Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Biomed Chromatogr ; 38(5): e5838, 2024 May.
Article in English | MEDLINE | ID: mdl-38342982

ABSTRACT

Strobilanthes sarcorrhiza (CTS) is a medicinal plant with various pharmacological effects such as tonifying kidney and anti-inflammatory. However, the chemical composition and difference of its four parts (leaves, stems, rhizomes, and root tubers) have been rarely reported. In this study, ultrafast flow liquid chromatography coupled with quadrupole-time-of-flight MS was applied to analyze the chemical profile of CTS and identify 55 compounds, including terpenoids, phenylethanol glycosides, fatty acid derivatives, chain glycosides, flavonoid glycosides, and others. Among these compounds, 34 compounds were first identified in CTS. They were mainly terpenoids, phenylethanol glycosides, fatty acid derivatives, and so forth. Multivariate statistical analysis, such as principal component analysis and orthogonal partial least squares-discriminant analysis were also used to evaluate the difference in chemical compounds from the four parts of CTS. The results showed that phenylethanol glycosides were the main compounds of the underground parts, while terpenoids were the main compounds of the aboveground parts. This study revealed the chemical diversity and similarity of CTS and suggested that the rhizomes could be used as an alternative medicinal part to improve the resource utilization of CTS.


Subject(s)
Mass Spectrometry , Multivariate Analysis , Mass Spectrometry/methods , Chromatography, Liquid/methods , Plant Extracts/chemistry , Terpenes/analysis , Terpenes/chemistry , Glycosides/analysis , Glycosides/chemistry , Chromatography, High Pressure Liquid/methods
2.
Zhongguo Zhong Yao Za Zhi ; 49(9): 2441-2450, 2024 May.
Article in Zh | MEDLINE | ID: mdl-38812143

ABSTRACT

This study aims to explore the correlation between intestinal toxicity and composition changes of Euphorbia ebracteolata before and after Terminalia chebula soup(TCS) processing. Intragastric administration was performed on the whole animal model. By using fecal water content, inflammatory causes, and pathological damage of different parts of the intestinal tract of mice as indexes, the differences in intestinal toxicity of dichloromethane extraction of raw E. ebracteolata(REDE), dichloromethane extraction of TCS, and dichloromethane extraction of E. ebracteolata after simulated TCS processing(STREDE) were compared, so as to investigate the effect of TCS processing on the intestinal toxicity of E. ebracteolata. At the same time, the component databases of E. ebracteolata and T. chebula were constructed, and the composition changes of diterpenoids, tannins, and phenolic acids in the three extracted parts were analyzed by HPLC-TOF-MS. HPLC was used to compare the content of four diterpenoids including ent-11α-hydroxyabicta-8(14), 13(15)-dien-16, 12-olide(HAO), jolkinolide B(JNB), fischeria A(FA), and jolkinolide E(JNE) in the E. ebracteolata before and after processing and the residue of container wall after processing, so as to investigate the effect of TCS processing on the content and structure of the diterpenoids. The results showed that the REDE group could significantly increase the fecal water content and the release levels of TNF-α and IL-1ß from each intestinal segment, and intestinal tissue damage was accompanied by significant infiltration of inflammatory cells. However, compared with the REDE group, the intestinal tissue damage in the STREDE group was alleviated, and the infiltration of inflammatory cells decreased. The intestinal toxicity significantly decreased. Mass spectrometry analysis showed that there was no significant difference in the content of diterpenoids of REDE before and after simulated TCS processing, but a large number of tannins and phenolic acids were added. The results of HPLC showed that the content of four diterpenoids of E. ebracteo-lata decreased to varying degrees after TCS processing, ranging from-0.35% to-19.74%, and the decreased part mainly remained in the container wall, indicating that the structure of toxic diterpenoids of E. ebracteolata was not changed after TCS processing. The antagonistic effect of tannic and phenolic acids in the TCS may be the main reason for the reduced intestinal toxicity of E. ebracteolata after TCS processing. The TCS processing for E. ebracteolata is scientific.


Subject(s)
Drugs, Chinese Herbal , Euphorbia , Terminalia , Euphorbia/chemistry , Animals , Terminalia/chemistry , Mice , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/toxicity , Male , Intestines/drug effects , Intestines/chemistry , Chromatography, High Pressure Liquid , Humans
3.
Molecules ; 28(12)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37375215

ABSTRACT

The science of polyoxometalates (POMs) has come a long way since molybdenum blue was first described in 1778 [...].

4.
Molecules ; 28(12)2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37375262

ABSTRACT

Two inorganic-organic hybrid complexes based on bi-capped Keggin-type cluster, {([CuII(2,2'-bpy)2]2[PMoVI8VV2VIV2O40(VIVO)2])[CuI(2,2'-bpy)]}∙2H2O (1) and {[CuII(2,2'-bpy)2]2[SiMoVI8.5MoV2.5VIVO40(VIVO)2]}[CuI0.5(2,2'-bpy)(H2O)0.5] (2) (bpy = bipyridine), had been hydrothermally synthesized and structurally characterized by elemental analysis, FT-IR, TGA, PXRD and X-ray single-crystal diffraction analysis. Compound 1 consists of a novel 1-D chain structure constructed from [CuI(2,2'-bpy)]+ unit linking bi-supported POMs anion {[CuII(2,2'-bpy)2]2[PMoVI8VV2VIV2O40(VIVO)2]}-. Compound 2 is a bi-capped Keggin cluster bi-supported Cu-bpy complex. The main highlights of the two compounds are that Cu-bpy cations contain both CuI and CuII complexes. Furthermore, the fluorescence properties, the catalytic properties, and the photocatalytic performance of compounds 1 and 2 have been assessed, and the results show that both compounds are active for styrene epoxidation and degradation and adsorption of Methylene blue (MB), Rhodamine B (RhB) and mixed aqueous solutions.

5.
Arterioscler Thromb Vasc Biol ; 41(12): 2961-2973, 2021 12.
Article in English | MEDLINE | ID: mdl-34670409

ABSTRACT

OBJECTIVE: Vascular smooth muscle cell (SMC) proliferation contributes to neointima formation following vascular injury. Circular RNA-a novel type of noncoding RNA with closed-loop structure-exhibits cell- and tissue-specific expression patterns. However, the role of circular RNA in SMC proliferation and neointima formation is largely unknown. The objective of this study is to investigate the role and mechanism of circSOD2 in SMC proliferation and neointima formation. Approach and Results: Circular RNA profiling of human aortic SMCs revealed that PDGF (platelet-derived growth factor)-BB up- and downregulated numerous circular RNAs. Among them, circSOD2, derived from back-splicing event of SOD2 (superoxide dismutase 2), was significantly enriched. Knockdown of circSOD2 by short hairpin RNA blocked PDGF-BB-induced SMC proliferation. Inversely, circSOD2 ectopic expression promoted SMC proliferation. Mechanistically, circSOD2 acted as a sponge for miR-206, leading to upregulation of NOTCH3 (notch receptor 3) and NOTCH3 signaling, which regulates cyclin D1 and CDK (cyclin-dependent kinase) 4/6. In vivo studies showed that circSOD2 was induced in neointima SMCs in balloon-injured rat carotid arteries. Importantly, knockdown of circSOD2 attenuated injury-induced neointima formation along with decreased neointimal SMC proliferation. CONCLUSIONS: CircSOD2 is a novel regulator mediating SMC proliferation and neointima formation following vascular injury. Therefore, circSOD2 could be a potential therapeutic target for inhibiting the development of proliferative vascular diseases.


Subject(s)
Carotid Artery Injuries/genetics , Muscle, Smooth, Vascular/metabolism , Neointima/genetics , Superoxide Dismutase/genetics , Vascular Remodeling/genetics , Animals , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Disease Models, Animal , Male , Muscle, Smooth, Vascular/pathology , Neointima/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction , Superoxide Dismutase/biosynthesis
7.
Molecules ; 27(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35889296

ABSTRACT

Three compounds based on Ge-V-O clusters were hydrothermally synthesized and characterized by IR, UV-Vis, XRD, ESR, elemental analysis and X-ray crystal structural analysis. Both [Cd(phen)(en)]2[Cd2(phen)2V12O40Ge8(OH)8(H2O)]∙12.5H2O (1) and [Cd(DETA)]2[Cd(DETA)2]0.5[Cd2(phen)2V12O41Ge8(OH)7(0.5H2O)]∙7.5H2O (2) (1,10-phen = 1,10-phenanthroline, en = ethylenediamine, DETA = diethylenetriamine) are the first Ge-V-O cluster compounds containing aromatic organic ligands. Compound 1 is the first dimer of Ge-V-O clusters, which is linked by a double bridge of two [Cd(phen)(en)]2+. Compound 2 exhibits an unprecedented 1-D chain structure formed by Ge-V-O clusters and [Cd2(DETA)2]4+ transition metal complexes (TMCs). [Cd(en)3]{[Cd(η2-en)2]3[Cd(η2-en)(η2-µ2-en)(η2-en)Cd][Ge6V15O48(H2O)]}∙5.5H2O (3) is a novel 3-D structure which is constructed from [Ge6V15O48(H2O)]12- and four different types of TMCs. We also synthesized [Zn2(enMe)3][Zn(enMe)]2[Zn(enMe)2(H2O)]2[Ge6V15O48(H2O)]∙3H2O (4) and [Cd(en)2]2{H8[Cd(en)]2Ge8V12O48(H2O)}∙6H2O (5) (enMe = 1,2-propanediamine), which have been reported previously. In addition, the catalytic properties of these five compounds for styrene epoxidation have been assessed.


Subject(s)
Coordination Complexes , Transition Elements , Cadmium , Crystallography, X-Ray , DEET , Ligands , Models, Molecular , Transition Elements/chemistry
8.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6076-6081, 2022 Nov.
Article in Zh | MEDLINE | ID: mdl-36471932

ABSTRACT

To determine the content of endogenous toxic substance Pinellia ternata lectin(PTL) protein in Pinelliae Rhizoma and the related processed products, this study prepared specific monoclonal antibodies against PTL by hybridoma cell technology, and established a quantitative double-antibody sandwich enzyme linked immunosorbent assay(ELISA) for PTL antigen. The detection conditions were 2.5 µg·mL~(-1) working concentration of the captured antibody and 1∶450 of the dilution multiple of detected antibody. The coating condition was staying overnight at 4 ℃. The blocking time and incubation times of antigen and detected antibody were all 90 minutes. The incubation time of horseradish peroxidase conjugated streptavidin-horseradish peroxidase(SA-HRP) was 15 minutes. The quantitative limit of the method for PTL antigen was 0.375 ng·mL~(-1). The linear range was 75.000-4 800.000 pg·mL~(-1), and R~2=0.997 1. The recovery rate was 90.0%-110.0%, and the variation coefficients of intra-test and inter-test precision were 2.0%-3.0% and 2.0%-8.5%.The content of PTL in three batches of Pinelliae Rhizoma and the related processed products was determined by the method, and the average content of PTL in Pinelliae Rhizoma was 35.42 mg·g~(-1). The average content of PTL in Pinelliae Rhizoma Praeparatum Cum Alumine, Pinelliae Rhizoma Praeparatum, and Pinelliae Rhizoma Praeparatum Cum Zingibere Et Alumine were 1.15 mg·g~(-1), 16.53 µg·g~(-1), and 122.63 ng·g~(-1), respectively, indicating that the content of PTL decreased significantly after processing. The quantitative double-antibody sandwich ELISA for PTL antigen established in this paper had good linearity, sensitive response, and high accuracy, which provided a simple and effective monitoring method for the detection of PTL content in the processing of Pinelliae Rhizoma.


Subject(s)
Drugs, Chinese Herbal , Pinellia , Antibodies, Monoclonal , Enzyme-Linked Immunosorbent Assay , Horseradish Peroxidase
9.
Zhongguo Zhong Yao Za Zhi ; 47(16): 4411-4417, 2022 Aug.
Article in Zh | MEDLINE | ID: mdl-36046870

ABSTRACT

This study investigated the anti-ascites effect of the total saponins of Phytolaccae Radix(PRTS) and the mechanism.H22 cell suspension was used(ip) to induce ascites in ICR male mice, and the model mice were randomized into model group, positive drug group(furosemide, 6 mg·kg~(-1)), total extract of Phytolaccae Radix(PRTE) group, and PRTS(1.29 g·kg~(-1)).Another 10 male mice were selected as the blank group.Mice in the blank group and model group were given(ig) normal saline containing 0.5% CMC-Na, and those in the positive drug group, PRTE group, and PRTS group received(ig) corresponding doses of drugs, once a day, for 8 consecutive days.The ascites volume, urine volume, and fecal water content in mice with ascites, serum levels of antidiure-tic hormone(ADH), renin in renin-angiotensin-aldosterone system(RAAS), angiotensin Ⅱ(AngⅡ), and aldosterone(ALD), expression of aquaporin(AQP)1-AQP4 in kidney, expression of AQP1, AQP3 in colon, and expression of phosphatidylinositol 3-kinase/protein kinase B(PI3 K/Akt) pathway-related proteins were detected to explore the anti-ascites mechanism of PRTS.The results showed that the PRTS can increase the urine volume and fecal water content and decrease the ascites volume of ascites mice.Moreover, PRTS significantly reduced the expression of AQP1-AQP4 in kidney and AQP1, AQP3 in colon, serum levels of renin, AngⅡ, ALD, and ADH, and the expression of p-PI3 K and p-Akt in the kidney of ascites mice.PRTS exerts anti-ascites effect by promoting urination and defecation.The mechanism is that it inhibits the activities of RAAS and ADH and suppresses the phosphorylation of PI3 K/Akt signaling pathway, thereby restricting the expression of AQPs in the kidney and colon.


Subject(s)
Proto-Oncogene Proteins c-akt , Saponins , Animals , Aquaporin 1 , Ascites/drug therapy , Ascites/metabolism , Male , Mice , Mice, Inbred ICR , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Renin/metabolism , Saponins/pharmacology , Water/metabolism
10.
Zhongguo Zhong Yao Za Zhi ; 47(24): 6596-6606, 2022 Dec.
Article in Zh | MEDLINE | ID: mdl-36604908

ABSTRACT

This study aims to explore the chemical structure transformation mechanisms of the main terpenoids in the effective fraction of Euphorbiae Ebracteolatae Radix(EER) during the processing with vinegar. The terpenoids including ent-11α-hydroxyabicta-8(14),13(15)-dien-16,12-olide(HAO), jolkinolide B(JNB), fischeria A(FA), and eupractenoid A(EA) were heated at 160 ℃ with 6% acetic acid for 40 min, and then LC-MS/MS was employed to analyze the structural transformation rules of the terpenoids. Further, we analyzed the changes in the relative content of the four compounds and their transformation products in raw and vinegar processed EER to verify the transformation rules during the simulated processing with vinegar. In addition, JNB and FA were processed with single heating, heating with water or heating with acetic acid. We then employed HPLC to compare the content of these two terpenoids and their transformation products before and after processing, so as to investigate the effect of different processing methods on chemical structure transformation. The results showed that the lactone ring of the abietane-type diterpenoids HAO and JNB and the norditerpene lactone FA were opened by heating with acetic acid. When there were hydroxyl groups in the structures, terpenoids were esterized to esters and oxidized to form carbonyl groups. When there was epoxy ring in the structures, ring opening reaction was easy to occur. During the heating with acetic acid, the heterodimeric diterpenoid EA underwent the cleavage of ether bond to produce the rosane-type diterpenoid euphebracteolatin A(EHTA) and another abietane-type diterpenoid. The changes in the relative content of terpenoids and their transformation products in raw and vinegar-processed EER were basically consistent with those of simulated processing of components with vinegar. The HPLC results revealed that the effect of different simulated processing methods on structural transformation varied. Heating with acid can change JNB and FA into new components. Heating with water can also promote the structural transformation, with the efficiency obviously lower than that of heating with acid. Direct heating had no influence on the structure of JNB, while it significantly reduced the relative content of FA. The components treated with direct heating did not produce the products like those of the heating with acid. These results indicated that vinegar plays a key role in the structural transformation of diterpenoids during the processing of EER with vinegar. The structural transformation of diterpenoids in EER during the processing with vinegar may be the material basis for vinegar processed EER to reduce toxicity and preserve effect.


Subject(s)
Diterpenes , Drugs, Chinese Herbal , Terpenes , Acetic Acid/chemistry , Drugs, Chinese Herbal/chemistry , Chromatography, Liquid , Abietanes , Tandem Mass Spectrometry
11.
Am J Physiol Endocrinol Metab ; 320(1): E131-E138, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33252250

ABSTRACT

Obesity is an important independent risk factor for type 2 diabetes, cardiovascular diseases, and many other chronic diseases. The objective of this study was to determine the role of adenosine deaminase acting on RNA 1 (ADAR1) in the development of obesity and insulin resistance. Wild-type (WT) and heterozygous ADAR1-deficient (Adar1+/-) mice were fed normal chow or a high-fat diet (HFD) for 12 wk. Adar1+/- mice fed with HFD exhibited a lean phenotype with reduced fat mass compared with WT controls, although no difference was found under chow diet conditions. Blood biochemical analysis and insulin tolerance test showed that Adar1+/- improved HFD-induced dyslipidemia and insulin resistance. Metabolic studies showed that food intake was decreased in Adar1+/- mice compared with the WT mice under HFD conditions. Paired feeding studies further demonstrated that Adar1+/- protected mice from HFD-induced obesity through decreased food intake. Furthermore, Adar1+/- restored the increased ghrelin expression in the stomach and the decreased serum peptide YY levels under HFD conditions. These data indicate that ADAR1 may contribute to diet-induced obesity, at least partially, through modulating the ghrelin and peptide YY expression and secretion.NEW & NOTEWORTHY This study identifies adenosine deaminase acting on RNA 1 as a novel factor promoting high-fat diet-induced obesity, at least partially, through modulating appetite-related genes ghrelin and PYY.


Subject(s)
Adenosine Deaminase/genetics , Diet, High-Fat/adverse effects , Insulin Resistance/genetics , Obesity/genetics , Adenosine Deaminase/deficiency , Animals , Appetite/genetics , Body Composition , Dyslipidemias/blood , Dyslipidemias/genetics , Eating , Ghrelin/biosynthesis , Ghrelin/genetics , Glucose Tolerance Test , Male , Mice , Mice, Knockout , Obesity/psychology , Peptide YY/blood
12.
Molecules ; 26(4)2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33578967

ABSTRACT

This study evaluated the anti-ascites effect of total diterpenoids extracted from Euphorbiae Ebracteolatae Radix (TDEE) on malignant ascitic mice and elucidated its underlying mechanism. TDEE was extracted by dichloromethane and subjected to column chromatography. The purity of six diterpenoids isolated from TDEE was determined to be 77.18% by HPLC. TDEE (3 and 0.6 g raw herbs/kg, p.o.) reduced ascites and increased urine output. Meanwhile, analysis of tumor cell viability, cycle and apoptosis indicated that TDEE had no antitumor activity. In addition, the expression levels of aquaporins (AQPs) and the membrane translocation levels of protein kinase C (PKC) α and PKCß in kidney and cells were measured. TDEE reduced the levels of AQP1-4, and inhibited PKCß expression in membrane fraction. Four main diterpenoids, except compound 2, reduced AQP1 level in human kidney-2 cells. Compounds 4 and 5 inhibited AQP2-4 expression in murine inner medullary collecting duct cells. The diterpenoid-induced inhibition of AQP1-4 expression was blocked by phorbol-12-myristate-13-acetate (PMA; agonist of PKC). The diterpenoids from TDEE are the main anti-ascites components. The anti-ascites effect of diterpenoids may be associated with alterations in AQPs in the kidneys to promote diuresis. The inhibition of AQP1-4 expression by TDEE is related to the inhibition of PKCß activation.


Subject(s)
Aquaporins/metabolism , Ascites/drug therapy , Diterpenes/pharmacology , Euphorbia/chemistry , Kidney/drug effects , Liver Neoplasms/drug therapy , Protein Kinase C/antagonists & inhibitors , Animals , Apoptosis , Aquaporins/genetics , Ascites/metabolism , Ascites/pathology , Carcinoma, Hepatocellular , Cell Proliferation , Gene Expression Regulation , Humans , Kidney/metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred ICR , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
13.
Biomed Chromatogr ; 34(6): e4818, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32110832

ABSTRACT

A rapid, sensitive, and accurate ultra flow liquid chromatography tandem mass spectrometry (UFLC-MS/MS ) method was developed and validated for simultaneous quantitation of glycyrrhetic acid and puerarin in plasma derived from healthy and alcoholic liver injury rats. Plasma samples from healthy and model rats were deproteinated with methanol using liquiritin as an internal standard. Chromatography separation was performed by a Waters BEH (ethylene-bridged hybrid) C18 column (2.1 × 50 mm; 1.7 µm) using a gradient elution from acetonitrile and water (containing 0.1% formic acid) and at a flow rate of 0.4 mL/min. Quantitation was performed on a Triple Quad 4500 tandem mass spectrometer coupled with an electrospray ionization source in negative multiple reaction monitoring mode. Specificity, carryover, dilution integrity, recovery, linearity, precision and accuracy, matrix effect, and stability were within acceptable limits. The newly established method was successfully applied to a pharmacokinetics study to investigate glycyrrhetic acid and puerarin in healthy and alcoholic liver injury rats.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Chromatography, High Pressure Liquid/methods , Glycyrrhetinic Acid/blood , Isoflavones/blood , Tandem Mass Spectrometry/methods , Animals , Ethanol/adverse effects , Glycyrrhetinic Acid/chemistry , Glycyrrhetinic Acid/pharmacokinetics , Isoflavones/chemistry , Isoflavones/pharmacokinetics , Limit of Detection , Linear Models , Liver/metabolism , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results
14.
Mikrochim Acta ; 187(6): 356, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32468175

ABSTRACT

The preparation of an amino-functionalized hybrid monolithic column (TEOS-co-AEAPTES) via one-pot co-condensation of tetraethoxysilane (TEOS) and N-(ß-aminoethyl)-γ-aminopropyltriethoxysilane (AEAPTES) in a capillary is descibed. It was used as solid-phase microextraction (SPME) matrix followed by inductively coupled plasma-mass spectrometry (ICP-MS) for determination of trace metals. Under optimum conditions, the amino-functionalized SPME material can simultaneously retain Cu(II), Zn(II), Au(III), and Pb(II) with adsorption capacities of 148, 60, 81, and 64 µg m-1, respectively. Subsequently, these four metal ions can be quantitatively eluted using 1 mol L-1 HNO3 containing 1% thiourea. The retention mechanism of Cu(II), Zn(II), Au(III), and Pb(II) on the amino-functionalized hybrid monolith was explained as the combination of electrostatic and coordination interactions. With a 10-fold enrichment factor, the calibration curves were established in the range 0.5-100 µg L-1 with linear correlation coefficients above 0.9943 and the limits of quantitation were 0.05 µg L-1 for four target analytes. The limits of detection were 0.006, 0.012, 0.004, and 0.007 µg L-1 for Cu(II), Zn(II), Au(III), and Pb(II), respectively. The protocol was validated by analyzing Certified Reference Materials including standard sediment, soil, and nickel ore, and the results were in good agreement with their certified values. The relative standard deviations of the method were in the range 0.22-17.6%. The recoveries of the four metal ions in spiked samples were in the range 88.0-113.8%. Compared to direct ICP-MS determination, the proposed in-tube SPME procedure can effectively eliminate the interference from complex matrix, especially from those ores with very high content of main metal to improve the accuracy of analysis. Therefore the method is suitable for the simultaneous determination of ultra-trace Cu(II), Zn(II), Au(III), and Pb(II) in environmental and mineral samples. Graphical abstract The preparation of the TEOS-co-AEAPTES monolithic column and the SPME procedure of Cu(II), Zn(II), Au(III), and Pb(II).

15.
FASEB J ; 32(9): 4836-4847, 2018 09.
Article in English | MEDLINE | ID: mdl-29579398

ABSTRACT

Our previous studies have shown that response gene to complement (RGC)-32 deficiency (Rgc32-/-) protects mice from diet-induced obesity and increases thermogenic gene expression in adipose tissues. However, the underlying mechanisms by which RGC-32 regulates thermogenic gene expression remain to be determined. In the present study, RGC-32 expression in white adipose tissue (WAT) was suppressed during cold exposure-induced WAT browning. Rgc32-/- significantly increased thermogenic gene expression in the differentiated stromal vascular fraction (SVF) of inguinal (i)WAT and interscapular brown adipose tissue (BAT). Rgc32-/- and cold exposure regulated a common set of genes in iWAT, as shown by RNA sequencing data. Pathway enrichment analyses showed that Rgc32-/- down-regulated PI3K/Akt signaling-related genes. Akt phosphorylation was also consistently decreased in Rgc32-/- iWAT, which led to an increase in ß3-adrenergic receptor (ß3-AR) expression and subsequent activation of mammalian target of rapamycin complex (mTORC)-1. ß3-AR antagonist SR 59230A and mTORC1 inhibitor rapamycin blocked Rgc32-/--induced thermogenic gene expression in both iWAT and interscapular BAT. These results indicate that RGC-32 suppresses adipose tissue thermogenic gene expression through down-regulation of ß3-AR expression and mTORC1 activity via a PI3K/Akt-dependent mechanism.-Chen, S., Mei, X., Yin, A., Yin, H., Cui, X.-B., Chen, S.-Y. Response gene to complement 32 suppresses adipose tissue thermogenic genes through inhibiting ß3-adrenergic receptor/mTORC1 signaling.


Subject(s)
Adipose Tissue, Brown/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Nuclear Proteins/deficiency , Receptors, Adrenergic, beta-3/metabolism , Thermogenesis/genetics , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Animals , Cell Differentiation/genetics , Complement System Proteins/metabolism , Mice, Knockout , Nuclear Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/genetics
16.
Arterioscler Thromb Vasc Biol ; 38(4): e36-e47, 2018 04.
Article in English | MEDLINE | ID: mdl-29449334

ABSTRACT

OBJECTIVE: The objective of this study is to determine the role and underlying mechanisms of RGC-32 (response gene to complement 32 protein) in atherogenesis. APPROACH AND RESULTS: RGC-32 was mainly expressed in endothelial cells of atherosclerotic lesions in both ApoE-/- (apolipoprotein E deficient) mice and human patients. Rgc-32 deficiency (Rgc32-/-) attenuated the high-fat diet-induced and spontaneously developed atherosclerotic lesions in ApoE-/- mice without affecting serum cholesterol concentration. Rgc32-/- seemed to decrease the macrophage content without altering collagen and smooth muscle contents or lesional macrophage proliferation in the lesions. Transplantation of WT (wild type) mouse bone marrow to lethally irradiated Rgc32-/- mice did not alter Rgc32-/--caused reduction of lesion formation and macrophage accumulation, suggesting that RGC-32 in resident vascular cells, but not the macrophages, plays a critical role in the atherogenesis. Of importance, Rgc32-/- decreased the expression of ICAM-1 (intercellular adhesion molecule-1) and VCAM-1 (vascular cell adhesion molecule-1) in endothelial cells both in vivo and in vitro, resulting in a decrease in TNF-α (tumor necrosis factor-α)-induced monocyte-endothelial cell interaction. Mechanistically, RGC-32 mediated the ICAM-1 and VCAM-1 expression, at least partially, through NF (nuclear factor)-κB signaling pathway. RGC-32 directly interacted with NF-κB and facilitated its nuclear translocation and enhanced TNF-α-induced NF-κB binding to ICAM-1 and VCAM-1 promoters. CONCLUSIONS: RGC-32 mediates atherogenesis by facilitating monocyte-endothelial cell interaction via the induction of endothelial ICAM-1 and VCAM-1 expression, at least partially, through NF-κB signaling pathway.


Subject(s)
Atherosclerosis/prevention & control , Endothelial Cells/metabolism , Inflammation/prevention & control , Nuclear Proteins/deficiency , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Cell Adhesion , Cell Cycle Proteins/metabolism , Coculture Techniques , Disease Models, Animal , Endothelial Cells/pathology , Genetic Predisposition to Disease , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/metabolism , Intercellular Adhesion Molecule-1/metabolism , Macrophages/metabolism , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Monocytes/metabolism , Monocytes/pathology , Muscle Proteins/metabolism , NF-kappa B/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Phenotype , Plaque, Atherosclerotic , Signal Transduction , THP-1 Cells , Vascular Cell Adhesion Molecule-1/metabolism
17.
Molecules ; 24(10)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096583

ABSTRACT

Systematic comparison of active ingredients in Sojae semen praeparatum (SSP) during fermentation was performed using ultra-fast liquid chromatography (UFLC)-TripleTOF MS and principal component analysis (PCA). By using this strategy, a total of 25 varied compounds from various biosynthetic groups were assigned and relatively quantified in the positive or negative ion mode, including two oligosaccharides, twelve isoflavones, eight fatty acids, N-(3-Indolylacetyl)-dl-aspartic acid, methylarginine, and sorbitol. Additionally, as the representative constituents, six targeted isoflavones were sought in a targeted manner and accurately quantified using extracted ion chromatograms (XIC) manager (AB SCIEX, Los Angeles, CA, USA) combined with MultiQuant software (AB SCIEX, Los Angeles, CA, USA). During the fermentation process, the relative contents of oligoses decreased gradually, while the fatty acids increased. Furthermore, the accurate contents of isoflavone glycosides decreased, while aglycones increased and reached a maximum in eight days, which indicated that the ingredients converted obviously and regularly throughout the SSP fermentation. In combination with the morphological changes, which meet the requirements of China Pharmacopoeia, this work suggested that eight days is the optimal time for fermentation of SSP from the aspects of morphology and content.


Subject(s)
Chromatography, High Pressure Liquid , Fermented Foods/analysis , Glycine max/chemistry , Phytochemicals/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Molecular Structure , Phytochemicals/analysis , Principal Component Analysis , Reproducibility of Results
18.
Zhongguo Zhong Yao Za Zhi ; 44(12): 2511-2518, 2019 Jun.
Article in Zh | MEDLINE | ID: mdl-31359718

ABSTRACT

Both raw and vinegar products of the rhizome of Curcuma phaeocaulis are common drugs for promoting blood circulation and removing blood stasis in traditional Chinese medicine,which could be reflected in the inhibition of tail thrombosis in mice. As the traditional processing theory instructs,vinegar tastes sour and bitter,but can activate blood circulation and remove stasis after being infiltrated into the rhizome of C. phaeocaulis as an excipient. In this study,under the help of the ultrafast liquid chromatography-quadrupole time-offlight mass spectrometry( UFLC-Q-TOF-MS),the spectrum-effect relationship between the inhibition of tail thrombosis in mice and the rhizome of C. phaeocaulis both before and after the vinegar processing,were established to explore the functional changes of blood circulation and stasis after vinegar process. Based on the peak area from the fingerprint of UFLC-Q-TOF-MS of the alcohol extracts from the raw and vinegar-processed rhizome of C. phaeocaulis and their efficacy for inhibiting tail thrombosis,the correlation between the chromatography of UFLC-Q-TOF-MS and the inhibition of tail thrombosis in mice were analyzed by orthogonal partial least squares discriminant analysis( OPLS-DA) method. The results,produced by Simca-P software,showed that effective components consisted of eight peaks 16,24( aromadendrene oxide),3,11,22( dehydro-α-curcumene),19[( R)-(-)-α-curcumene],23 and 10 from the fingerprint,making great contribution to distinguish C. phaeocaulis raw products and the corresponding vinegar processed products. Therefore,from the perspective of inhibiting the formation of tail thrombosis in mice,the marker components could be found through the spectrum-effect relationship to distinguish C.phaeocaulis raw and vinegar products. This study provided new basis to explain the difference between the raw and the processed products of traditional Chinese medicine in the functional change of promoting blood circulation and removing blood stasis.


Subject(s)
Curcuma/chemistry , Drugs, Chinese Herbal/pharmacology , Thrombosis/drug therapy , Acetic Acid , Animals , Chromatography, High Pressure Liquid , Drugs, Chinese Herbal/chemistry , Mass Spectrometry , Mice , Rhizome/chemistry
19.
Zhongguo Zhong Yao Za Zhi ; 44(20): 4495-4503, 2019 Oct.
Article in Zh | MEDLINE | ID: mdl-31872638

ABSTRACT

The analysis of Forsythia suspensa was performed on Waters Symmetry C18 column( 4. 6 mm×250 mm,5 µm) and mobile phase was methanol( A)-0. 1% formic acid aqueous solution( B) with the elution gradient. Column temperature was maintained at 30℃,and the flow rate was 1. 0 m L·min-1 with detection wavelength 265 nm. The HPLC-PDA fingerprint of F. suspensa was optimized.Chemical constituents in F. suspensa were analyzed by UFLC-Q-TOF-MS in positive and negative ion mode. The quality of 48 batches of F. suspensa from different habitats,processing methods and specifications was evaluated by similarity evaluation and cluster analysis.The 18 common peaks were confirmed. The similarity of F. suspensa from different habitats was more than 0. 98,and 56 chemical constituents were identified. Different processing methods had great influence on the quality of F. suspensa. Compared with boiled and direct drying,the quality of F. suspensa processed by sun-drying was obviously decreased. The similarity was about 0. 58. Different specifications of F. suspensa also had obvious distinction,and the similarity was about 0. 78. The effective components of grown F. suspensa,such as forsythoside A and phillyrin,were significantly reduced. The results of cluster analysis were basically consistent with the results of similarity evaluation. The establishment of fingerprint and the recognition of chemical pattern of F. suspensa can provide a more comprehensive reference for the quality control of herbs.


Subject(s)
Drugs, Chinese Herbal/chemistry , Forsythia/chemistry , Chromatography, High Pressure Liquid , Quality Control
20.
Circ Res ; 119(3): 463-9, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27199464

ABSTRACT

RATIONALE: Vascular smooth muscle cell (SMC) phenotypic modulation is characterized by the downregulation of SMC contractile genes. Platelet-derived growth factor-BB, a well-known stimulator of SMC phenotypic modulation, downregulates SMC genes via posttranscriptional regulation. The underlying mechanisms, however, remain largely unknown. OBJECTIVE: To establish RNA editing as a novel mechanism controlling SMC phenotypic modulation. METHODS AND RESULTS: Precursor mRNAs (pre-mRNA) of SMC myosin heavy chain and smooth muscle α-actin were accumulated while their mature mRNAs were downregulated during SMC phenotypic modulation, suggesting an abnormal splicing of the pre-mRNAs. The abnormal splicing resulted from SMC marker pre-mRNA editing that was facilitated by adenosine deaminase acting on RNA 1 (ADAR1), an enzyme converting adenosines to inosines (A→I editing) in RNA sequences. ADAR1 expression inversely correlated with SMC myosin heavy chain and smooth muscle α-actin levels; knockdown of ADAR1 restored SMC myosin heavy chain and smooth muscle α-actin expression in phenotypically modulated SMC, and editase domain mutation diminished the ADAR1-mediated abnormal splicing of SMC marker pre-mRNAs. Moreover, the abnormal splicing/editing of SMC myosin heavy chain and smooth muscle α-actin pre-mRNAs occurred during injury-induced vascular remodeling. Importantly, heterozygous knockout of ADAR1 dramatically inhibited injury-induced neointima formation and restored SMC marker expression, demonstrating a critical role of ADAR1 in SMC phenotypic modulation and vascular remodeling in vivo. CONCLUSIONS: Our results unraveled a novel molecular mechanism, that is, pre-mRNA editing, governing SMC phenotypic modulation.


Subject(s)
Adenosine Deaminase/biosynthesis , Adenosine Deaminase/genetics , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , Phenotype , RNA Editing/physiology , Animals , Cells, Cultured , Double-Blind Method , Male , Mice , Mice, Transgenic , Rats , Rats, Sprague-Dawley , Vascular Remodeling/physiology
SELECTION OF CITATIONS
SEARCH DETAIL