Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 24(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38003449

ABSTRACT

Congenital heart defects (CHDs) are the most common form of birth defects in humans. They occur in 9 out of 1000 live births and are defined as structural abnormalities of the heart. Understanding CHDs is difficult due to the heterogeneity of the disease and its multifactorial etiology. Advances in genomic sequencing have made it possible to identify the genetic factors involved in CHDs. However, genetic origins have only been found in a minority of CHD cases, suggesting the contribution of non-inherited (environmental) risk factors to the etiology of CHDs. Maternal pregestational diabetes is associated with a three- to five-fold increased risk of congenital cardiopathies, but the underlying molecular mechanisms are incompletely understood. According to current hypotheses, hyperglycemia is the main teratogenic agent in diabetic pregnancies. It is thought to induce cell damage, directly through genetic and epigenetic dysregulations and/or indirectly through production of reactive oxygen species (ROS). The purpose of this review is to summarize key findings on the molecular mechanisms altered in cardiac development during exposure to hyperglycemic conditions in utero. It also presents the various in vivo and in vitro techniques used to experimentally model pregestational diabetes. Finally, new approaches are suggested to broaden our understanding of the subject and develop new prevention strategies.


Subject(s)
Diabetes, Gestational , Heart Defects, Congenital , Hyperglycemia , Pregnancy in Diabetics , Pregnancy , Female , Humans , Diabetes, Gestational/genetics , Risk Factors , Heart Defects, Congenital/genetics , Pregnancy in Diabetics/genetics , Hyperglycemia/complications , Hyperglycemia/genetics
2.
J Hum Genet ; 67(9): 515-518, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35534675

ABSTRACT

Bicuspid aortic valve (BAV) is the most common congenital heart defect with a high index of heritability. Patients with BAV have different clinical courses and disease progression. Herein, we report three siblings with BAV and clinical differences. Their clinical presentations include moderate to severe aortic regurgitation, aortic stenosis, and ascending aortic aneurysm. Genetic investigation was carried out using Whole-Exome Sequencing for the three patients. We identified two non-synonymous variants in ROBO1 and GATA5 genes. The ROBO1: p.(Ser327Pro) variant is shared by the three BAV-affected siblings. The GATA5: p.(Gln3Arg) variant is shared only by the two brothers who presented BAV and ascending aortic aneurysm. Their sister, affected by BAV without aneurysm, does not harbor the GATA5: p.(Gln3Arg) variant. Both variants were absent in the patients' fourth brother who is clinically healthy with tricuspid aortic valve. To our knowledge, this is the first association of ROBO1 and GATA5 variants in familial BAV with a potential genotype-phenotype correlation. Our findings are suggestive of the implication of ROBO1 gene in BAV and the GATA5: p.(Gln3Arg) variant in ascending aortic aneurysm. Our family-based study further confirms the intrafamilial incomplete penetrance of BAV and the complex pattern of inheritance of the disease.


Subject(s)
Bicuspid Aortic Valve Disease , GATA5 Transcription Factor , Nerve Tissue Proteins , Receptors, Immunologic , Aortic Valve/abnormalities , Bicuspid Aortic Valve Disease/genetics , Female , GATA5 Transcription Factor/genetics , Humans , Male , Nerve Tissue Proteins/genetics , Receptors, Immunologic/genetics , Roundabout Proteins
3.
J Mol Cell Cardiol ; 143: 51-62, 2020 06.
Article in English | MEDLINE | ID: mdl-32251670

ABSTRACT

AIMS: During embryogenesis, the onset of circulatory blood flow generates a variety of hemodynamic forces which reciprocally induce changes in cardiovascular development and performance. It has been known for some time that these forces can be detected by as yet unknown mechanosensory systems which in turn promote cardiogenic events such as outflow tract and aortic valve development. PIEZO1 is a mechanosensitive ion channel present in endothelial cells where it serves to detect hemodynamic forces making it an ideal candidate to play a role during cardiac development. We sought to determine whether PIEZO1 is required for outflow tract and aortic valve development. METHODS AND RESULTS: By analysing heart development in zebrafish we have determined that piezo1 is expressed in the developing outflow tract where it serves to detect hemodynamic forces. Consequently, disrupting Piezo1 signalling leads to defective outflow tract and aortic valve development and indicates this gene may be involved in the etiology of congenital heart diseases. Based on these findings, we analysed genomic data generated from patients who suffer from left ventricular outflow tract obstructions (LVOTO) and identified 3 probands who each harboured potentially pathogenic variants in PIEZO1. Subsequent in vitro and in vivo assays indicates that these variants behave as dominant negatives leading to an inhibition of normal PIEZO1 mechanosensory activity. Expressing these dominant negative PIEZO1 variants in zebrafish endothelium leads to defective aortic valve development. CONCLUSION: These data indicate that the mechanosensitive ion channel piezo1 is required for outflow tract and aortic valve development.


Subject(s)
Aortic Valve/embryology , Hemodynamics , Ion Channels/genetics , Organogenesis/genetics , Zebrafish Proteins/genetics , Alleles , Amino Acid Sequence , Animals , Fluorescent Antibody Technique , Gene Expression , Gene Knockdown Techniques , Genes, Reporter , Humans , Ion Channels/chemistry , Ion Channels/metabolism , Models, Molecular , Mutation , Protein Conformation , Zebrafish Proteins/chemistry , Zebrafish Proteins/metabolism
4.
Physiol Genomics ; 52(12): 563-574, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33044885

ABSTRACT

Calcific aortic valve disease (CAVD) is a significant cause of illness and death worldwide. Identification of early predictive markers could help optimize patient management. RNA-sequencing was carried out on human fetal aortic valves at gestational weeks 9, 13, and 22 and on a case-control study with adult noncalcified and calcified bicuspid and tricuspid aortic valves. In dimension reduction and clustering analyses, diseased valves tended to cluster with fetal valves at week 9 rather than normal adult valves, suggesting that part of the disease program might be due to reiterated developmental processes. The analysis of groups of coregulated genes revealed predominant immune-metabolic signatures, including innate and adaptive immune responses involving lymphocyte T-cell metabolic adaptation. Cytokine and chemokine signaling, cell migration, and proliferation were all increased in CAVD, whereas oxidative phosphorylation and protein translation were decreased. Discrete immune-metabolic gene signatures were present at fetal stages and increased in adult controls, suggesting that these processes intensify throughout life and heighten in disease. Cellular stress response and neurodegeneration gene signatures were aberrantly expressed in CAVD, pointing to a mechanistic link between chronic inflammation and biological aging. Comparison of the valve RNA-sequencing data set with a case-control study of whole blood transcriptomes from asymptomatic individuals with early aortic valve calcification identified a highly predictive gene signature of CAVD and of moderate aortic valve calcification in overtly healthy individuals. These data deepen and broaden our understanding of the molecular basis of CAVD and identify a peripheral blood gene signature for the early detection of aortic valve calcification.


Subject(s)
Aortic Valve Stenosis/blood , Aortic Valve Stenosis/genetics , Aortic Valve/pathology , Calcinosis/blood , Calcinosis/genetics , Fetal Diseases/genetics , Transcriptome , Adult , Aortic Valve/embryology , Aortic Valve Stenosis/embryology , Aortic Valve Stenosis/epidemiology , Asymptomatic Diseases , Biomarkers/blood , Calcinosis/embryology , Calcinosis/epidemiology , Case-Control Studies , Cluster Analysis , Female , Gestational Age , Humans , Mitral Valve/embryology , Mitral Valve/pathology , Pregnancy , Prospective Studies , RNA-Seq , Spain/epidemiology , Tricuspid Valve/embryology , Tricuspid Valve/pathology
5.
Mol Biol Rep ; 45(5): 1507-1513, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29923154

ABSTRACT

Ventricular septal defect (VSD) including outlet VSD of double outlet right ventricle (DORV) and perimembranous VSD are among the most common congenital heart diseases found at birth. HOXB1 encodes a homeodomain transcription factor essential for normal cardiac outflow tract development. The aim of the present study was to investigate the possible genetic effect of sequence variations in HOXB1 on VSD. The coding regions and splice junctions of the HOXB1 gene were sequenced in 57 unrelated VSD patients. As a result, a homozygous c.74_82dup (p.Pro28delinsHisSerAlaPro) variant was identified in one individual with DORV. We also identified five previously reported polymorphisms (rs35114525, rs12946855, rs14534040, rs12939811, and rs7207109) in 18 patients (12 DORV and 6 perimembranous VSD). Our study did not show any pathogenic alterations in the coding region of HOXB1 among patients with VSD. To our knowledge this is the first study investigating the role of HOXB1 in nonsyndromic VSD, which provide more insight on the etiology of this disease.


Subject(s)
Double Outlet Right Ventricle/genetics , Heart Septal Defects, Ventricular/genetics , Homeodomain Proteins/genetics , Child , Child, Preschool , Cohort Studies , Female , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Heart Septal Defects, Ventricular/physiopathology , Homeodomain Proteins/physiology , Humans , Male , Transcription Factors
6.
J Med Genet ; 54(2): 100-103, 2017 02.
Article in English | MEDLINE | ID: mdl-27582083

ABSTRACT

BACKGROUND: Marfan syndrome (MFS) is an autosomal-dominant connective tissue disorder usually associated with heterozygous mutations in the gene encoding fibrillin-1 (FBN1). Homozygous and compound heterozygous cases are rare events and have been associated with a clinical severe presentation. OBJECTIVES: Report unexpected findings of homozygosity and compound heterozygosity in the course of molecular diagnosis of heterozygous MFS and compare the findings with published cases. METHODS AND RESULTS: In the context of molecular diagnosis of heterozygous MFS, systematic sequencing of the FBN1 gene was performed in 2500 probands referred nationwide. 1400 probands carried a heterozygous mutation in this gene. Unexpectedly, among them four homozygous cases (0.29%) and five compound heterozygous cases (0.36%) were identified (total: 0.64%). Interestingly, none of these cases carried two premature termination codon mutations in the FBN1 gene. Clinical features for these carriers and their families were gathered and compared. There was a large spectrum of severity of the disease in probands carrying two mutated FBN1 alleles, but none of them presented extremely severe manifestations of MFS in any system compared with carriers of only one mutated FBN1 allele. This observation is not in line with the severe clinical features reported in the literature for four homozygous and three compound heterozygous probands. CONCLUSION: Homozygotes and compound heterozygotes were unexpectedly identified in the course of molecular diagnosis of MFS. Contrary to previous reports, the presence of two mutated alleles was not associated with severe forms of MFS. Although homozygosity and compound heterozygosity are rarely found in molecular diagnosis, they should not be overlooked, especially among consanguineous families. However, no predictive evaluation of severity should be provided.


Subject(s)
Fibrillin-1/genetics , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Pathology, Molecular , Alleles , Codon, Nonsense , Female , Genetic Predisposition to Disease , Genetic Testing , Heterozygote , Homozygote , Humans , Male , Marfan Syndrome/pathology , Mutation, Missense/genetics , Pedigree
7.
Hum Mutat ; 37(5): 439-46, 2016 May.
Article in English | MEDLINE | ID: mdl-26842889

ABSTRACT

Whole-exome sequencing (WES) is increasingly applied to research and clinical diagnosis of human diseases. It typically results in large amounts of genetic variations. Depending on the mode of inheritance, only one or two correspond to pathogenic mutations responsible for the disease and present in affected individuals. Therefore, it is crucial to filter out nonpathogenic variants and limit downstream analysis to a handful of candidate mutations. We have developed a new computational combinatorial system UMD-Predictor (http://umd-predictor.eu) to efficiently annotate cDNA substitutions of all human transcripts for their potential pathogenicity. It combines biochemical properties, impact on splicing signals, localization in protein domains, variation frequency in the global population, and conservation through the BLOSUM62 global substitution matrix and a protein-specific conservation among 100 species. We compared its accuracy with the seven most used and reliable prediction tools, using the largest reference variation datasets including more than 140,000 annotated variations. This system consistently demonstrated a better accuracy, specificity, Matthews correlation coefficient, diagnostic odds ratio, speed, and provided the shortest list of candidate mutations for WES. Webservices allow its implementation in any bioinformatics pipeline for next-generation sequencing analysis. It could benefit to a wide range of users and applications varying from gene discovery to clinical diagnosis.


Subject(s)
Amino Acid Substitution , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Sequence Analysis, DNA/methods , Algorithms , Databases, Genetic , Exome , Genetic Predisposition to Disease , Humans , Point Mutation
8.
Hum Mutat ; 37(12): 1299-1307, 2016 12.
Article in English | MEDLINE | ID: mdl-27600092

ABSTRACT

Adoption of next-generation sequencing (NGS) in a diagnostic context raises numerous questions with regard to identification and reports of secondary variants (SVs) in actionable genes. To better understand the whys and wherefores of these questioning, it is necessary to understand how they are selected during the filtering process and how their proportion can be estimated. It is likely that SVs are underestimated and that our capacity to label all true SVs can be improved. In this context, Locus-specific databases (LSDBs) can be key by providing a wealth of information and enabling classifying variants. We illustrate this issue by analyzing 318 SVs in 23 actionable genes involved in cancer susceptibility syndromes identified through sequencing of 572 participants selected for a range of atherosclerosis phenotypes. Among these 318 SVs, only 43.4% are reported in Human Gene Mutation Database (HGMD) Professional versus 71.4% in LSDB. In addition, 23.9% of HGMD Professional variants are reported as pathogenic versus 4.8% for LSDB. These data underline the benefits of LSDBs to annotate SVs and minimize overinterpretation of mutations thanks to their efficient curation process and collection of unpublished data.


Subject(s)
Atherosclerosis/genetics , Databases, Genetic , Neoplasms/genetics , Computational Biology , Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , Molecular Sequence Annotation , Mutation , Software
9.
Hum Mutat ; 37(12): 1308-1317, 2016 12.
Article in English | MEDLINE | ID: mdl-27647783

ABSTRACT

High-throughput next-generation sequencing such as whole-exome and whole-genome sequencing are being rapidly integrated into clinical practice. The use of these techniques leads to the identification of secondary variants for which decisions about the reporting or not to the patient need to be made. The American College of Medical Genetics and Genomics recently published recommendations for the reporting of these variants in clinical practice for 56 "actionable" genes. Among these, seven are involved in Marfan Syndrome And Related Disorders (MSARD) resulting from mutations of the FBN1, TGFBR1 and 2, ACTA2, SMAD3, MYH11 and MYLK genes. Here, we show that mutations collected in UMD databases for MSARD genes (UMD-MSARD) are rarely reported, including the most frequent ones, in global scale initiatives for variant annotation such as the NHLBI GO Exome Sequencing Project (ESP), the Exome Aggregation Consortium (ExAC), and ClinVar. The predicted pathogenic mutations reported in global scale initiatives but absent in locus-specific databases (LSDBs) mainly correspond to rare events. UMD-MSARD databases are therefore the only resources providing access to the full spectrum of known pathogenic mutations. They are the most comprehensive resources for clinicians and geneticists to interpret MSARD-related variations not only primary variants but also secondary variants.


Subject(s)
Cardiovascular Diseases/genetics , High-Throughput Nucleotide Sequencing/methods , Mutation , Exome , Genetic Predisposition to Disease , Genome, Human , Genomics/methods , Humans , Knowledge Bases
10.
Hum Mutat ; 37(12): 1318-1328, 2016 12.
Article in English | MEDLINE | ID: mdl-27633797

ABSTRACT

As next-generation sequencing increases access to human genetic variation, the challenge of determining clinical significance of variants becomes ever more acute. Germline variants in the BRCA1 and BRCA2 genes can confer substantial lifetime risk of breast and ovarian cancer. Assessment of variant pathogenicity is a vital part of clinical genetic testing for these genes. A database of clinical observations of BRCA variants is a critical resource in that process. This article describes BRCA Share™, a database created by a unique international alliance of academic centers and commercial testing laboratories. By integrating the content of the Universal Mutation Database generated by the French Unicancer Genetic Group with the testing results of two large commercial laboratories, Quest Diagnostics and Laboratory Corporation of America (LabCorp), BRCA Share™ has assembled one of the largest publicly accessible collections of BRCA variants currently available. Although access is available to academic researchers without charge, commercial participants in the project are required to pay a support fee and contribute their data. The fees fund the ongoing curation effort, as well as planned experiments to functionally characterize variants of uncertain significance. BRCA Share™ databases can therefore be considered as models of successful data sharing between private companies and the academic world.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Databases, Factual , Ovarian Neoplasms/genetics , Data Curation , Databases, Factual/economics , Female , Genetic Predisposition to Disease , Humans , Mutation
11.
Am J Hum Genet ; 91(5): 950-7, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-23103230

ABSTRACT

Shprintzen-Goldberg syndrome (SGS) is characterized by severe marfanoid habitus, intellectual disability, camptodactyly, typical facial dysmorphism, and craniosynostosis. Using family-based exome sequencing, we identified a dominantly inherited heterozygous in-frame deletion in exon 1 of SKI. Direct sequencing of SKI further identified one overlapping heterozygous in-frame deletion and ten heterozygous missense mutations affecting recurrent residues in 18 of the 19 individuals screened for SGS; these individuals included one family affected by somatic mosaicism. All mutations were located in a restricted area of exon 1, within the R-SMAD binding domain of SKI. No mutation was found in a cohort of 11 individuals with other marfanoid-craniosynostosis phenotypes. The interaction between SKI and Smad2/3 and Smad 4 regulates TGF-ß signaling, and the pattern of anomalies in Ski-deficient mice corresponds to the clinical manifestations of SGS. These findings define SGS as a member of the family of diseases associated with the TGF-ß-signaling pathway.


Subject(s)
Arachnodactyly/genetics , Craniosynostoses/genetics , DNA-Binding Proteins/genetics , Exons , Genes, Dominant , Marfan Syndrome/genetics , Mutation , Proto-Oncogene Proteins/genetics , Adolescent , Adult , Amino Acid Sequence , Child , Child, Preschool , DNA-Binding Proteins/chemistry , Facies , Female , Gene Order , Humans , Male , Models, Molecular , Molecular Sequence Data , Pedigree , Phenotype , Protein Structure, Tertiary , Proto-Oncogene Proteins/chemistry , Sequence Alignment , Young Adult
12.
Am J Hum Genet ; 89(1): 7-14, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21683322

ABSTRACT

Geleophysic (GD) and acromicric dysplasia (AD) belong to the acromelic dysplasia group and are both characterized by severe short stature, short extremities, and stiff joints. Although AD has an unknown molecular basis, we have previously identified ADAMTSL2 mutations in a subset of GD patients. After exome sequencing in GD and AD cases, we selected fibrillin 1 (FBN1) as a candidate gene, even though mutations in this gene have been described in Marfan syndrome, which is characterized by tall stature and arachnodactyly. We identified 16 heterozygous FBN1 mutations that are all located in exons 41 and 42 and encode TGFß-binding protein-like domain 5 (TB5) of FBN1 in 29 GD and AD cases. Microfibrillar network disorganization and enhanced TGFß signaling were consistent features in GD and AD fibroblasts. Importantly, a direct interaction between ADAMTSL2 and FBN1 was demonstrated, suggesting a disruption of this interaction as the underlying mechanism of GD and AD phenotypes. Although enhanced TGFß signaling caused by FBN1 mutations can trigger either Marfan syndrome or GD and AD, our findings support the fact that TB5 mutations in FBN1 are responsible for short stature phenotypes.


Subject(s)
Bone Diseases, Developmental/genetics , Dwarfism/genetics , Eye Abnormalities/genetics , Limb Deformities, Congenital/genetics , Microfilament Proteins/genetics , Mutation , Adolescent , Adult , Child , Child, Preschool , Connective Tissue/abnormalities , DNA Mutational Analysis , Exons , Extracellular Matrix Proteins/metabolism , Fibrillin-1 , Fibrillins , Fluorescent Antibody Technique , Heterozygote , Humans , Inclusion Bodies/genetics , Marfan Syndrome/genetics , Microfibrils/ultrastructure , Microfilament Proteins/metabolism , Middle Aged , Phenotype , Protein Structure, Tertiary , Signal Transduction , Transforming Growth Factor beta1/metabolism , Young Adult
13.
Nat Genet ; 36(8): 855-60, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15235604

ABSTRACT

Marfan syndrome is an extracellular matrix disorder with cardinal manifestations in the eye, skeleton and cardiovascular systems associated with defects in the gene encoding fibrillin (FBN1) at 15q21.1 (ref. 1). A second type of the disorder (Marfan syndrome type 2; OMIM 154705) is associated with a second locus, MFS2, at 3p25-p24.2 in a large French family (family MS1). Identification of a 3p24.1 chromosomal breakpoint disrupting the gene encoding TGF-beta receptor 2 (TGFBR2) in a Japanese individual with Marfan syndrome led us to consider TGFBR2 as the gene underlying association with Marfan syndrome at the MSF2 locus. The mutation 1524G-->A in TGFBR2 (causing the synonymous amino acid substitution Q508Q) resulted in abnormal splicing and segregated with MFS2 in family MS1. We identified three other missense mutations in four unrelated probands, which led to loss of function of TGF-beta signaling activity on extracellular matrix formation. These results show that heterozygous mutations in TGFBR2, a putative tumor-suppressor gene implicated in several malignancies, are also associated with inherited connective-tissue disorders.


Subject(s)
Marfan Syndrome/genetics , Receptors, Transforming Growth Factor beta/genetics , Amino Acid Sequence , Chromosomes, Human, Pair 3 , Female , Humans , Male , Molecular Sequence Data , Mutation , Pedigree , Protein Serine-Threonine Kinases , Receptor, Transforming Growth Factor-beta Type II , Signal Transduction/genetics
14.
Front Bioinform ; 3: 1127341, 2023.
Article in English | MEDLINE | ID: mdl-36896423

ABSTRACT

Introduction: Using the ACMG-AMP guidelines for the interpretation of sequence variants, it remains difficult to meet the criterion associated with the protein domain, PM1, which is assigned in only about 10% of cases, whereas the criteria related to variant frequency, PM2/BA1/BS1, is reported in 50% of cases. To improve the classification of human missense variants using protein domains information, we developed the DOLPHIN system (https://dolphin.mmg-gbit.eu). Methods: We used Pfam alignments of eukaryotes to define DOLPHIN scores to identify protein domain residues and variants that have a significant impact. In parallel, we enriched gnomAD variants frequencies for each domains' residue. These were validated using ClinVar data. Results: We applied this method to all potential human transcripts' variants, resulting in 30.0% being assigned a PM1 label, whereas 33.2% were eligible for a new benign support criterion, BP8. We also showed that DOLPHIN provides an extrapolated frequency for 31.8% of the variants, compared to the original frequency available in gnomAD for 7.6% of them. Discussion: Overall, DOLPHIN allows a simplified use of the PM1 criterion, an expanded application of the PM2/BS1 criteria and the creation of a new BP8 criterion. DOLPHIN could facilitate the classification of amino acid substitutions in protein domains that cover nearly 40% of proteins and represent the sites of most pathogenic variants.

15.
Nat Commun ; 14(1): 1543, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36941270

ABSTRACT

Bicuspid aortic valve (BAV), the most common cardiovascular malformation occurs in 0.5-1.2% of the population. Although highly heritable, few causal mutations have been identified in BAV patients. Here, we report the targeted sequencing of HOXA1 in a cohort of BAV patients and the identification of rare indel variants in the homopolymeric histidine tract of HOXA1. In vitro analysis shows that disruption of this motif leads to a significant reduction in protein half-life and defective transcriptional activity of HOXA1. In zebrafish, targeting hoxa1a ortholog results in aortic valve defects. In vivo assays indicates that these variants behave as dominant negatives leading abnormal valve development. In mice, deletion of Hoxa1 leads to BAV with a very small, rudimentary non-coronary leaflet. We also show that 17% of homozygous Hoxa1-1His knock-in mice present similar phenotype. Genetic lineage tracing in Hoxa1-/- mutant mice reveals an abnormal reduction of neural crest-derived cells in the valve leaflet, which is caused by a failure of early migration of these cells.


Subject(s)
Bicuspid Aortic Valve Disease , Heart Valve Diseases , Homeodomain Proteins , Animals , Mice , Aortic Valve/abnormalities , Bicuspid Aortic Valve Disease/metabolism , Heart Valve Diseases/genetics , Heart Valve Diseases/metabolism , Histidine/metabolism , Zebrafish/genetics , Zebrafish Proteins/genetics , Homeodomain Proteins/genetics
16.
Int J Cardiovasc Imaging ; 38(1): 51-59, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34374902

ABSTRACT

Although bicuspid aortic valve (BAV) is one of the most common congenital heart diseases, clinical data associated with valve dysfunction are still limited. We evaluated clinical characteristics and echocardiography of French patients with BAV associated with leaking and stenosis degeneration. We initiated a prospective registry from 2014 to 2018 at a tertiary center. A total of 223 patients (168 males [75%], age 53 ± 17 years) were enrolled. Among these patients 83% had left-right coronary cusps fusion, 80% Sievers type 1 BAV and 49% showed aortic dilatation. Twenty-four patients (11%) had normal valve function, 66 patients (31%) had aortic stenosis (AS), 91 patients (41%) had aortic regurgitation (AR) and 40 patients (17%) had AR and AS. BAV phenotype did not predict neither AS nor AR (all p > 0.1). By multivariable analysis, age > 50 (41.6[10.3-248.2], p < 0.001) and presence of raphe/fusion (12.8[2.4-87.4], p < 0.001) were significantly associated with AS, whereas male gender was associated with AR (5[1.6-16.4], p = 0.005). In addition, leaking degeneration was observed at a much younger age than stenosis (44 ± 14 years vs. 66 ± 10 years, p < 0.01) and among patients with valve dysfunction younger age was independently associated with AR (1.9[1.85-1.94], p < 0.001). In this study we confirmed high prevalence of valve dysfunction at first diagnosis of BAV in a referred population. The degenerative process differs according to type of dysfunction and is mainly dependent on age and gender.


Subject(s)
Aortic Valve Stenosis , Bicuspid Aortic Valve Disease , Heart Valve Diseases , Adult , Aged , Aortic Valve/diagnostic imaging , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/epidemiology , Heart Valve Diseases/diagnostic imaging , Heart Valve Diseases/epidemiology , Humans , Male , Middle Aged , Predictive Value of Tests , Retrospective Studies , Tertiary Care Centers
17.
Hum Mutat ; 32(11): 1213-24, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21793105

ABSTRACT

By family-based screening, first Fuchs and then many other authors showed that mutations in THAP1 (THAP [thanatos-associated protein] domain-containing, apoptosis-associated protein 1) account for a substantial proportion of familial, early-onset, nonfocal, primary dystonia cases (DYT6 dystonia). THAP1 is the first transcriptional factor involved in primary dystonia and the hypothesis of a transcriptional deregulation, which was primarily proposed for the X-linked dystonia-parkinsonism (DYT3 dystonia), provided thus a new way to investigate the possible mechanism underlying the development of dystonic movements. Currently, 56 families present with a THAP1 mutation; however, no genotype/phenotype relationship has been found. Therefore, we carried out a systematic review of the literature on the THAP1 gene to colligate all reported patients with a specific THAP1 mutation and the associated clinical signs in order to describe the broad phenotypic continuum of this disorder. To facilitate the comparison of the identified mutations, we created a Locus-Specific Database (UMD-THAP1 LSDB) available at http://www.umd.be/THAP1/. Currently, the database lists 56 probands and 43 relatives with the associated clinical phenotype when available. The identification of a larger number of THAP1 mutations and collection of high-quality clinical information for each described mutation through international collaborative effort will help investigating the structure-function and genotype-phenotype correlations in DYT6 dystonia.


Subject(s)
Apoptosis Regulatory Proteins/genetics , DNA-Binding Proteins/genetics , Databases, Genetic , Dystonia Musculorum Deformans/genetics , Mutation , Nuclear Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , DNA Mutational Analysis , Female , Genetic Association Studies , Humans , Male , Young Adult
18.
Mol Cancer ; 10: 64, 2011 May 27.
Article in English | MEDLINE | ID: mdl-21619602

ABSTRACT

BACKGROUND: Topoisomerase I (TOP1) is a nuclear enzyme that catalyzes the relaxation of supercoiled DNA during DNA replication and transcription. TOP1 is the molecular target of camptothecin and related drugs such as irinotecan and SN38 (irinotecan's active metabolite). Irinotecan is widely used as an anti-cancer agent in the treatment of metastatic colon cancer. However, its efficacy is often limited by the development of resistance. METHODS: We previously established several SN38 resistant HCT116-derived clones to study the mechanisms underlying resistance to SN38. Here, we investigated whether resistance to SN38 in these cell lines could be linked to the presence of TOP1 mutations and changes in its expression and activity. Functional analyses were performed on these cell lines challenged with SN38 and we specifically monitored the double strands breaks with γH2AX staining and replication activity with molecular combing. RESULTS: In SN38 resistant HCT116 clones we identified three new TOP1 mutations, which are located in the core subdomain III (p.R621H and p.L617I) and in the linker domain (p.E710G) and are packed together at the interface between these two domains. The presence of these TOP1 mutations in SN38 resistant HCT116 cells did not modify TOP1 expression or intrinsic activity. Conversely, following challenge with SN38, we observed a decrease of TOP1-DNA cleavage complexes and a reduction in double-stranded break formation). In addition, we showed that SN38 resistant HCT116 cells present a strong decrease in the SN38-dependent asymmetry of replication forks that is characteristic of SN38 sensitive HCT116 cells. CONCLUSIONS: These results indicate that the TOP1 mutations are involved in the development of SN38 resistance. We hypothesize that p.L617, p.R621 and p.E710 TOP1 residues are important for the functionality of the linker and that mutation of one of these residues is sufficient to alter or modulate its flexibility. Consequently, linker fluctuations could have an impact on SN38 binding by reducing the enzyme affinity for the drug.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/pharmacology , DNA Topoisomerases, Type I/genetics , Drug Resistance, Neoplasm/genetics , Mutation/genetics , Base Sequence , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Clone Cells/drug effects , Clone Cells/metabolism , Colorectal Neoplasms/enzymology , DNA Breaks, Double-Stranded , DNA Replication/drug effects , DNA Replication/genetics , DNA Topoisomerases, Type I/chemistry , DNA Topoisomerases, Type I/metabolism , HCT116 Cells , Humans , Protein Structure, Secondary , Topoisomerase I Inhibitors/pharmacology
20.
Pediatr Res ; 69(3): 265-70, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21135753

ABSTRACT

Marfan syndrome (MFS) is an autosomal dominant connective tissue disorder. Diagnostic criteria of neonatal MFS (nMFS), the most severe form, are still debated. The aim of our study was to search for clinical and molecular prognostic factors that could be associated with length of survival. Probands ascertained via the framework of the Universal Marfan database-FBN1, diagnosed before the age of 1 y and presenting with cardiovascular features (aortic root dilatation or valvular insufficiency) were included in this study. Clinical and molecular data were correlated to survival. Among the 60 individuals, 38 had died, 82% died before the age of 1 y, mostly because of congestive heart failure. Three probands reached adulthood. Valvular insufficiencies and diaphragmatic hernia were predictive of shorter life expectancy. Two FBN1 mutations were found outside of the exon 24-32 region (in exons 4 and 21). Mutations in exons 25-26 were overrepresented and were associated with shorter survival (p = 0.03). We report the largest genotyped series of probands with MFS diagnosed before 1 y of life. In this population, factors significantly associated with shorter survival are presence of valvular insufficiencies or diaphragmatic hernia in addition to a mutation in exons 25 or 26.


Subject(s)
Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Microfilament Proteins/genetics , Mutation , Child, Preschool , Databases, Factual , Female , Fibrillin-1 , Fibrillins , Humans , Infant , Infant, Newborn , Kaplan-Meier Estimate , Male , Marfan Syndrome/mortality , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL