Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
EMBO J ; 38(5)2019 03 01.
Article in English | MEDLINE | ID: mdl-30723117

ABSTRACT

In light of the increasing number of identified cancer-driven gain-of-function (GOF) mutants of p53, it is important to define a common mechanism to systematically target several mutants, rather than developing strategies tailored to inhibit each mutant individually. Here, using RNA immunoprecipitation-sequencing (RIP-seq), we identified the Polycomb-group histone methyltransferase EZH2 as a p53 mRNA-binding protein. EZH2 bound to an internal ribosome entry site (IRES) in the 5'UTR of p53 mRNA and enhanced p53 protein translation in a methyltransferase-independent manner. EZH2 augmented p53 GOF mutant-mediated cancer growth and metastasis by increasing protein levels of mutant p53. EZH2 overexpression was associated with worsened outcome selectively in patients with p53-mutated cancer. Depletion of EZH2 by antisense oligonucleotides inhibited p53 GOF mutant-mediated cancer growth. Our findings reveal a non-methyltransferase function of EZH2 that controls protein translation of p53 GOF mutants, inhibition of which causes synthetic lethality in cancer cells expressing p53 GOF mutants.


Subject(s)
Enhancer of Zeste Homolog 2 Protein/metabolism , Gain of Function Mutation , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/pathology , RNA, Messenger/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Apoptosis , Cell Proliferation , Enhancer of Zeste Homolog 2 Protein/genetics , Humans , Internal Ribosome Entry Sites , Male , Mice , Mice, Inbred NOD , Mice, SCID , Neoplasm Metastasis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Protein Stability , RNA, Messenger/genetics , Tumor Cells, Cultured , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Xenograft Model Antitumor Assays
2.
Prostate ; 80(6): 491-499, 2020 05.
Article in English | MEDLINE | ID: mdl-32068909

ABSTRACT

BACKGROUND: Prostate cancer (PC) research has relied heavily on patient-derived cell lines, which may be used for in vitro (two-dimensional [2D]) studies or cultivated as three-dimensional (3D) xenografts in mice. These approaches are likely to have differential impacts on cell phenotypes, with implications for experimental outcomes. Therefore, defining and comparing the transcriptional signatures associated with 2D and 3D approaches may be useful for designing experiments and interpreting research results. METHODS: In this study, LNCaP, VCaP, and 22Rv1 human PC cells were either cultivated in monolayers or as xenografts in NOD SCID mice, and their gene transcription profiles were quantitated and compared using microarray and real-time polymerase chain reaction techniques. Immunohistochemistry was used to evaluate protein expression in cancer cell xenografts. RESULTS: Comparisons of gene expression profiles of tumor cells grown in 2D vs 3D environments identified gene sets featuring similar expression patterns in all three cancer cell lines and unique transcriptional signatures associated with 3D vs 2D growth. Pathways related to cell-cell interactions, differentiation, and the extracellular matrix were enriched in 3D conditions. Immunohistochemical analyses confirmed that gene upregulation in xenografts occurred in implanted cancer cells and not in mouse stromal cells. Cultivating cells in vitro in the presence of mouse, rather than bovine serum failed to elicit the gene transcription profile observed in xenografts, further supporting the hypothesis that this profile reflects 3D growth and enhanced microenvironmental interactions, rather than exposure to species-specific serum factors. CONCLUSIONS: Overall, these findings define the expression profiles observed in PC cells cultivated in 2D monolayers and in 3D xenografts, highlighting differentially regulated pathways in each setting and providing information for interpreting research results in model systems.


Subject(s)
Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Genome, Human , Heterografts , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred NOD , Mice, SCID , Oligonucleotide Array Sequence Analysis/methods , Transcriptome , Tumor Cells, Cultured , Tumor Microenvironment/genetics
3.
Prostate ; 76(9): 810-22, 2016 06.
Article in English | MEDLINE | ID: mdl-26990456

ABSTRACT

BACKGROUND: The TMPRSS2-ERG gene fusion is detected in approximately half of primary prostate cancers (PCa) yet the prognostic significance remains unclear. We hypothesized that ERG promotes the expression of common genes in primary PCa and metastatic castration-resistant PCa (CRPC), with the objective of identifying ERG-associated pathways, which may promote the transition from primary PCa to CRPC. METHODS: We constructed tissue microarrays (TMA) from 127 radical prostatectomy specimens, 20 LuCaP patient-derived xenografts (PDX), and 152 CRPC metastases obtained immediately at time of death. Nuclear ERG was assessed by immunohistochemistry (IHC). To characterize the molecular features of ERG-expressing PCa, a subset of IHC confirmed ERG+ or ERG- specimens including 11 radical prostatectomies, 20 LuCaP PDXs, and 45 CRPC metastases underwent gene expression analysis. Genes were ranked based on expression in primary PCa and CRPC. Common genes of interest were targeted for IHC analysis and expression compared with biochemical recurrence (BCR) status. RESULTS: IHC revealed that 43% of primary PCa, 35% of the LuCaP PDXs, and 18% of the CRPC metastases were ERG+ (12 of 48 patients [25%] had at least one ERG+ metastasis). Based on gene expression data and previous literature, two proteins involved in calcium signaling (NCALD, CACNA1D), a protein involved in inflammation (HLA-DMB), CD3 positive immune cells, and a novel ERG-associated protein, DCLK1 were evaluated in primary PCa and CRPC metastases. In ERG+ primary PCa, a weak association was seen with NCALD and CACNA1D protein expression. HLA-DMB association with ERG was decreased and CD3 cell number association with ERG was changed from positive to negative in CRPC metastases compared to primary PCa. DCLK1 was upregulated at the protein level in unpaired ERG+ primary PCa and CRPC metastases (P = 0.0013 and P < 0.0001, respectively). In primary PCa, ERG status or expression of targeted proteins was not associated with BCR-free survival. However, for primary PCa, ERG+DCLK1+ patients exhibited shorter time to BCR (P = 0.06) compared with ERG+DCLK1- patients. CONCLUSIONS: This study examined ERG expression in primary PCa and CRPC. We have identified altered levels of inflammatory mediators associated with ERG expression. We determined expression of DCLK1 correlates with ERG expression and may play a role in primary PCa progression to metastatic CPRC. Prostate 76:810-822, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/metabolism , Prostate/metabolism , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms/metabolism , Humans , Male , Prognosis , Prostate/pathology , Prostate/surgery , Prostatectomy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/surgery , Transcriptional Regulator ERG/metabolism
4.
BMC Mol Biol ; 14: 6, 2013 Feb 16.
Article in English | MEDLINE | ID: mdl-23414343

ABSTRACT

BACKGROUND: The ability to interrogate circulating tumor cells (CTC) and disseminated tumor cells (DTC) is restricted by the small number detected and isolated (typically <10). To determine if a commercially available technology could provide a transcriptomic profile of a single prostate cancer (PCa) cell, we clonally selected and cultured a single passage of cell cycle synchronized C4-2B PCa cells. Ten sets of single, 5-, or 10-cells were isolated using a micromanipulator under direct visualization with an inverted microscope. Additionally, two groups of 10 individual DTC, each isolated from bone marrow of 2 patients with metastatic PCa were obtained. RNA was amplified using the WT-Ovation™ One-Direct Amplification System. The amplified material was hybridized on a 44K Whole Human Gene Expression Microarray. A high stringency threshold, a mean Alexa Fluor® 3 signal intensity above 300, was used for gene detection. Relative expression levels were validated for select genes using real-time PCR (RT-qPCR). RESULTS: Using this approach, 22,410, 20,423, and 17,009 probes were positive on the arrays from 10-cell pools, 5-cell pools, and single-cells, respectively. The sensitivity and specificity of gene detection on the single-cell analyses were 0.739 and 0.972 respectively when compared to 10-cell pools, and 0.814 and 0.979 respectively when compared to 5-cell pools, demonstrating a low false positive rate. Among 10,000 randomly selected pairs of genes, the Pearson correlation coefficient was 0.875 between the single-cell and 5-cell pools and 0.783 between the single-cell and 10-cell pools. As expected, abundant transcripts in the 5- and 10-cell samples were detected by RT-qPCR in the single-cell isolates, while lower abundance messages were not. Using the same stringency, 16,039 probes were positive on the patient single-cell arrays. Cluster analysis showed that all 10 DTC grouped together within each patient. CONCLUSIONS: A transcriptomic profile can be reliably obtained from a single cell using commercially available technology. As expected, fewer amplified genes are detected from a single-cell sample than from pooled-cell samples, however this method can be used to reliably obtain a transcriptomic profile from DTC isolated from the bone marrow of patients with PCa.


Subject(s)
Prostatic Neoplasms/genetics , Single-Cell Analysis/methods , Transcriptome , Gene Expression Regulation, Neoplastic , Humans , Male , Neoplastic Cells, Circulating , Sensitivity and Specificity
5.
Dose Response ; 19(4): 15593258211044844, 2021.
Article in English | MEDLINE | ID: mdl-34675758

ABSTRACT

The concern over x-ray exposure risks can overshadow the potential benefit of radiography, especially in cases where manual therapy is employed. Spinal malalignment cannot be accurately visualized without imaging. Manual therapy and the load tolerances of injured spinal tissues raise different criteria for the use of x-rays for spinal disorders than in medical practice. Current regulatory bodies rely on radiography risk assessments based on Linear-No-Threshold (LNT) risk models. There is a need to consider radiography guidelines for chiropractic which are different from those for medical practice. Radiography practice guidelines are summaries dominated by frequentist interpretations in the analysis of data from studies. In contrast, clinicians often employ a pseudo-Bayesian form of reasoning during the clinical decision-making process. The overrepresentation of frequentist perspectives in evidence-based practice guidelines alter decision-making away from practical assessment of a patient's needs, toward an overly cautious standard applied to patients without regard to their risk/benefit likelihoods relating to radiography. Guidelines for radiography in chiropractic to fully assess the condition of the spine and spinal alignment prior to manual therapy, especially with high velocity, low amplitude spinal manipulation (HVLA-SM), should necessarily differ from those used in medical practice.

6.
J Clin Invest ; 129(10): 4492-4505, 2019 07 30.
Article in English | MEDLINE | ID: mdl-31361600

ABSTRACT

Metastatic castration-resistant prostate cancer (mCRPC) is a heterogeneous disease with diverse drivers of disease progression and mechanisms of therapeutic resistance. We conducted deep phenotypic characterization of CRPC metastases and patient-derived xenograft (PDX) lines using whole genome RNA sequencing, gene set enrichment analysis and immunohistochemistry. Our analyses revealed five mCRPC phenotypes based on the expression of well-characterized androgen receptor (AR) or neuroendocrine (NE) genes: (i) AR-high tumors (ARPC), (ii) AR-low tumors (ARLPC), (iii) amphicrine tumors composed of cells co-expressing AR and NE genes (AMPC), (iv) double-negative tumors (i.e. AR-/NE-; DNPC) and (v) tumors with small cell or NE gene expression without AR activity (SCNPC). RE1-silencing transcription factor (REST) activity, which suppresses NE gene expression, was lost in AMPC and SCNPC PDX models. However, knockdown of REST in cell lines revealed that attenuated REST activity drives the AMPC phenotype but is not sufficient for SCNPC conversion. We also identified a subtype of DNPC tumors with squamous differentiation and generated an encompassing 26-gene transcriptional signature that distinguished the five mCRPC phenotypes. Together, our data highlight the central role of AR and REST in classifying treatment-resistant mCRPC phenotypes. These molecular classifications could potentially guide future therapeutic studies and clinical trial design.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Neoplasm Proteins , Prostatic Neoplasms, Castration-Resistant , Transcription, Genetic , Humans , Male , Neoplasm Metastasis , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , PC-3 Cells , Prostatic Neoplasms, Castration-Resistant/classification , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology
7.
Clin Exp Metastasis ; 25(4): 377-88, 2008.
Article in English | MEDLINE | ID: mdl-17972146

ABSTRACT

Our objective was to elucidate phenotypic differences between prostate cancer (PCa) liver, lymph node, and bone metastases. PCa metastases were obtained through a rapid tissue acquisition necropsy protocol. We grossly dissected metastatic foci from frozen samples and performed expression analyses using cDNA microarrays. Immunohistochemical analyses using a tissue microarray from thirty individuals with PCa metastases to lymph nodes, liver, and bone was used to confirm the gene expression changes associated with each metastatic site. Transcript alterations statistically-associated with bone metastases included increased expression of IBSP (Bone sialoprotein), F13A1 (factor XIII), and decreased expression of EFNA1 (ephrin-A1) and ANGPT2 (angiopoietin-2) when compared to liver and lymph node metastases. The metastasis-associated changes in proteins involved in coagulation and angiogenesis prompted further analysis of additional factors known to participate in the clotting cascade and blood vessel formation (angiopoitein-1, PAI-1, uPA, PAI-RBP-1 and hepsin). We also assessed tumor-associated microvessel density and distribution in liver, lymph node, and bone metastasis. Intense fibrin(ogen) and fibulin-1 staining was localized to epithelial cells at the periphery of metastatic tumors possibly to facilitate angiogenesis. The expression of hepsin, uPA, PAI-RBP1, PAI-1, and factor XIII may influence fibrinolysis and are regulated by the tumor microenvironment. The expression of angiopoietin-2 and apparent silencing of angiopoietin-1 in PCa bone, liver, and lymph node metastases may be critical for angiogenesis in this tumor type. In addition, the resulting tumor-associated microvessel density and distribution was significantly different between liver and bone metastasis possibly in response to the protein expression changes detailed above.


Subject(s)
Bone and Bones/metabolism , Gene Expression Profiling , Liver/metabolism , Neovascularization, Physiologic , Prostatic Neoplasms/metabolism , Angiopoietin-1/genetics , Angiopoietin-2/genetics , Calcium-Binding Proteins/genetics , Factor VIIIa/genetics , Humans , Lymphatic Metastasis , Male , Oligonucleotide Array Sequence Analysis , Plasminogen Activator Inhibitor 1/genetics , Prostatic Neoplasms/pathology , RNA-Binding Proteins/genetics , Urokinase-Type Plasminogen Activator/genetics
8.
J Chiropr Med ; 16(3): 204-210, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29097950

ABSTRACT

OBJECTIVE: Researchers have identified potential errors in the Gonstead method's analysis of pelvic alignment resulting from y-axis rotation of the pelvis on the anteroposterior (A-P) radiograph. The purpose of this article is to propose a method that can be used to determine the magnitude of y-axis rotation of the pelvis present on the A-P radiograph. METHODS: In this proposed method, measurements are obtained from the patient and from the lateral and A-P radiographs. With a mathematical method, these measurements are used with the focal film distance to calculate the degree of pelvic rotation present on an individual A-P radiograph. RESULTS: This method may help with the accuracy of measurement of pelvic y-axis rotation on the A-P radiograph. CONCLUSION: The method proposed can be used to calculate the magnitude of pelvic y-axis rotation on an A-P radiograph.

9.
Cancer Cell ; 32(4): 474-489.e6, 2017 10 09.
Article in English | MEDLINE | ID: mdl-29017058

ABSTRACT

Androgen receptor (AR) signaling is a distinctive feature of prostate carcinoma (PC) and represents the major therapeutic target for treating metastatic prostate cancer (mPC). Though highly effective, AR antagonism can produce tumors that bypass a functional requirement for AR, often through neuroendocrine (NE) transdifferentiation. Through the molecular assessment of mPCs over two decades, we find a phenotypic shift has occurred in mPC with the emergence of an AR-null NE-null phenotype. These "double-negative" PCs are notable for elevated FGF and MAPK pathway activity, which can bypass AR dependence. Pharmacological inhibitors of MAPK or FGFR repressed the growth of double-negative PCs in vitro and in vivo. Our results indicate that FGF/MAPK blockade may be particularly efficacious against mPCs with an AR-null phenotype.


Subject(s)
Fibroblast Growth Factors/physiology , Prostatic Neoplasms/pathology , Receptors, Androgen/physiology , Signal Transduction/physiology , Androgen Antagonists/therapeutic use , Animals , Cell Differentiation , Cell Line, Tumor , Fibroblast Growth Factors/antagonists & inhibitors , Humans , Inhibitor of Differentiation Protein 1/physiology , MAP Kinase Signaling System/drug effects , Male , Mice , Neoplasm Metastasis , Prostatic Neoplasms/drug therapy , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Receptors, Fibroblast Growth Factor/physiology
10.
Free Radic Biol Med ; 40(11): 2005-17, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16716901

ABSTRACT

Oxidative stress elevates Ca2+ and, presumably, activates Ca2+ -dependent PKCs. We analyzed the participation of Ca2+ -dependent PKCs in actin disorganization and tight-junctional impairment induced by the pro-oxidant tert-butylhydroperoxide (tBOOH) in isolated rat hepatocyte couplets. tBOOH (100 microM) augmented radical oxygen species (ROS), as indicated by increased lipid peroxidation (+217%, p < 0.05) and intracellular production of 2',7'-dichlorofluorescein (+36%, p < 0.05). Cytosolic Ca2+ and PKCalpha translocation to membrane, an indicator of PKCalpha activation, were also elevated by tBOOH (+100 and +79%, respectively, p < 0.05). tBOOH increased the number of couplets displaying membrane blebs (+278%, p < 0.001) and caused redistribution of F-actin. tBOOH induced tight-junctional impairment, as indicated by a reduction in the percentage of couplets retaining presecreted cholyllysylfluorescein in their canalicular vacuoles (-54%, p < 0.001). tBOOH induced redistribution of the tight-junctional-associated protein ZO-1. All these events were prevented by the panspecific PKC inhibitors H7 and staurosporine, the Ca2+ -dependent PKC inhibitor Gö6976, the intracellular Ca2+ chelator BAPTA/AM, and the PKA activator dibutyryl-cyclic AMP. Furthermore, PKC inhibition and PKA activation not only prevented but also fully reversed tBOOH-induced blebbing. Conversely, tBOOH-induced ROS formation and Ca2+ elevation remained unchanged. We conclude that ROS induce hepatocellular actin-cytoskeleton rearrangement and tight-junctional impairment by a PKC-mediated, Ca2+ -dependent mechanism, which is counteracted by PKA.


Subject(s)
Actins/metabolism , Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytoskeleton/metabolism , Hepatocytes/metabolism , Oxidative Stress , Protein Kinase C/metabolism , Tight Junctions/metabolism , Animals , Enzyme Activation , Male , Protein Kinase C/antagonists & inhibitors , Rats , Rats, Wistar , tert-Butylhydroperoxide/pharmacology
11.
Toxicol Sci ; 91(1): 150-8, 2006 May.
Article in English | MEDLINE | ID: mdl-16452108

ABSTRACT

We have shown that Ca2+-mediated protein kinase C (PKC) activation induces impairment of bile salt secretory function and F-actin redistribution in hepatocyte couplets. Because oxidative stress induces Ca2+ elevation, we tested here whether PKC inhibition or protein kinase A (PKA) activation, which often counteracts PKC-dependent effects, can prevent and reverse these alterations. The pro-oxidant compounds tert-butylhydroperoxide (tBOOH, 100 microM) and 2,3-dimethoxy-1,4-naphthoquinone (30 microM), reduced by -41% and -29%, respectively, the percentage of couplets accumulating the fluorescent bile salt analog, cholyl-lysylfluorescein in their canalicular vacuoles (p < 0.01). tBOOH-induced bile salt secretory failure was accompanied by internalization of the canalicular bile salt export pump (Bsep), and disarrangement of cytoskeletal F-actin. All these deleterious effects were fully prevented by the intracellular Ca2+ chelator BAPTA/AM (20 microM), the pan-specific PKC inhibitors H7 (100 microM) and staurosporine (1 microM), the inhibitor of Ca2+-dependent PKCs, Gö6976 (2 microM), and the PKA activator dibutyryl-cAMP (500 microM). H7, Gö6976, and dibutyryl-cAMP not only prevented but also fully reversed the decrease in the cholyl-lysyl-fluorescein accumulation. In conclusion, these results suggest that low levels of oxidative stress impair bile salt secretion by internalizing Bsep through a Ca2+-dependent, PKC-mediated mechanism, and that inhibition of PKC, or activation of PKA, prevents and reverses these effects. Alterations in actin organization may be a causal factor.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bile Acids and Salts/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Hepatocytes/metabolism , Oxidative Stress , Protein Kinase C/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 11 , Animals , Bucladesine/pharmacology , Calcium/metabolism , Enzyme Activation , Hepatocytes/enzymology , Male , Naphthoquinones/pharmacology , Protein Kinase C/antagonists & inhibitors , Rats , Rats, Wistar , tert-Butylhydroperoxide/pharmacology
12.
Clin Exp Metastasis ; 33(3): 239-48, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26667932

ABSTRACT

TGFß is a known driver of epithelial-mesenchymal transition (EMT) which is associated with tumor aggressiveness and metastasis. However, EMT has not been fully explored in clinical specimens of castration-resistant prostate cancer (CRPC) metastases. To assess EMT in CRPC, gene expression analysis was performed on 149 visceral and bone metastases from 62 CRPC patients and immunohistochemical analysis was performed on 185 CRPC bone and visceral metastases from 42 CRPC patients. In addition, to assess the potential of metastases to seed further metastases the mitochondrial genome was sequenced at different metastatic sites in one patient. TGFß was increased in bone versus visceral metastases. While primarily cytoplasmic; nuclear and cytoplasmic Twist were significantly higher in bone than in visceral metastases. Slug and Zeb1 were unchanged, with the exception of nuclear Zeb1 being significantly higher in visceral metastases. Importantly, nuclear Twist, Slug, and Zeb1 were only present in a subset of epithelial cells that had an EMT-like phenotype. Underscoring the relevance of EMT-like cells, mitochondrial sequencing revealed that metastases could seed additional metastases in the same patient. In conclusion, while TGFß expression and EMT-associated protein expression is present in a considerable number of CRPC visceral and bone metastases, nuclear Twist, Slug, and Zeb1 localization and an EMT-like phenotype (elongated nuclei and cytoplasmic compartment) was only present in a small subset of CRPC bone metastases. Mitochondrial sequencing from different metastases in a CRPC patient provided evidence for the seeding of metastases from previously established metastases, highlighting the biological relevance of EMT-like behavior in CRPC metastases.


Subject(s)
Bone Neoplasms/secondary , Epithelial-Mesenchymal Transition/physiology , Neoplasm Metastasis/pathology , Prostatic Neoplasms, Castration-Resistant/pathology , Gene Expression Profiling , Homeodomain Proteins/biosynthesis , Humans , Immunohistochemistry , Laser Capture Microdissection , Male , Nuclear Proteins/biosynthesis , Real-Time Polymerase Chain Reaction , Snail Family Transcription Factors , Tissue Array Analysis , Transcription Factors/biosynthesis , Transcriptome , Transforming Growth Factor beta/biosynthesis , Twist-Related Protein 1/biosynthesis , Zinc Finger E-box-Binding Homeobox 1
13.
Nat Med ; 22(4): 369-78, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26928463

ABSTRACT

Tumor heterogeneity may reduce the efficacy of molecularly guided systemic therapy for cancers that have metastasized. To determine whether the genomic alterations in a single metastasis provide a reasonable assessment of the major oncogenic drivers of other dispersed metastases in an individual, we analyzed multiple tumors from men with disseminated prostate cancer through whole-exome sequencing, array comparative genomic hybridization (CGH) and RNA transcript profiling, and we compared the genomic diversity within and between individuals. In contrast to the substantial heterogeneity between men, there was limited diversity among metastases within an individual. The number of somatic mutations, the burden of genomic copy number alterations and aberrations in known oncogenic drivers were all highly concordant, as were metrics of androgen receptor (AR) activity and cell cycle activity. AR activity was inversely associated with cell proliferation, whereas the expression of Fanconi anemia (FA)-complex genes was correlated with elevated cell cycle progression, expression of the E2F transcription factor 1 (E2F1) and loss of retinoblastoma 1 (RB1). Men with somatic aberrations in FA-complex genes or in ATM serine/threonine kinase (ATM) exhibited significantly longer treatment-response durations to carboplatin than did men without defects in genes encoding DNA-repair proteins. Collectively, these data indicate that although exceptions exist, evaluating a single metastasis provides a reasonable assessment of the major oncogenic driver alterations that are present in disseminated tumors within an individual, and thus may be useful for selecting treatments on the basis of predicted molecular vulnerabilities.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/genetics , E2F1 Transcription Factor/biosynthesis , Prostatic Neoplasms/genetics , Receptors, Androgen/biosynthesis , Retinoblastoma Protein/genetics , Adult , Aged , Carboplatin/administration & dosage , Cell Proliferation/drug effects , Comparative Genomic Hybridization , DNA Copy Number Variations/genetics , E2F1 Transcription Factor/genetics , Gene Expression Regulation, Neoplastic/drug effects , Genetic Variation , Genome, Human , Humans , Male , Middle Aged , Neoplasm Metastasis , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Receptors, Androgen/genetics
14.
Appl Ergon ; 46 Pt B: 235-47, 2015 Jan.
Article in English | MEDLINE | ID: mdl-23570838

ABSTRACT

The UK Design Council describes Inclusive Design as neither a new genre of design, nor a separate specialism, but as a general approach to designing in which designers ensure that their products and services address the needs of the widest possible audience, irrespective of age or ability. Inclusive Design (also known [in Europe] as Design for All and as Universal Design in the USA) is in essence the inverse of earlier approaches to designing for disabled and elderly people as a sub-set of the population, and an integral part of a more recent international trend towards the integration of older and disabled people in the mainstream of society. This paper describes the development of Inclusive Design in the UK, from its early beginnings, through its subsequent adoption as a topic of academic research, leading to its recent emergence embodied as a framework and toolkit for design.


Subject(s)
Aging , Environment Design/trends , Equipment Design/history , Ergonomics/history , Disabled Persons , Environment Design/standards , Equipment Design/standards , Equipment Design/trends , History, 20th Century , History, 21st Century , Humans , Internationality , Translational Research, Biomedical , United Kingdom
15.
Mol Cancer Res ; 13(2): 339-47, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25298407

ABSTRACT

UNLABELLED: Human prostate cancer is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements, and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined whether structural chromosomal alterations occur in GEM models of prostate cancer and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNA) in the widely used TRAMP, Hi-Myc, Pten-null, and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null, and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). IMPLICATIONS: Chromosomal alterations are not a prerequisite for tumor formation in GEM prostate cancer models and cooperating events do not naturally occur by mechanisms that recapitulate changes in genomic integrity as observed in human prostate cancer.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/pathology , Chromosomes, Mammalian/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Chromosome Aberrations , Comparative Genomic Hybridization , DNA Copy Number Variations , Humans , Male , Mice , Mice, Transgenic , Neoplasms, Experimental
16.
Oncotarget ; 6(4): 2134-47, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25575823

ABSTRACT

Though metastatic cancers often initially respond to genotoxic therapeutics, acquired resistance is common. In addition to cytotoxic effects on tumor cells, DNA damaging agents such as ionizing radiation and chemotherapy induce injury in benign cells of the tumor microenvironment resulting in the production of paracrine-acting factors capable of promoting tumor resistance phenotypes. In studies designed to characterize the responses of prostate and bone stromal cells to genotoxic stress, we found that transcripts encoding glial cell line-derived neurotrophic factor (GDNF) increased several fold following exposures to cytotoxic agents including radiation, the topoisomerase inhibitor mitoxantrone and the microtubule poison docetaxel. Fibroblast GDNF exerted paracrine effects toward prostate cancer cells resulting in enhanced tumor cell proliferation and invasion, and these effects were concordant with the expression of known GDNF receptors GFRA1 and RET. Exposure to GDNF also induced tumor cell resistance to mitoxantrone and docetaxel chemotherapy. Together, these findings support an important role for tumor microenvironment damage responses in modulating treatment resistance and identify the GDNF signaling pathway as a potential target for improving responses to conventional genotoxic therapeutics.


Subject(s)
DNA Damage , Drug Resistance, Neoplasm/genetics , Glial Cell Line-Derived Neurotrophic Factor/genetics , Tumor Microenvironment/genetics , Antineoplastic Agents/pharmacology , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/genetics , Cell Survival/radiation effects , Docetaxel , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/radiation effects , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Humans , Male , Mitoxantrone/pharmacology , Oligonucleotide Array Sequence Analysis , Prostate/drug effects , Prostate/metabolism , Prostate/radiation effects , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Signal Transduction/radiation effects , Taxoids/pharmacology , Transcriptome/drug effects , Transcriptome/radiation effects , Tumor Microenvironment/drug effects , Tumor Microenvironment/radiation effects
17.
PLoS One ; 10(6): e0130565, 2015.
Article in English | MEDLINE | ID: mdl-26090669

ABSTRACT

Dissemination of prostate cancer (PCa) cells to the bone marrow is an early event in the disease process. In some patients, disseminated tumor cells (DTC) proliferate to form active metastases after a prolonged period of undetectable disease known as tumor dormancy. Identifying mechanisms of PCa dormancy and reactivation remain a challenge partly due to the lack of in vitro models. Here, we characterized in vitro PCa dormancy-reactivation by inducing cells from three patient-derived xenograft (PDX) lines to proliferate through tumor cell contact with each other and with bone marrow stroma. Proliferating PCa cells demonstrated tumor cell-cell contact and integrin clustering by immunofluorescence. Global gene expression analyses on proliferating cells cultured on bone marrow stroma revealed a downregulation of TGFB2 in all of the three proliferating PCa PDX lines when compared to their non-proliferating counterparts. Furthermore, constitutive activation of myosin light chain kinase (MLCK), a downstream effector of integrin-beta1 and TGF-beta2, in non-proliferating cells promoted cell proliferation. This cell proliferation was associated with an upregulation of CDK6 and a downregulation of E2F4. Taken together, our data provide the first clinically relevant in vitro model to support cellular adhesion and downregulation of TGFB2 as a potential mechanism by which PCa cells may escape from dormancy. Targeting the TGF-beta2-associated mechanism could provide novel opportunities to prevent lethal PCa metastasis.


Subject(s)
Cell Adhesion , Cell Communication , Cell Cycle Checkpoints , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Animals , Cell Line, Tumor , Cell Proliferation , Cluster Analysis , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/metabolism , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Integrin beta1/genetics , Integrin beta1/metabolism , Male , Mice , Prostatic Neoplasms/genetics , Stromal Cells/metabolism , Transforming Growth Factor beta2/genetics , Transforming Growth Factor beta2/metabolism
18.
Ann N Y Acad Sci ; 975: 77-90, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12538156

ABSTRACT

To better understand the molecular basis of vascular cell system behavior in inflammation, we used gene expression microarrays to analyze the expression of 7,075 genes and their response to IL-1beta and TNFalpha in cultures of coronary artery endothelium and smooth muscle derived from a single coronary artery. The most noticeable difference between the cell types was the considerably greater magnitude and complexity of the transcriptional response in the endothelial cells. Two hundred and nine genes were regulated in the endothelium and only 39 in vascular smooth muscle. Among the 209 regulated genes in the endothelium, 99 have not been previously associated with endothelial cell activation and many implicate the endothelium in unconventional roles. For example, the induced genes include several that have only been associated with leukocyte function (e.g., IL-7 receptor, EBI-3 receptor) and others related to antiviral and antibacterial defense (e.g., oligoadenylate synthetase, LMP7, toll-like receptor 4, complement component 3). In addition, 43 genes likely to participate in signal transduction (eg. IL-18 receptor, STK2 kinase, STAF50, ANP receptor, VIP receptor, RAC3, IFP35) were regulated providing evidence that a major effect of TNFalpha and IL-1beta is to alter the potential of the endothelial cell to respond to various other external stimuli.


Subject(s)
Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Inflammation Mediators/metabolism , Interleukin-1/pharmacology , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Cells, Cultured , Gene Expression Profiling , Humans , Oligonucleotide Array Sequence Analysis , Recombinant Proteins/pharmacology , Signal Transduction/genetics
19.
Toxicol Sci ; 71(2): 276-81, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12563113

ABSTRACT

Isolated rat hepatocyte couplets were used to perform the comparative study of two widely used immunosuppressors, cyclosporin A (CsA) and tacrolimus (FK506) on hepatocanalicular function. We assessed canalicular function by counting the percentage of couplets that were able to accumulate the fluorescent cholephile, cholyl-lysyl-fluorescein (CLF), into the canalicular vacuole between the two cells, i.e., canalicular vacuole accumulation (CVA) of CLF. Compared to controls (DMSO-treated cells), CsA, in the approximate range of concentrations used therapeutically, caused inhibition of CVA of CLF, disorganization of the bile salt export pump (Bsep) localization at canalicular level resulting in its relocation into the cell, and disruption of the pericanalicular F-actin cytoskeleton. In contrast, FK506, at both approximately therapeutic and supratherapeutic concentrations, had no deleterious effect upon CVA of CLF, upon the localization of the bile salt transporter at the canalicular membrane, or on the organization of the pericanalicular F-actin cytoskeleton. These results point to transporter and cytoskeletal disorganization as contributors or determinants of CsA-induced cholestasis at canalicular level, whereas FK506 does not appear to produce these cholestasis-determining responses even at supratherapeutic concentrations.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Bile Canaliculi/drug effects , Cyclosporine/pharmacology , Hepatocytes/drug effects , Immunosuppressive Agents/toxicity , Animals , Bile Acids and Salts/metabolism , Bile Canaliculi/metabolism , Biological Transport, Active , Cells, Cultured , Cholic Acids/metabolism , Dose-Response Relationship, Drug , Fluoresceins/metabolism , Hepatocytes/metabolism , Male , Rats , Rats, Wistar , Tacrolimus/pharmacology
20.
J Manipulative Physiol Ther ; 27(6): 403-7, 2004.
Article in English | MEDLINE | ID: mdl-15319763

ABSTRACT

BACKGROUND: One use of the anteroposterior lumbar radiograph is to determine axial (y-axis) rotation of the lumbar vertebrae. Rotation might be an element of interest to clinicians seeking to evaluate vertebral positioning. OBJECTIVES: Correlate and quantify movements of the projected pedicles relative to the projected vertebral body during axial rotation and determine if vertebral asymmetry and changes in object film distance affect these movements. DESIGN: A three-dimensional computer model of the fourth and fifth lumbar vertebrae, a modeled radiograph source, and a modeled film were produced. The vertebral model was placed in various degrees of axial rotation at a number of different object film distances. Lines from the source were passed through the pedicles of the fourth lumbar vertebral model and additional lines erected tangent to the lateral body margins. These lines were extended to points of contact with the modeled film. RESULTS: The projected pedicles move relative to the projected vertebral body during y-axis rotation. Vertebral asymmetry and object film distances can also affect the distance of the projected pedicle relative to the projected lateral body margin. CONCLUSION: Axial rotation produces movement of the projected pedicles relative to the projected vertebral body. However, vertebral asymmetry and changes in object film distance also affect the position of the projected pedicles relative to the projected lateral body margin and might serve as confounders to the clinician seeking to analyze vertebral rotation through the use of the projected pedicles.


Subject(s)
Lumbar Vertebrae/diagnostic imaging , Anthropometry , Humans , Imaging, Three-Dimensional , Motion , Radiography , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL