Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Proc Natl Acad Sci U S A ; 120(18): e2213140120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098067

ABSTRACT

Activation of heterotrimeric G-proteins (Gαßγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class small-molecule inhibitor of noncanonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking noncanonical G-protein signaling in tumor cells and inhibiting proinvasive traits of metastatic cancer cells. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable noncanonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Neoplasms , Vesicular Transport Proteins/metabolism , Microfilament Proteins/metabolism , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Neoplasms/metabolism
2.
J Biol Chem ; 295(28): 9725-9735, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32482891

ABSTRACT

Aortic carboxypeptidase-like protein (ACLP) is a collagen-binding extracellular matrix protein that has important roles in wound healing and fibrosis. ACLP contains thrombospondin repeats, a collagen-binding discoidin domain, and a catalytically inactive metallocarboxypeptidase domain. Recently, mutations in the ACLP-encoding gene, AE-binding protein 1 (AEBP1), have been discovered, leading to the identification of a new variant of Ehlers-Danlos syndrome causing connective tissue disruptions in multiple organs. Currently, little is known about the mechanisms of ACLP secretion or the role of post-translational modifications in these processes. We show here that the secreted form of ACLP contains N-linked glycosylation and that inhibition of glycosylation results in its intracellular retention. Using site-directed mutagenesis, we determined that glycosylation of Asn-471 and Asn-1030 is necessary for ACLP secretion and identified a specific N-terminal proteolytic ACLP fragment. To determine the contribution of secreted ACLP to extracellular matrix mechanical properties, we generated and mechanically tested wet-spun collagen ACLP composite fibers, finding that ACLP enhances the modulus (or stiffness), toughness, and tensile strength of the fibers. Some AEBP1 mutations were null alleles, whereas others resulted in expressed proteins. We tested the hypothesis that a recently discovered 40-amino acid mutation and insertion in the ACLP discoidin domain regulates collagen binding and assembly. Interestingly, we found that this protein variant is retained intracellularly and induces endoplasmic reticulum stress identified with an XBP1-based endoplasmic reticulum stress reporter. Our findings highlight the importance of N-linked glycosylation of ACLP for its secretion and contribute to our understanding of ACLP-dependent disease pathologies.


Subject(s)
Carboxypeptidases/metabolism , Ehlers-Danlos Syndrome/metabolism , Extracellular Matrix/metabolism , Protein Processing, Post-Translational , Repressor Proteins/metabolism , Amino Acid Substitution , Animals , Carboxypeptidases/genetics , Ehlers-Danlos Syndrome/genetics , Ehlers-Danlos Syndrome/pathology , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Glycosylation , Mice , Mutagenesis, Site-Directed , Mutation, Missense , Repressor Proteins/genetics
3.
J Biol Chem ; 295(8): 2270-2284, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31949046

ABSTRACT

Besides being regulated by G-protein-coupled receptors, the activity of heterotrimeric G proteins is modulated by many cytoplasmic proteins. GIV/Girdin and DAPLE (Dvl-associating protein with a high frequency of leucine) are the best-characterized members of a group of cytoplasmic regulators that contain a Gα-binding and -activating (GBA) motif and whose dysregulation underlies human diseases, including cancer and birth defects. GBA motif-containing proteins were originally reported to modulate G proteins by binding Gα subunits of the Gi/o family (Gαi) over other families (such as Gs, Gq/11, or G12/13), and promoting nucleotide exchange in vitro However, some evidence suggests that this is not always the case, as phosphorylation of the GBA motif of GIV promotes its binding to Gαs and inhibits nucleotide exchange. The G-protein specificity of DAPLE and how it might affect nucleotide exchange on G proteins besides Gαi remain to be investigated. Here, we show that DAPLE's GBA motif, in addition to Gαi, binds efficiently to members of the Gs and Gq/11 families (Gαs and Gαq, respectively), but not of the G12/13 family (Gα12) in the absence of post-translational phosphorylation. We pinpointed Met-1669 as the residue in the GBA motif of DAPLE that diverges from that in GIV and enables better binding to Gαs and Gαq Unlike the nucleotide-exchange acceleration observed for Gαi, DAPLE inhibited nucleotide exchange on Gαs and Gαq These findings indicate that GBA motifs have versatility in their G-protein-modulating effect, i.e. they can bind to Gα subunits of different classes and either stimulate or inhibit nucleotide exchange depending on the G-protein subtype.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Amino Acid Sequence , Animals , Cattle , HEK293 Cells , Humans , Models, Biological , Mutant Proteins/metabolism , Peptides/metabolism , Protein Binding
4.
Proc Natl Acad Sci U S A ; 114(48): E10319-E10328, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29133411

ABSTRACT

Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gßγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.


Subject(s)
GTPase-Activating Proteins/genetics , Guanine Nucleotide Dissociation Inhibitors/genetics , Guanine Nucleotide Exchange Factors/genetics , Nuclear Proteins/genetics , Protein Engineering/methods , Receptors, G-Protein-Coupled/genetics , Vesicular Transport Proteins/genetics , Amino Acid Motifs , Animals , Cloning, Molecular , Embryo, Nonmammalian , Escherichia coli/genetics , Escherichia coli/metabolism , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Developmental , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Guanine Nucleotide Dissociation Inhibitors/metabolism , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Nuclear Proteins/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Vesicular Transport Proteins/metabolism , Xenopus laevis/genetics , Xenopus laevis/growth & development , Xenopus laevis/metabolism
5.
J Biol Chem ; 293(44): 16964-16983, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30194280

ABSTRACT

Recent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity. First, putative GBA motifs discovered in bioinformatics searches were synthesized on peptide arrays and probed in batch for Gαi3 binding. Then, cDNAs encoding proteins with Gαi3-binding sequences were expressed in a genetically-modified yeast strain that reports mammalian G-protein activity in the absence of GPCRs. The resulting GBA motif candidates were characterized by comparison of their biochemical, structural, and signaling properties with those of all previously described GBA motifs in mammals (GIV/Girdin, DAPLE, Calnuc, and NUCB2). We found that the phospholipase Cδ4 (PLCδ4) GBA motif binds G-proteins with high affinity, has guanine nucleotide exchange factor activity in vitro, and activates G-protein signaling in cells, as indicated by bioluminescence resonance energy transfer (BRET)-based biosensors of G-protein activity. Interestingly, the PLCδ4 isoform b (PLCδ4b), which lacks the domains required for PLC activity, bound and activated G-proteins more efficiently than the full-length isoform a, suggesting that PLCδ4b functions as a G-protein regulator rather than as a PLC. In summary, we have identified PLCδ4 as a nonreceptor activator of G-proteins and established an experimental pipeline to discover and characterize GBA motif-containing proteins.


Subject(s)
Heterotrimeric GTP-Binding Proteins/metabolism , Phospholipase C delta/chemistry , Phospholipase C delta/genetics , Amino Acid Motifs , Crystallography, X-Ray , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/genetics , Humans , Phospholipase C delta/metabolism , Protein Binding , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction
6.
Biochemistry ; 57(3): 255-257, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29035513

ABSTRACT

Heterotrimeric G proteins are signal-transducing switches conserved across eukaryotes. In humans, they work as critical mediators of intercellular communication in the context of virtually any physiological process. While G protein regulation by G protein-coupled receptors (GPCRs) is well-established and has received much attention, it has become recently evident that heterotrimeric G proteins can also be activated by cytoplasmic proteins. However, this alternative mechanism of G protein regulation remains far less studied than GPCR-mediated signaling. This Viewpoint focuses on recent advances in the characterization of a group of nonreceptor proteins that contain a sequence dubbed the "Gα-binding and -activating (GBA) motif". So far, four proteins present in mammals [GIV (also known as Girdin), DAPLE, CALNUC, and NUCB2] and one protein in Caenorhabditis elegans (GBAS-1) have been described as possessing a functional GBA motif. The GBA motif confers guanine nucleotide exchange factor activity on Gαi subunits in vitro and activates G protein signaling in cells. The importance of this mechanism of signal transduction is highlighted by the fact that its dysregulation underlies human diseases, such as cancer, which has made the proteins attractive new candidates for therapeutic intervention. Here we discuss recent discoveries on the structural basis of GBA-mediated activation of G proteins and its evolutionary conservation and compare them with the better-studied mechanism mediated by GPCRs.


Subject(s)
Consensus Sequence , Evolution, Molecular , Heterotrimeric GTP-Binding Proteins/chemistry , Receptors, G-Protein-Coupled/chemistry , Amino Acid Motifs , Animals , Caenorhabditis elegans , Humans , Models, Molecular , Protein Conformation , Signal Transduction
7.
J Biol Chem ; 291(53): 27098-27111, 2016 12 30.
Article in English | MEDLINE | ID: mdl-27864364

ABSTRACT

GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gαi3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function.


Subject(s)
Cell Membrane/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Membrane Microdomains/metabolism , Microfilament Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins/metabolism , HeLa Cells , Heterotrimeric GTP-Binding Proteins/genetics , Humans , Immunoblotting , Microfilament Proteins/genetics , Saccharomyces cerevisiae/genetics , Vesicular Transport Proteins/genetics
8.
Mol Biol Evol ; 33(3): 820-37, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26659249

ABSTRACT

Trimeric G protein signaling is a fundamental mechanism of cellular communication in eukaryotes. The core of this mechanism consists of activation of G proteins by the guanine-nucleotide exchange factor (GEF) activity of G protein coupled receptors. However, the duration and amplitude of G protein-mediated signaling are controlled by a complex network of accessory proteins that appeared and diversified during evolution. Among them, nonreceptor proteins with GEF activity are the least characterized. We recently found that proteins of the ccdc88 family possess a Gα-binding and activating (GBA) motif that confers GEF activity and regulates mammalian cell behavior. A sequence similarity-based search revealed that ccdc88 genes are highly conserved across metazoa but the GBA motif is absent in most invertebrates. This prompted us to investigate whether the GBA motif is present in other nonreceptor proteins in invertebrates. An unbiased bioinformatics search in Caenorhabditis elegans identified GBAS-1 (GBA and SPK domain containing-1) as a GBA motif-containing protein with homologs only in closely related worm species. We demonstrate that GBAS-1 has GEF activity for the nematode G protein GOA-1 and that the two proteins are coexpressed in many cells of living worms. Furthermore, we show that GBAS-1 can activate mammalian Gα-subunits and provide structural insights into the evolutionarily conserved determinants of the GBA-G protein interface. These results demonstrate that the GBA motif is a functional GEF module conserved among highly divergent proteins across evolution, indicating that the GBA-Gα binding mode is strongly constrained under selective pressure to mediate receptor-independent G protein activation in metazoans.


Subject(s)
Biological Evolution , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Protein Multimerization , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Amino Acid Motifs , Amino Acid Sequence , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Evolution, Molecular , GTP-Binding Proteins/chemistry , Gene Expression , Guanine Nucleotide Exchange Factors , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Domains and Motifs , Signal Transduction
10.
Cell Mol Biol Lett ; 20(4): 571-85, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26146125

ABSTRACT

The 37-kDa laminin receptor (37LRP or RPSA) is a remarkable, multifaceted protein that functions in processes ranging from matrix adhesion to ribosome biogenesis. Its ability to engage extracellular laminin is further thought to contribute to cellular migration and invasion. Most commonly associated with metastatic cancer, RPSA is also increasingly found to be important in other pathologies, including microbial infection, neurodegenerative disease and developmental malformations. Importantly, it is thought to have higher molecular weight forms, including a 67-kDa species (67LR), the expression of which is linked to strong laminin binding and metastatic behavior. The composition of these larger forms has remained elusive and controversial. Homo- and heterodimerization have been proposed as events capable of building the larger species from the monomeric 37-kDa precursor, but solid evidence is lacking. Here, we present data suggesting that higher molecular weight species require SUMOylation to form. We also comment on the difficulty of isolating larger RPSA species for unambiguous identification and demonstrate that cell lines stably expressing tagged RPSA for long periods of time fail to produce tagged higher molecular weight RPSA. It is possible that higher molecular weight species like 67LR are not derived from RPSA.


Subject(s)
Receptors, Laminin/chemistry , Receptors, Laminin/metabolism , Ribosomal Proteins/chemistry , Ribosomal Proteins/metabolism , Animals , Gene Knockdown Techniques , HeLa Cells , Humans , Immunoprecipitation , Mice , Molecular Weight , NIH 3T3 Cells , Receptors, Laminin/genetics , Ribosomal Proteins/genetics , Sumoylation , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
11.
bioRxiv ; 2023 Feb 19.
Article in English | MEDLINE | ID: mdl-36824907

ABSTRACT

Activation of heterotrimeric G-proteins (Gαßγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically-approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class smallmolecule inhibitor of non-canonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking non-canonical G-protein signaling in tumor cells, and inhibiting pro-invasive traits of metastatic cancer cells in vitro and in mice. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable non-canonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.

12.
Sci Signal ; 13(617)2020 02 04.
Article in English | MEDLINE | ID: mdl-32019900

ABSTRACT

The advent of deep-sequencing techniques has revealed that mutations in G protein-coupled receptor (GPCR) signaling pathways in cancer are more prominent than was previously appreciated. An emergent theme is that cancer-associated mutations tend to cause enhanced GPCR pathway activation to favor oncogenicity. Regulators of G protein signaling (RGS) proteins are critical modulators of GPCR signaling that dampen the activity of heterotrimeric G proteins through their GTPase-accelerating protein (GAP) activity, which is conferred by a conserved domain dubbed the "RGS-box." Here, we developed an experimental pipeline to systematically assess the mutational landscape of RGS GAPs in cancer. A pan-cancer bioinformatics analysis of the 20 RGS domains with GAP activity revealed hundreds of low-frequency mutations spread throughout the conserved RGS domain structure with a slight enrichment at positions that interface with G proteins. We empirically tested multiple mutations representing all RGS GAP subfamilies and sampling both G protein interface and noninterface positions with a scalable, yeast-based assay. Last, a subset of mutants was validated using G protein activity biosensors in mammalian cells. Our findings reveal that a sizable fraction of RGS protein mutations leads to a loss of function through various mechanisms, including disruption of the G protein-binding interface, loss of protein stability, or allosteric effects on G protein coupling. Moreover, our results also validate a scalable pipeline for the rapid characterization of cancer-associated mutations in RGS proteins.


Subject(s)
Heterotrimeric GTP-Binding Proteins/genetics , Mutation , Neoplasms/genetics , RGS Proteins/genetics , Receptors, G-Protein-Coupled/genetics , Signal Transduction , Amino Acid Sequence , Carcinogenesis/genetics , HEK293 Cells , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Models, Molecular , Neoplasms/metabolism , Protein Binding , Protein Domains , RGS Proteins/chemistry , RGS Proteins/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Sequence Homology, Amino Acid
13.
Sci Rep ; 7(1): 8575, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28819150

ABSTRACT

Heterotrimeric G proteins are usually activated by the guanine-nucleotide exchange factor (GEF) activity of GPCRs. However, some non-receptor proteins are also GEFs. GIV (a.k.a Girdin) was the first non-receptor protein for which the GEF activity was ascribed to a well-defined protein sequence that directly binds Gαi. GIV expression promotes metastasis and disruption of its binding to Gαi blunts the pro-metastatic behavior of cancer cells. Although this suggests that inhibition of the Gαi-GIV interaction is a promising therapeutic strategy, protein-protein interactions (PPIs) are considered poorly "druggable" targets requiring case-by-case validation. Here, we set out to investigate whether Gαi-GIV is a druggable PPI. We tested a collection of >1,000 compounds on the Gαi-GIV PPI by in silico ligand screening and separately by a chemical high-throughput screening (HTS) assay. Two hits, ATA and NF023, obtained in both screens were confirmed in secondary HTS and low-throughput assays. The binding site of NF023, identified by NMR spectroscopy and biochemical assays, overlaps with the Gαi-GIV interface. Importantly, NF023 did not disrupt Gαi-Gßγ binding, indicating its specificity toward Gαi-GIV. This work establishes the Gαi-GIV PPI as a druggable target and sets the conceptual and technical framework for the discovery of novel inhibitors of this PPI.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Microfilament Proteins/metabolism , Peptides/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Binding Sites , Computer Simulation , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , HEK293 Cells , Humans , Magnetic Resonance Spectroscopy , Microfilament Proteins/chemistry , Microfilament Proteins/genetics , Models, Molecular , Molecular Structure , Peptides/chemistry , Protein Binding/drug effects , Protein Domains , Protein Interaction Maps/drug effects , Suramin/analogs & derivatives , Suramin/chemistry , Suramin/pharmacology , Vesicular Transport Proteins/chemistry , Vesicular Transport Proteins/genetics
14.
Nat Commun ; 8: 15163, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28516903

ABSTRACT

Heterotrimeric G proteins are quintessential signalling switches activated by nucleotide exchange on Gα. Although activation is predominantly carried out by G-protein-coupled receptors (GPCRs), non-receptor guanine-nucleotide exchange factors (GEFs) have emerged as critical signalling molecules and therapeutic targets. Here we characterize the molecular mechanism of G-protein activation by a family of non-receptor GEFs containing a Gα-binding and -activating (GBA) motif. We combine NMR spectroscopy, computational modelling and biochemistry to map changes in Gα caused by binding of GBA proteins with residue-level resolution. We find that the GBA motif binds to the SwitchII/α3 cleft of Gα and induces changes in the G-1/P-loop and G-2 boxes (involved in phosphate binding), but not in the G-4/G-5 boxes (guanine binding). Our findings reveal that G-protein-binding and activation mechanisms are fundamentally different between GBA proteins and GPCRs, and that GEF-mediated perturbation of nucleotide phosphate binding is sufficient for Gα activation.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanosine Diphosphate/metabolism , Microfilament Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Motifs/physiology , Cell Line , Enzyme Activation/physiology , HEK293 Cells , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Binding/physiology , Signal Transduction/physiology
15.
Biol Rev Camb Philos Soc ; 91(2): 288-310, 2016 May.
Article in English | MEDLINE | ID: mdl-25630983

ABSTRACT

The 37/67-kDa laminin receptor (LAMR/RPSA) was originally identified as a 67-kDa binding protein for laminin, an extracellular matrix glycoprotein that provides cellular adhesion to the basement membrane. LAMR has evolutionary origins, however, as a 37-kDa RPS2 family ribosomal component. Expressed in all domains of life, RPS2 proteins have been shown to have remarkably diverse physiological roles that vary across species. Contributing to laminin binding, ribosome biogenesis, cytoskeletal organization, and nuclear functions, this protein governs critical cellular processes including growth, survival, migration, protein synthesis, development, and differentiation. Unsurprisingly given its purview, LAMR has been associated with metastatic cancer, neurodegenerative disease and developmental abnormalities. Functioning in a receptor capacity, this protein also confers susceptibility to bacterial and viral infection. LAMR is clearly a molecule of consequence in human disease, directly mediating pathological events that make it a prime target for therapeutic interventions. Despite decades of research, there are still a large number of open questions regarding the cellular biology of LAMR, the nature of its ability to bind laminin, the function of its intrinsically disordered C-terminal region and its conversion from 37 to 67 kDa. This review attempts to convey an in-depth description of the complexity surrounding this multifaceted protein across functional, structural and pathological aspects.


Subject(s)
Gene Expression Regulation/physiology , Laminin/metabolism , Receptors, Laminin/metabolism , Ribosomal Proteins/metabolism , Humans , Laminin/genetics , Receptors, Laminin/genetics , Ribosomal Proteins/genetics
16.
Sci Signal ; 9(423): ra37, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27072656

ABSTRACT

Auriculo-condylar syndrome (ACS), a rare condition that impairs craniofacial development, is caused by mutations in a G protein-coupled receptor (GPCR) signaling pathway. In mice, disruption of signaling by the endothelin type A receptor (ET(A)R), which is mediated by the G protein (heterotrimeric guanine nucleotide-binding protein) subunit Gα(q/11) and subsequently phospholipase C (PLC), impairs neural crest cell differentiation that is required for normal craniofacial development. Some ACS patients have mutations inGNAI3, which encodes Gα(i3), but it is unknown whether this G protein has a role within the ET(A)R pathway. We used a Xenopus model of vertebrate development, in vitro biochemistry, and biosensors of G protein activity in mammalian cells to systematically characterize the phenotype and function of all known ACS-associated Gα(i3) mutants. We found that ACS-associated mutations in GNAI3 produce dominant-negative Gα(i3) mutant proteins that couple to ET(A)R but cannot bind and hydrolyze guanosine triphosphate, resulting in the prevention of endothelin-mediated activation of Gα(q/11) and PLC. Thus, ACS is caused by functionally dominant-negative mutations in a heterotrimeric G protein subunit.


Subject(s)
Ear Diseases/genetics , Ear/abnormalities , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Mutation , Signal Transduction/genetics , Amino Acid Sequence , Animals , Ear Diseases/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Immunoblotting , Microscopy, Fluorescence , Models, Genetic , Protein Binding , Receptor, Endothelin A/genetics , Receptor, Endothelin A/metabolism , Sequence Homology, Amino Acid , Two-Hybrid System Techniques , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL