Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Publication year range
1.
Pharm Res ; 39(6): 1115-1134, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35386012

ABSTRACT

Cancer is associated with a comprehensive burden that significantly affects patient's quality of life. Even though patients' disease condition is improving following conventional therapies, researchers are studying alternative tools that can penetrate solid tumours to deliver the therapeutics due to issues of developing resistance by the cancer cells. Treating cancer is not the only the goal in cancer therapy; it also includes protecting non-cancerous cells from the toxic effects of anti-cancer agents. Thus, various advanced techniques, such as cell-based drug delivery, bacteria-mediated therapy, and nanoparticles, are devised for site-specific delivery of drugs. One of the novel methods that can be targeted to deliver anti-cancer agents is by utilising genetically modified non-pathogenic bacterial species. This is due to the ability of bacterial species to multiply selectively or non-selectively on tumour cells, resulting in biofilms that leads to disruption of metastasis process. In preclinical studies, this technology has shown significant results in terms of efficacy, and some are currently under investigation. Therefore, researchers have conducted studies on bacteria transporting the anti-cancer drug to targeted tumours. Alternatively, bacterial ghosts and bacterial spores are utilised to deliver anti-cancer drugs. Although in vivo studies of bacteria-mediated cancer therapy have shown successful outcome, further research on bacteria, specifically their targeting mechanism, is required to establish a complete clinical approach in cancer treatment. This review has focused on the up-to-date understanding of bacteria as a therapeutic carrier in the treatment of cancer as an emerging field.


Subject(s)
Antineoplastic Agents , Neoplasms , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bacteria , Drug Delivery Systems , Excipients , Humans , Neoplasms/pathology , Quality of Life
2.
Molecules ; 26(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34062995

ABSTRACT

A single ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that causes inflammation of the colonic mucosa at the distal colon and rectum. The mainstay therapy involves anti-inflammatory immunosuppression based on the disease location and severity. The disadvantages of using systemic corticosteroids for UC treatment is the amplified risk of malignancies and infections. Therefore, topical treatments are safer as they have fewer systemic side effects due to less systemic exposure. In this context, pH sensitive and enzymatically triggered hydrogel of pectin (PC) and polyacrylamide (PAM) has been developed to facilitate colon-targeted delivery of budesonide (BUD) for the treatment of UC. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), swelling ratio, and drug release. FT-IR spectroscopy confirmed the grafting as well loading of BUD in hydrogel. XRD showed the amorphous nature of hydrogel and increment in crystallinity after drug loading. On the other hand, SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading and also demonstrated a pH-responsive swelling behaviour, with decreased swelling in acidic media. The in-vitro release of BUD from the hydrogel exhibited a sustained release behaviour with non-ficken diffusion mechanism. The model that fitted best for BUD released was the Higuchi kinetic model. It was concluded that enzyme/pH dual-sensitive hydrogels are an effective colon-targeted delivery system for UC.


Subject(s)
Acrylic Resins/chemistry , Budesonide/pharmacology , Drug Liberation , Hydrogels/chemistry , Pectins/chemistry , Calorimetry, Differential Scanning , Delayed-Action Preparations , Hydrogels/chemical synthesis , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
3.
AAPS PharmSciTech ; 22(7): 244, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34608546

ABSTRACT

Asenapine, an atypical antipsychotic agent, has been approved for the acute and maintenance treatment of schizophrenia and manic episodes of bipolar disorder. However, the extensive hepatic metabolism limits its oral bioavailability. Therefore, the objective of the current investigation was to develop sublingual film containing asenapine to enhance the therapeutic efficacy. Sublingual films containing asenapine were fabricated using polyethylene oxide and hydroxypropyl methylcellulose by solvent casting method. Design of experiment was used as a statistical tool to optimize the proportion of the film-forming polymers in order to establish the critical quality attributes of the drug formulation. The process was studied in detail by assessing risk of each step as well as parameters and material attributes to reduce the risk to a minimum. A control strategy was defined to ensure manufacture of films according to the target product profile by evaluation of intermediate quality attributes at the end of each process step. Results of optimized formulations showed rapid disintegration, adequate folding endurance, good percentage elongation, tensile strength, and viscosity. Besides, the results from the in vitro dissolution/ex vivo permeation studies showed rapid dissolution (100% in 6 min) and higher asenapine permeation (~ 80% in 90 min) through the sublingual epithelium. In vivo study indicates greater asenapine absorption (31.18 ± 5.01% of administered dose) within 5 min and was comparable with marketed formulation. In summary, the designing plan to develop asenapine formulation was successfully achieved with desired characteristics of the delivery tool for sublingual administration.


Subject(s)
Antipsychotic Agents , Bipolar Disorder , Schizophrenia , Antipsychotic Agents/therapeutic use , Bipolar Disorder/drug therapy , Dibenzocycloheptenes , Heterocyclic Compounds, 4 or More Rings , Humans , Schizophrenia/drug therapy
4.
Drug Dev Ind Pharm ; 45(2): 323-332, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30404554

ABSTRACT

Betamethsone valerate (BMV), a medium potency topical corticosteroid, is one of the most commonly employed pharmacological agents for the management of atopic dermatitis in both adults and children. Despite having remarkable pharmacological efficacy, these agents have limited clinical implication due to poor penetration across the startum cornum (SC). To mitigate issues related to targeted delivery, stability, and solubility as well as to potentiate therapeutic and clinical implication, the nanodelivery systems have gained remarkable recognition. Therefore, this study was aimed to encapsulate BMV into the chitosan nanoparticles (CS-NPs) for optimum dermal targeting and improved penetration across the SC. The prepared NPs were characterized for particle size, zeta potential, polydispersity index, entrapment efficiency, loading capacity, crystallinity, thermal behavior, morphology, in vitro release kinetics, drug permeation across the SC, and percentage of drug retained into various skin layers. Results showed that optimized BMV-CS-NPs exhibited optimum physicochemical characteristics including small particle size (< 250 ± 28 nm), higher zeta potential (+58 ± 8 mV), and high entrapment efficiency (86 ± 5.6%) and loading capacity (34 ± 7.2%). The in vitro release study revealed that BMV-CS-NPs displayed Fickian-diffusion type mechanism of release in simulated skin surface (pH 5.5). Drug permeation efficiency and the amount of BMV retained into the epidermis and the dermis were comparatively higher in case of BMV-CS-NPs compared to BMV solution. Conclusively, we anticipated that BMV-CS-NPs could be a promising nanodelivery system for efficient dermal targeting of BMV and improved anti-AD efficacy.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Betamethasone Valerate/administration & dosage , Administration, Topical , Animals , Anti-Inflammatory Agents/chemistry , Betamethasone Valerate/chemistry , Chitosan , Dermatitis, Atopic/drug therapy , Drug Compounding , Drug Delivery Systems , Particle Size , Pressure , Rats , Rats, Wistar , Skin/drug effects , Solvents
5.
Regul Toxicol Pharmacol ; 91: 179-189, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29080846

ABSTRACT

Oral paclitaxel (PTXL) formulations freed from cremophor® EL (CrEL) is always in utmost demand by the cancerous patients due to toxicities associated with the currently marketed formulation. In our previous investigation [Int. J. Pharm. 2014; 460:131], we have developed an oral oil based nanocarrier for the lipophilic drug, PTXL to target bioavailability issue and patient compliance. Here, we report in vivo antitumor activity and 28-day sub-chronic toxicity of the developed PTXL nanoemulsion. It was observed that the apoptotic potential of oral PTXL nanoemulsion significantly inhibited the growth of solid tumor (59.2 ± 7.17%; p < 0.001) without causing any explicit toxicity. The 6.5 mg/kg and 3 mg/kg oral PTXL nanoemulsion dose did not cause any notable alteration in haematological, biochemical/structural characteristics during 28-day sub-chronic toxicity studies in the experimental mice. Whereas, the toxicity of 12.8 mg/kg body weight dose showed decrease in RBC, haemoglobin and neutrophil counts. In contrast, marketed PTXL (Taxol®) was found to be comparatively more toxic to the experimental animals. Taxol® treatment resulted glomerulonephritis in histopathological examination, which could be correlated with increased level of creatinine and associated nephrotoxicity. This investigations conclude that the developed oral nanoemulsion presents a viable therapeutics bio-system to step towards clinical application as well as substitute CrEL based PTXL formulations.


Subject(s)
Acute Kidney Injury/chemically induced , Antineoplastic Agents, Phytogenic/pharmacology , Drug Carriers/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Paclitaxel/pharmacology , Administration, Oral , Animals , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/chemistry , Apoptosis/drug effects , Biological Availability , Chemistry, Pharmaceutical/methods , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Emulsions/adverse effects , Emulsions/chemistry , Emulsions/pharmacology , Erythrocytes/drug effects , Female , Hemoglobins/metabolism , Male , Mice , Neoplasms/metabolism , Neutrophils/drug effects , Paclitaxel/adverse effects , Paclitaxel/chemistry , Polyethylene Glycols/chemistry
6.
Regul Toxicol Pharmacol ; 82: 20-31, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27815174

ABSTRACT

Poor aqueous solubility and unfavourable de-esterification of olmesartan medoxomil (a selective angiotensin II receptor blocker), results in low oral bioavailability of less than 26%. Improvement of oral bioavailability with prolonged pharmacodynamics activity of olmesartan in Wistar rats had been approached by nanoemulsification strategy in our previous article [Colloid Surface B, 115, 2014: 286]. In continuation to that work, we herewith report the biodistribution behaviour and 28-day repeated dose sub-chronic toxicity of olmesartan medoxomil nanoemulsion in Wistar rats following oral administration. The levels of olmesartan in collected biological samples were estimated using our validated LC-MS/MS technique. Our biodistribution study showed significantly higher brain concentrations of olmesartan (0.290 ± 0.089 µg/mL, 0.333 ± 0.071 µg/mL and 0.217 ± 0.062 µg/mL at 0.5, 2.0 and 8.0 h post dosing, respectively) when administered orally as nanoemulsion formulation as compared to the aqueous suspension. In addition, the olmesartan nanoemulsion was found to be safe and non-toxic, as it neither produced any lethality nor remarkable haematological, biochemical and structural adverse effects as observed during the 28-days sub-chronic toxicity studies in experimental Wistar rats. It is herewith envisaged that the developed nanoemulsion formulation approach for the delivery of olmesartan medoxomil via oral route can further be explored in memory dysfunction and brain ischemia, for better brain penetration and improved clinical application in stroke patients.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacokinetics , Antihypertensive Agents/pharmacokinetics , Drug Carriers , Nanoparticles , Oils/chemistry , Olmesartan Medoxomil/pharmacokinetics , Water/chemistry , Administration, Oral , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Angiotensin II Type 1 Receptor Blockers/chemistry , Angiotensin II Type 1 Receptor Blockers/toxicity , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/chemistry , Antihypertensive Agents/toxicity , Biomarkers/blood , Body Weight/drug effects , Brain/metabolism , Chromatography, Liquid , Drinking/drug effects , Drug Compounding , Eating/drug effects , Emulsions , Male , Nanomedicine/methods , Olmesartan Medoxomil/administration & dosage , Olmesartan Medoxomil/chemistry , Olmesartan Medoxomil/toxicity , Organ Size/drug effects , Permeability , Rats, Wistar , Reproducibility of Results , Risk Assessment , Tandem Mass Spectrometry , Tissue Distribution , Toxicity Tests, Subchronic
7.
J Pharm Sci ; 112(2): 562-572, 2023 02.
Article in English | MEDLINE | ID: mdl-36096286

ABSTRACT

Vaginal candidiasis is a common form of infection in women caused by Candida species. Due to several drawbacks of conventional treatments, the current research is attempted to formulate and optimize a miconazole nitrate-loaded in situ spray gel for vaginal candidiasis. The stimuli-responsive (pH and thermo-responsive) polymers selected for the in situ gel were chitosan and poloxamer 407, respectively, whereas hydroxypropyl methylcellulose (HPMC) was introduced in the formulation to further improve the mucoadhesive property. The dispersion of each polymer was carried out using the cold method, whereas the optimization of the formulation was achieved using Box-Behnken statistical design considering viscosity and gelation temperature as dependent variables. Present design achieved the optimized outcome with HPMC, poloxamer and chitosan at 0.52% (w/v), 18.68% (w/v) and 0.41% (w/v), respectively. Evaluation of drug-excipients compatibility was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy, and thermogravimetric analysis where the results showed the absence of any chemical interaction between the polymers and drug component. The optimized formulation showed gelation temperature at 31°C allowing in situ phase transition in a vaginal environment; pH of 4.21 is suitable for use in the vaginal cavity, and appropriate viscosity (290 cP) at storage temperature (below 30°C) would allow spraying at ease, whereas strong mucoadhesive force (22.4±0.513 g) would prevent leaking of the formulation after application. The drug release profile showed sustained release up to 24 h with a cumulative drug release of 81.72%, which is significantly better than the marketed miconazole nitrate cream. In addition, an improved antifungal activity could be correlated to the sustained release of the drug from the formulation. Finally, the safety of the formulation was established while tested on HaCaT cell lines. Based on our findings, it could be concluded that the in situ hydrogel formulation using stimuli-responsive polymers could be a viable alternative to the conventional dosage form that can help to reduce the frequency of administration with ease of application to the site of infection, thus will provide better patient compliance.


Subject(s)
Candidiasis, Vulvovaginal , Chitosan , Female , Humans , Miconazole/chemistry , Miconazole/therapeutic use , Delayed-Action Preparations/chemistry , Chitosan/chemistry , Candidiasis, Vulvovaginal/drug therapy , Antifungal Agents/chemistry , Poloxamer/chemistry , Gels/chemistry
8.
Biomater Adv ; 153: 213556, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37478770

ABSTRACT

Cancer at the lower end of the digestive tract, colorectal cancer (CRC), starts with asymptomatic polyps, which can be diagnosed as cancer at a later stage. It is the fourth leading cause of malignancy-associated mortality worldwide. Despite progress in conventional treatment strategies, the possibility to overcome the mortality and morbidity issues with the enhancement of the lifespan of CRC patients is limited. With the advent of nanocarrier-based drug delivery systems, a promising revolution has been made in diagnosis, treatment, and theranostic purposes for cancer management. Herein, we reviewed the progress of miniaturized nanocarriers, such as liposomes, niosomes, solid lipid nanoparticles, micelles, and polymeric nanoparticles, employed in passive and active targeting and their role in theranostic applications in CRC. With this novel scope, the diagnosis and treatment of CRC have proceeded to the forefront of innovation, where specific characteristics of the nanocarriers, such as processability, flexibility in developing precise architecture, improved circulation, site-specific delivery, and rapid response, facilitate the management of cancer patients. Furthermore, surface-engineered technologies for the nanocarriers could involve receptor-mediated deliveries towards the overexpressed receptors on the CRC microenvironment. Moreover, the potential of clinical translation of these targeted miniaturized formulations as well as the possible limitations and barriers that could impact this translation into clinical practice were highlighted. The advancement of these newest developments in clinical research and progress into the commercialization stage gives hope for a better tomorrow.


Subject(s)
Colorectal Neoplasms , Drug Carriers , Humans , Precision Medicine , Drug Delivery Systems , Micelles , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/drug therapy , Tumor Microenvironment
9.
Int J Biol Macromol ; 253(Pt 1): 126623, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37657573

ABSTRACT

The quest for safe chemotherapy has attracted researchers to explore anticancer potential of herbal medicines. Owing to upsurging evidence of herbal drug's beneficial effects, hopes are restored for augmenting survival rates in cancer patients. However, phytoconstituents confronted severe limitations in terms of poor absorption, low-stability, and low bioavailability. Along with toxicity issues associated with phytoconstituents, quality control and limited regulatory guidance also hinder the prevalence of herbal medicines for cancer therapy. Attempts are underway to exploit nanocarriers to circumvent the limitations of existing and new herbal drugs, where biological macromolecules (e.g., chitosan, hyaluronic acid, etc.) are established highly effective in fabricating nanocarriers and cancer targeting. Among the discussed nanocarriers, liposomes and micelles possess properties to cargo hydro- and lipophilic herbal constituents with surface modification for targeted delivery. Majorly, PEG, transferrin and folate are utilized for surface modification to improve bioavailability, circulation time and targetability. The dendrimer and carbon nanotubes responded in high-loading efficiency of phytoconstituent; whereas, SLN and nanoemulsions are suited carriers for lipophilic extracts. This review emphasized unveiling the latent potential of herbal drugs along with discussing on extended benefits of nanocarriers-based delivery of phytoconstituents for safe cancer therapy owing to enhanced clinical and preclinical outcomes without compromising safety.


Subject(s)
Nanoparticles , Nanotubes, Carbon , Neoplasms , Humans , Neoplasms/drug therapy , Liposomes/therapeutic use , Plant Extracts/therapeutic use , Drug Delivery Systems
10.
Drug Deliv Transl Res ; 12(1): 105-123, 2022 01.
Article in English | MEDLINE | ID: mdl-33604837

ABSTRACT

The biocompatible nature of mesoporous silica nanoparticles (MSN) attracted researchers' attention to deliver therapeutic agents in the treatment of various diseases, where their porous nature, high drug loading efficiency, and suitability to functionalize with a specific ligand of MSN helped to obtain the desired outcome. The application of MSN has been extended to deliver small chemicals to large-sized peptides or proteins to fight against complex diseases. Recently, formulation researches with MSN have been progressed for various non-conventional drug delivery systems, including liposome, microsphere, oro-dispersible film, 3D-printed formulation, and microneedle. Low bulk density, retaining mesoporous structure during downstream processing, and lack of sufficient in vivo studies are some of the important issues towards the success of mesoporous silica-based advanced drug delivery systems. The present review has aimed to evaluate the application of MSN in advanced drug delivery systems to critically analyze the role of MSN in the respective formulation over other functionalized polymers. Finally, an outlook on the future direction of MSN-based advanced drug delivery systems has been drawn against the existing challenges with this platform.


Subject(s)
Nanoparticles , Silicon Dioxide , Drug Carriers/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Porosity , Silicon Dioxide/chemistry
11.
Environ Sci Pollut Res Int ; 29(41): 62067-62092, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34558053

ABSTRACT

Untainted environment promotes health, but the last few decades experienced steep upsurge in environmental contaminants posing detrimental physiological impact. The responsible factors mainly include the exponential growth of human population, havoc rise in industrialization, poorly planned urbanization, and slapdash environment management. Environmental degradation can increase the likelihood of human exposure to heavy metals, resulting in health consequences such as reproductive problems. As a result, research into metal-induced causes of reproductive impairment at the genetic, epigenetic, and biochemical levels must be strengthened further. These metals impact upon the female reproduction at all strata of its regulation and functions, be it development, maturation, or endocrine functions, and are linked to an increase in the causes of infertility in women. Chronic exposures to the heavy metals may lead to breast cancer, endometriosis, endometrial cancer, menstrual disorders, and spontaneous abortions, as well as pre-term deliveries, stillbirths. For example, endometriosis, endometrial cancer, and spontaneous abortions are all caused by the metalloestrogen cadmium (Cd); lead (Pb) levels over a certain threshold can cause spontaneous abortion and have a teratogenic impact; toxic amounts of mercury (Hg) have an influence on the menstrual cycle, which can lead to infertility. Impact of environmental exposure to heavy metals on female fertility is therefore a well-known fact. Thus, the underlying mechanisms must be explained and periodically updated, given the growing evidence on the influence of increasing environmental heavy metal load on female fertility. The purpose of this review is to give a concise overview of how heavy metal affects female reproductive health.


Subject(s)
Abortion, Spontaneous , Endometrial Neoplasms , Endometriosis , Environmental Pollutants , Infertility , Mercury , Metals, Heavy , Occupational Exposure , Cadmium/toxicity , Environmental Exposure , Environmental Pollutants/toxicity , Female , Humans , Infertility/chemically induced , Mercury/toxicity , Metals, Heavy/toxicity , Pregnancy , Reproduction , Reproductive Health
12.
Curr Drug Targets ; 23(10): 978-1001, 2022.
Article in English | MEDLINE | ID: mdl-35657283

ABSTRACT

Alzheimer's disease (AD) is a multifactorial, progressive, neurodegenerative disorder, manifested by the loss of memory and cognitive abilities, behavioral disturbance and progressive impairment of activities of daily life. The sharp rise in the number of AD patients has brought it within the top eight health issues in the world. It is associated with the distribution of misfolded aggregates of protein within the brain. However, Alois Alzheimer initially mentioned that the reduction in brain volume in AD might be associated with the "deposition of a special substance in the cortex". The resulting plaque found in extracellular space in the AD brain and hippocampus region, known as senile plaques, is the characteristic feature underlying Alzheimer's pathology, where the role of amyloid- ß (Aß) peptide formation from proteolytic cleavage of amyloid precursor protein (APP) by secretase enzyme is eminent. Therefore, this review has highlighted the molecular pathophysiology of AD with a variety of available diagnostic and treatment strategies for the management of the disease, with a focus on the advancement toward clinical research to provide new effective and safe tool in the diagnosis, treatment or management of AD.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Amyloid beta-Peptides , Disease Progression , Humans , Plaque, Amyloid
13.
Int J Pharm ; 617: 121617, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35218900

ABSTRACT

Management of chronic wound has an immense impact on social and economic conditions in the world. Healthcare costs, aging population, physical trauma, and comorbidities of diabetes and obesity seem to be the major factors of this increasing incidence of chronic wounds. Conditions of chronic wound could not restore functional epidermis; thus, delaying the closure of the wound opening in an expected manner. Failures in restoration of skin integrity delay healing due to changes in skin pathology, such as chronic ulceration or nonhealing. The role of different traditional medicines has been explored for use in the healing of cutaneous wounds, where several phytochemicals, such as flavonoids, alkaloids, phenolic acids, tannins are known to provide potential wound healing properties. However, the delivery of plant-based therapeutics could be improved by the novel platform of nanotechnology. Thus, the objectives of novel delivery strategies of principal bioactive from plant sources are to accelerate the wound healing process, avoid wound complications and enhance patient compliance. Therefore, the opportunities of nanotechnology-based drug delivery of natural wound healing therapeutics have been included in the present discussion with special emphasis on nanofibers, vesicular structures, nanoparticles, nanoemulsion, and nanogels.


Subject(s)
Nanofibers , Wound Healing , Aged , Drug Delivery Systems , Humans , Nanotechnology , Skin/pathology
14.
Biomater Adv ; 141: 213118, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36182834

ABSTRACT

Brain tumor represents the most lethal form of cancer with the highest mortality and morbidity rates irrespective of age and sex. Advancements in macromolecule-based therapy (such as nucleic acids and peptides) have shown promising roles in the treatment of brain tumor where the phenomenon of severe toxicities due to the conventional chemotherapeutic agents can be circumvented. Despite its preclinical progress, successful targeting of these macromolecules across the blood-brain barrier without altering their physical and chemical characteristics is of great challenge. With the advent of nanotechnology, nowadays targeted delivery of therapeutics is being explored extensively and these macromolecules, including peptides and nucleic acids, have shown initial success in the treatment, where dendrimer has shown its potential for optimal delivery. Dendrimers are being favored as a mode of drug delivery due to their nano-spherical size and structure, high solubilization potential, multivalent surface, and high loading capacity, where biomolecule resembling characteristics of dendritic 3D structures has shown effective delivery of various therapeutic agents to the brain. Armed with targeting ligands to these dendrimers further expedite the transportation of these multifunctional shuttles specifically to the glioblastoma cells. Thus, a focus has been made in this review on therapeutic applications of dendrimer platforms in brain tumor treatment. The future development of dendrimers as a potential platform for nucleic acid and peptide delivery and its promising clinical application could provide effective and target-specific treatment against brain tumors.


Subject(s)
Brain Neoplasms , Dendrimers , Nucleic Acids , Brain Neoplasms/drug therapy , Dendrimers/chemistry , Drug Delivery Systems , Humans , Peptides/therapeutic use
15.
CNS Neurol Disord Drug Targets ; 21(10): 901-912, 2022.
Article in English | MEDLINE | ID: mdl-33982657

ABSTRACT

BACKGROUND: The complication of Alzheimer's disease (AD) has made the development of its therapeutic a challenging task. Even after decades of research, we have achieved no more than a few years of symptomatic relief. The inability to diagnose the disease early is the major hurdle behind its treatment. Several studies have aimed to identify potential biomarkers that can be detected in body fluids (CSF, blood, urine, etc.) or assessed by neuroimaging (i.e., PET and MRI). However, the clinical implementation of these biomarkers is incomplete as they cannot be validated. METHODS: This study aimed to overcome the limitation of using artificial intelligence along with technical tools that have been extensively investigated for AD diagnosis. For developing a promising artificial intelligence strategy that can diagnose AD early, it is critical to supervise neuropsychological outcomes and imaging-based readouts with a proper clinical review. CONCLUSION: Profound knowledge, a large data pool, and detailed investigations are required for the successful implementation of this tool. This review will enlighten various aspects of early diagnosis of AD using artificial intelligence.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Artificial Intelligence , Biomarkers , Early Diagnosis , Humans , Neuroimaging/methods
16.
Pharmaceutics ; 14(4)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35456629

ABSTRACT

Oral cancer, particularly squamous cell carcinoma (SCC), has posed a grave challenge to global health due to its high incidence, metastasis, and mortality rates. Despite numerous studies and favorable improvements in the therapeutic strategies over the past few decades, the prognosis of this disease remains dismal. Moreover, several drawbacks are associated with the conventional treatment; including permanent disfigurement and physical impairment that are attributed to surgical intervention, and systemic toxicity that results from aggressive radio- or chemotherapies, which impacts patients' prognosis and post-treatment quality of life. The highly vascularized, non-keratinized oral mucosa appears as a potential route for cytotoxic drug administration in treating oral cancer. It acts as a non-invasive portal for drug entry targeting the local oral lesions of the early stages of cancer and the systemic metastasis sites of advanced cancer. The absorption of the poorly aqueous-soluble anti-cancer drugs can be enhanced due to the increased permeability of the ulcerous mucosa lining in the disease state and by bypassing the hepatic first-pass metabolism. However, some challenges in oral transmucosal drug delivery include the drugs' taste, the limited surface area of the membrane lining the oral cavity, and flushing and enzymatic degradation by saliva. Therefore, mucoadhesive nanocarriers have emerged as promising platforms for controlled, targeted drug delivery in the oral cavity. The surface functionalization of nanocarriers with various moieties allows for drug targeting, bioavailability enhancement, and biodistribution at the site of action, while the mucoadhesive feature prolongs the drug's residence time for preferential accumulation to optimize the therapeutic effect and reduce systemic toxicity. This review has been focused to highlight the potential of various nanocarriers (e.g., nanoparticles, nanoemulsions, nanocapsules, and liposomes) in conferring targeting, solubility and bioavailability enhancement of actives and mucoadhesive properties as novel tumor-targeted drug delivery approaches in oral cancer treatment.

17.
Biomed Chromatogr ; 25(8): 890-901, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21154639

ABSTRACT

A simple, high-throughput and specific high-performance liquid chromatography-tandem mass spectrometry method has been developed and validated according to the FDA guidelines for quantification of ulifloxacin in rat and rabbit plasma. The analyte was separated on a Peerless basic C(18) column (33 × 4.6 mm, 3 µm) with an isocratic mobile phase of methanol-water containing formic acid (0.5%, v/v; 9:1, v/v) at a flow rate of 0.5 mL/min. The MS/MS detection was carried out by monitoring the fragmentation of m/z 350.500 → 248.500 for ulifloxacin and m/z 332.400 → 231.400 for ciprofloxacin (internal standard; IS) on a triple quadrupole mass spectrometer. The response to ulifloxacin was linear over the range 0.010-2.500 µg/mL in both plasma. The limit of detection and lower limit of quantification of ulifloxacin were determined in both species to be 0.0025 and 0.010 µg/mL, respectively. The method was successfully applied to quantitatively assess the toxicokinetics of ulifloxacin in rat and rabbit following a single 400 mg/kg (in rat) and 200 mg/kg (in rabbit) oral dose of the prulifloxacin.


Subject(s)
Chromatography, High Pressure Liquid/methods , Dioxolanes/blood , Fluoroquinolones/blood , Piperazines/blood , Tandem Mass Spectrometry/methods , Animals , Dioxolanes/chemistry , Dioxolanes/pharmacokinetics , Dioxolanes/toxicity , Drug Stability , Fluoroquinolones/chemistry , Fluoroquinolones/pharmacokinetics , Fluoroquinolones/toxicity , Linear Models , Male , Piperazines/chemistry , Piperazines/pharmacokinetics , Piperazines/toxicity , Rabbits , Rats , Reproducibility of Results , Sensitivity and Specificity
18.
Acta Pol Pharm ; 68(2): 155-60, 2011.
Article in English | MEDLINE | ID: mdl-21485287

ABSTRACT

This study describes development and subsequent validation of a reversed phase high performance liquid chromatographic (RP-HPLC) method for the estimation of nandrolone phenylpropionate, an anabolic steroid, in bulk drug, in conventional parenteral dosage formulation and in prepared nanoparticle dosage form. The chromatographic system consisted of a Luna Phenomenex, CN (250 mm x 4.6 mm, 5 microm) column, an isocratic mobile phase comprising 10 mM phosphate buffer and acetonitrile (50:50, v/v) and UV detection at 240 nm. Nandrolone phenylpropionate was eluted about 6.3 min with no interfering peaks of excipients used for the preparation of dosage forms. The method was linear over the range from 0.050 to 25 microg/mL in raw drug (r2 = 0.9994). The intra-day and inter-day precision values were in the range of 0.219-0.609% and 0.441-0.875%, respectively. Limits of detection and quantitation were 0.010 microg/mL and 0.050 microg/mL, respectively. The results were validated according to International Conference on Harmonization (ICH) guidelines in parenteral and prepared nanoparticle formulation. The validated HPLC method is simple, sensitive, precise, accurate and reproducible.


Subject(s)
Anabolic Agents/analysis , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Nandrolone/analogs & derivatives , Technology, Pharmaceutical/methods , Buffers , Chemistry, Pharmaceutical , Chromatography, High Pressure Liquid/standards , Chromatography, Reverse-Phase/standards , Dosage Forms , Drug Compounding , Injections , Nandrolone/analysis , Nanoparticles , Observer Variation , Reproducibility of Results , Spectrophotometry, Ultraviolet , Technology, Pharmaceutical/standards
19.
Polymers (Basel) ; 13(16)2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34451309

ABSTRACT

Hidradenitis suppurativa (HS) has been considered an orphan disease with limited treatments available. The available topical treatment for this condition is clindamycin lotion; however, short retention and frequent application are the main setbacks. Thus, the present study aimed to attain an optimized antibacterial in situ spray formulation for the hidradenitis suppurativa skin condition, which gels once in contact with the skin surface at around 37 °C and possesses bioadhesion as well as sustained-release properties of the incorporated drug. Different concentrations of thermo-reversible gelling polymer, Pluronic F-127, were investigated along with the selected bioadhesive polymers, HPMC and SA. The optimized formulation F3 consisting of 18% Pluronic F-127 with 0.2% HPMC and 0.2% SA was characterized based on various physicochemical properties. The gelation temperature of F3 was found to be 29.0 ± 0.50 °C with a gelation time of 1.35 ± 0.40 min and a pH of 5.8. F3 had the viscosity of 178.50 ± 5.50 cP at 25 °C and 7800 ± 200 cP at 37 °C as the gel set. The optimized formulation was found to be bioadhesive and cytocompatible. Cumulative drug release was 65.05% within the time-frame of 8 h; the release pattern of the drug followed zero-order kinetics with the Higuchi release mechanism. The average zone of inhibition was found to be 43.44 ± 1.34 mm. The properties of F3 formulation reflect to improve residence time at the site of application and can enhance sustained drug release. Therefore, it could be concluded that optimized formulation has better retention and enhanced antimicrobial activity for superior efficacy against HS.

20.
Curr Pharm Des ; 27(43): 4404-4415, 2021.
Article in English | MEDLINE | ID: mdl-34459377

ABSTRACT

The advancement of delivery tools for therapeutic agents has brought several novel formulations with increased drug loading, sustained release, targeted delivery, and prolonged efficacy. Amongst the several novel delivery approaches, multivesicular liposome has gained potential interest because this delivery system possesses the above advantages. In addition, this multivesicular liposomal delivery prevents degradation of the entrapped drug within the physiological environment while administered. The special structure of the vesicles allowed successful entrapment of hydrophobic and hydrophilic therapeutic agents, including proteins and peptides. Furthermore, this novel formulation could maintain the desired drug concentration in the plasma for a prolonged period, which helps to reduce the dosing frequencies, improve bioavailability, and safety. This tool could also provide stability of the formulation, and finally gaining patient compliance. Several multivesicular liposomes received approval for clinical research, while others are at different stages of laboratory research. In this review, we have focused on the preparation of multivesicular liposomes along with their application in different ailments for the improvement of the performance of the entrapped drug. Moreover, the challenges of delivering multivesicular vesicles have also been emphasized. Overall, it could be inferred that multivesicular liposomal delivery is a platform of advanced drug delivery with improved efficacy and safety.


Subject(s)
Drug Delivery Systems , Liposomes , Humans , Hydrophobic and Hydrophilic Interactions , Lipids , Liposomes/chemistry , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL