONS: Overall, RG7652 elicited substantial and sustained dose-related LDL-C reductions with an acceptable safety profile and minimal immunogenicity.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Cholesterol, LDL/blood , Hypercholesterolemia/drug therapy , PCSK9 Inhibitors , Adolescent , Adult , Aged , Antibodies, Monoclonal/drug effects , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacokinetics , Antibodies, Monoclonal, Humanized , Anticholesteremic Agents/administration & dosage , Atorvastatin/administration & dosage , Biomarkers/blood , Cholesterol, LDL/drug effects , Dose-Response Relationship, Drug , Double-Blind Method , Drug Therapy, Combination , Female , Follow-Up Studies , Humans , Hypercholesterolemia/blood , Hypercholesterolemia/immunology , Injections, Subcutaneous , Male , Middle Aged , Proprotein Convertase 9/immunology , Proprotein Convertase 9/metabolism , Treatment Outcome , Young Adult
18.
Cell Rep ; 11(1): 33-42, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25818302

ABSTRACT

Proper organ homeostasis requires tight control of adult stem cells and differentiation through the integration of multiple inputs. In the mouse small intestine, Notch and Wnt signaling are required both for stem cell maintenance and for a proper balance of differentiation between secretory and absorptive cell lineages. In the absence of Notch signaling, stem cells preferentially generate secretory cells at the expense of absorptive cells. Here, we use function-blocking antibodies against Notch receptors to demonstrate that Notch blockade perturbs intestinal stem cell function by causing a derepression of the Wnt signaling pathway, leading to misexpression of prosecretory genes. Importantly, attenuation of the Wnt pathway rescued the phenotype associated with Notch blockade. These studies bring to light a negative regulatory mechanism that maintains stem cell activity and balanced differentiation, and we propose that the interaction between Wnt and Notch signaling described here represents a common theme in adult stem cell biology.


Subject(s)
Intestinal Mucosa/metabolism , Receptors, Notch/metabolism , Stem Cells/metabolism , Wnt Signaling Pathway/genetics , Animals , Cell Differentiation/genetics , Cell Lineage , Cell Proliferation , Gene Expression Regulation , Homeostasis , Mice , Receptors, Notch/genetics
19.
Sci Transl Med ; 5(171): 171ra18, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23390248

ABSTRACT

Although standard chemotherapies are commonly used to treat most types of solid tumors, such treatment often results in inadequate response to, or relapse after, therapy. This is particularly relevant for lung cancer because most patients are diagnosed with advanced-stage disease and are treated with frontline chemotherapy. By studying the residual tumor cells that remain after chemotherapy in several in vivo non-small cell lung cancer models, we found that these cells have increased levels of human epidermal growth factor receptor (HER) signaling due, in part, to the enrichment of a preexisting NRG1(HI) subpopulation. Neuregulin 1 (NRG1) signaling in these models can be mediated by either the HER3 or HER4 receptor, resulting in the differential activation of downstream effectors. Inhibition of NRG1 signaling inhibits primary tumor growth and enhances the magnitude and duration of the response to chemotherapy. Moreover, we show that inhibition of ligand-mediated Her4 signaling impedes disease relapse in cases where NRG1 inhibition is insufficient. These findings demonstrate that ligand-dependent Her4 signaling plays an important role in disease relapse.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , ErbB Receptors/metabolism , Lung Neoplasms/drug therapy , Neuregulin-1/antagonists & inhibitors , Signal Transduction , Animals , Antibodies, Blocking/pharmacology , Antibodies, Blocking/therapeutic use , Autocrine Communication/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , ErbB Receptors/antagonists & inhibitors , Humans , Ligands , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice , Mice, Nude , Neoplasm, Residual/drug therapy , Neoplasm, Residual/metabolism , Neoplasm, Residual/pathology , Neuregulin-1/metabolism , Receptor, ErbB-4 , Signal Transduction/drug effects , Treatment Outcome , Xenograft Model Antitumor Assays
20.
Biores Open Access ; 1(1): 34-40, 2012 Jan.
Article in English | MEDLINE | ID: mdl-23515363

ABSTRACT

Research in the last few years have focused on the use of three-dimensional (3D) fibrin construct to deliver growth factors and cells. Three-dimensional construct permeability and porosity are important aspects for proper nutrient uptake, gas exchange, and waste removal-factors that are critical for cell growth and survival. We have previously reported that the mechanical strength (stiffness) of 3D fibrin constructs is dependent on the fibrinogen and thrombin concentration. In this study, we established two new in vitro models to examine how fibrin composition affects the final 3D fibrin construct permeability and pore size; thereby, influencing the diffusivity of macromolecules throughout the network of fibrin fibrils. Flow measurements of both liquid and fluoresceinated-dextran microparticles are conducted to calculate the permeability and pore size of 3D fibrin constructs of different fibrinogen and thrombin concentrations. Similarly, the diffusivity of liquid and fluoresceinated-dextran microparticles through these 3D fibrin constructs are determined through diffusion models. Data from these studies show that the structural permeability and pore size of 3D fibrin constructs directly correlate to fibrinogen and thrombin concentration in the final 3D fibrin construct. More specifically, at a constant thrombin concentration of 2 or 5 µ/mL, pore size of the 3D fibrin constructs is dependent on fibrinogen if the concentration is 5 mg/mL and to a lesser extent if the concentration is 10-15 mg/mL. These findings suggest that fibrin's diffusive property can be manipulated to fabricate 3D constructs that are optimized for cellular growth, protein transport, and for the controlled delivery of bioactive molecules such as growth factors.

SELECTION OF CITATIONS
SEARCH DETAIL