Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
Cell ; 187(6): 1527-1546.e25, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38412860

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest family of druggable proteins encoded in the human genome, but progress in understanding and targeting them is hindered by the lack of tools to reliably measure their nuanced behavior in physiologically relevant contexts. Here, we developed a collection of compact ONE vector G-protein Optical (ONE-GO) biosensor constructs as a scalable platform that can be conveniently deployed to measure G-protein activation by virtually any GPCR with high fidelity even when expressed endogenously in primary cells. By characterizing dozens of GPCRs across many cell types like primary cardiovascular cells or neurons, we revealed insights into the molecular basis for G-protein coupling selectivity of GPCRs, pharmacogenomic profiles of anti-psychotics on naturally occurring GPCR variants, and G-protein subtype signaling bias by endogenous GPCRs depending on cell type or upon inducing disease-like states. In summary, this open-source platform makes the direct interrogation of context-dependent GPCR activity broadly accessible.


Subject(s)
Biosensing Techniques , Signal Transduction , Humans , Receptors, G-Protein-Coupled/metabolism , GTP-Binding Proteins/metabolism
2.
Cell ; 182(3): 770-785.e16, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32634377

ABSTRACT

Heterotrimeric G-proteins (Gαßγ) are the main transducers of signals from GPCRs, mediating the action of countless natural stimuli and therapeutic agents. However, there are currently no robust approaches to directly measure the activity of endogenous G-proteins in cells. Here, we describe a suite of optical biosensors that detect endogenous active G-proteins with sub-second resolution in live cells. Using a modular design principle, we developed genetically encoded, unimolecular biosensors for endogenous Gα-GTP and free Gßγ: the two active species of heterotrimeric G-proteins. This design was leveraged to generate biosensors with specificity for different heterotrimeric G-proteins or for other G-proteins, such as Rho GTPases. Versatility was further validated by implementing the biosensors in multiple contexts, from characterizing cancer-associated G-protein mutants to neurotransmitter signaling in primary neurons. Overall, the versatile biosensor design introduced here enables studying the activity of endogenous G-proteins in live cells with high fidelity, temporal resolution, and convenience.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/instrumentation , Bioluminescence Resonance Energy Transfer Techniques/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Guanosine Triphosphate/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Amino Acid Motifs , Animals , Cells, Cultured , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanosine Triphosphate/chemistry , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mutation , Neoplasms/genetics , Neoplasms/metabolism , Neurons/chemistry , Neurons/metabolism , Neurons/physiology , Signal Transduction , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism
3.
Mol Cell ; 83(14): 2540-2558.e12, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37390816

ABSTRACT

G-protein-coupled receptors (GPCRs) mediate neuromodulation through the activation of heterotrimeric G proteins (Gαßγ). Classical models depict that G protein activation leads to a one-to-one formation of Gα-GTP and Gßγ species. Each of these species propagates signaling by independently acting on effectors, but the mechanisms by which response fidelity is ensured by coordinating Gα and Gßγ responses remain unknown. Here, we reveal a paradigm of G protein regulation whereby the neuronal protein GINIP (Gα inhibitory interacting protein) biases inhibitory GPCR responses to favor Gßγ over Gα signaling. Tight binding of GINIP to Gαi-GTP precludes its association with effectors (adenylyl cyclase) and, simultaneously, with regulator-of-G-protein-signaling (RGS) proteins that accelerate deactivation. As a consequence, Gαi-GTP signaling is dampened, whereas Gßγ signaling is enhanced. We show that this mechanism is essential to prevent the imbalances of neurotransmission that underlie increased seizure susceptibility in mice. Our findings reveal an additional layer of regulation within a quintessential mechanism of signal transduction that sets the tone of neurotransmission.


Subject(s)
GTP-Binding Protein beta Subunits , Heterotrimeric GTP-Binding Proteins , Mice , Animals , Protein Subunits/metabolism , Signal Transduction/physiology , Heterotrimeric GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Guanosine Triphosphate , GTP-Binding Protein beta Subunits/genetics
4.
Proc Natl Acad Sci U S A ; 120(18): e2213140120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37098067

ABSTRACT

Activation of heterotrimeric G-proteins (Gαßγ) by G-protein-coupled receptors (GPCRs) is a quintessential mechanism of cell signaling widely targeted by clinically approved drugs. However, it has become evident that heterotrimeric G-proteins can also be activated via GPCR-independent mechanisms that remain untapped as pharmacological targets. GIV/Girdin has emerged as a prototypical non-GPCR activator of G proteins that promotes cancer metastasis. Here, we introduce IGGi-11, a first-in-class small-molecule inhibitor of noncanonical activation of heterotrimeric G-protein signaling. IGGi-11 binding to G-protein α-subunits (Gαi) specifically disrupted their engagement with GIV/Girdin, thereby blocking noncanonical G-protein signaling in tumor cells and inhibiting proinvasive traits of metastatic cancer cells. In contrast, IGGi-11 did not interfere with canonical G-protein signaling mechanisms triggered by GPCRs. By revealing that small molecules can selectively disable noncanonical mechanisms of G-protein activation dysregulated in disease, these findings warrant the exploration of therapeutic modalities in G-protein signaling that go beyond targeting GPCRs.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Neoplasms , Vesicular Transport Proteins/metabolism , Microfilament Proteins/metabolism , Signal Transduction , Receptors, G-Protein-Coupled/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Neoplasms/metabolism
5.
J Biol Chem ; 300(3): 105756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364891

ABSTRACT

Heterotrimeric G proteins (Gαßγ) are molecular switches that relay signals from 7-transmembrane receptors located at the cell surface to the cytoplasm. The function of these receptors is so intimately linked to heterotrimeric G proteins that they are named G protein-coupled receptors (GPCRs), showcasing the interdependent nature of this archetypical receptor-transducer axis of transmembrane signaling in eukaryotes. It is generally assumed that activation of heterotrimeric G protein signaling occurs exclusively by the action of GPCRs, but this idea has been challenged by the discovery of alternative mechanisms by which G proteins can propagate signals in the cell. This review will focus on a general principle of G protein signaling that operates without the direct involvement of GPCRs. The mechanism of G protein signaling reviewed here is mediated by a class of G protein regulators defined by containing an evolutionarily conserved sequence named the Gα-binding-and-activating (GBA) motif. Using the best characterized proteins with a GBA motif as examples, Gα-interacting vesicle-associated protein (GIV)/Girdin and dishevelled-associating protein with a high frequency of leucine residues (DAPLE), this review will cover (i) the mechanisms by which extracellular cues not relayed by GPCRs promote the coupling of GBA motif-containing regulators with G proteins, (ii) the structural and molecular basis for how GBA motifs interact with Gα subunits to facilitate signaling, (iii) the relevance of this mechanism in different cellular and pathological processes, including cancer and birth defects, and (iv) strategies to manipulate GBA-G protein coupling for experimental therapeutics purposes, including the development of rationally engineered proteins and chemical probes.


Subject(s)
Heterotrimeric GTP-Binding Proteins , Receptors, G-Protein-Coupled , Amino Acid Motifs , Cell Membrane/metabolism , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Humans , Animals , Protein Engineering
6.
Trends Biochem Sci ; 45(3): 182-184, 2020 03.
Article in English | MEDLINE | ID: mdl-31753703

ABSTRACT

High-resolution structural studies on G-protein-coupled receptors (GPCRs) have flourished recently, providing long-sought insights into the dynamic process of guanine nucleotide-binding protein (G-protein) activation. In parallel, analogous studies are starting to shed light on how the same G-proteins are activated by non-GPCR proteins. Can we learn about common themes and variations in G-protein activation from them?


Subject(s)
GTP-Binding Proteins/metabolism , GTP-Binding Proteins/chemistry , Humans , Protein Conformation , Receptors, G-Protein-Coupled/metabolism
7.
Mol Pharmacol ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991745

ABSTRACT

G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters or hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαßγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity, to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gßγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components, or in physiologically-relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. Significance Statement G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.

8.
Proc Natl Acad Sci U S A ; 117(46): 28763-28774, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33139573

ABSTRACT

The molecular mechanisms by which receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major signaling hubs in eukaryotes, independently relay signals across the plasma membrane have been extensively characterized. How these hubs cross-talk has been a long-standing question, but answers remain elusive. Using linear ion-trap mass spectrometry in combination with biochemical, cellular, and computational approaches, we unravel a mechanism of activation of heterotrimeric G proteins by RTKs and chart the key steps that mediate such activation. Upon growth factor stimulation, the guanine-nucleotide exchange modulator dissociates Gαi•ßγ trimers, scaffolds monomeric Gαi with RTKs, and facilitates the phosphorylation on two tyrosines located within the interdomain cleft of Gαi. Phosphorylation triggers the activation of Gαi and inhibits second messengers (cAMP). Tumor-associated mutants reveal how constitutive activation of this pathway impacts cell's decision to "go" vs. "grow." These insights define a tyrosine-based G protein signaling paradigm and reveal its importance in eukaryotes.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Animals , COS Cells , Chlorocebus aethiops , ErbB Receptors/metabolism , HEK293 Cells , HeLa Cells , Heterotrimeric GTP-Binding Proteins/physiology , Humans , Phosphorylation , Receptor Protein-Tyrosine Kinases/physiology , Signal Transduction , Tyrosine/metabolism
9.
J Biol Chem ; 295(49): 16897-16904, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33109615

ABSTRACT

Heterotrimeric G-proteins are signaling switches broadly divided into four families based on the sequence and functional similarity of their Gα subunits: Gs, Gi/o, Gq/11, and G12/13 Artificial mutations that activate Gα subunits of each of these families have long been known to induce oncogenic transformation in experimental systems. With the advent of next-generation sequencing, activating hotspot mutations in Gs, Gi/o, or Gq/11 proteins have also been identified in patient tumor samples. In contrast, patient tumor-associated G12/13 mutations characterized to date lead to inactivation rather than activation. By using bioinformatic pathway analysis and signaling assays, here we identified cancer-associated hotspot mutations in Arg-200 of Gα13 (encoded by GNA13) as potent activators of oncogenic signaling. First, we found that components of a G12/13-dependent signaling cascade that culminates in activation of the Hippo pathway effectors YAP and TAZ is frequently altered in bladder cancer. Up-regulation of this signaling cascade correlates with increased YAP/TAZ activation transcriptional signatures in this cancer type. Among the G12/13 pathway alterations were mutations in Arg-200 of Gα13, which we validated to promote YAP/TAZ-dependent (TEAD) and MRTF-A/B-dependent (SRE.L) transcriptional activity. We further showed that this mechanism relies on the same RhoGEF-RhoGTPase cascade components that are up-regulated in bladder cancers. Moreover, Gα13 Arg-200 mutants induced oncogenic transformation in vitro as determined by focus formation assays. In summary, our findings on Gα13 mutants establish that naturally occurring hotspot mutations in Gα subunits of any of the four families of heterotrimeric G-proteins are putative cancer drivers.


Subject(s)
Carcinogenesis/genetics , GTP-Binding Protein alpha Subunits, G12-G13/genetics , Signal Transduction , ADP Ribose Transferases/pharmacology , Acyltransferases , Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Botulinum Toxins/pharmacology , GTP-Binding Protein alpha Subunits, G12-G13/metabolism , HEK293 Cells , Humans , Mice , Mutagenesis, Site-Directed , NIH 3T3 Cells , RNA Interference , RNA, Small Interfering/metabolism , Rho Guanine Nucleotide Exchange Factors/metabolism , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Activation/drug effects , Up-Regulation , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , YAP-Signaling Proteins , rho GTP-Binding Proteins/metabolism
10.
J Biol Chem ; 295(8): 2270-2284, 2020 02 21.
Article in English | MEDLINE | ID: mdl-31949046

ABSTRACT

Besides being regulated by G-protein-coupled receptors, the activity of heterotrimeric G proteins is modulated by many cytoplasmic proteins. GIV/Girdin and DAPLE (Dvl-associating protein with a high frequency of leucine) are the best-characterized members of a group of cytoplasmic regulators that contain a Gα-binding and -activating (GBA) motif and whose dysregulation underlies human diseases, including cancer and birth defects. GBA motif-containing proteins were originally reported to modulate G proteins by binding Gα subunits of the Gi/o family (Gαi) over other families (such as Gs, Gq/11, or G12/13), and promoting nucleotide exchange in vitro However, some evidence suggests that this is not always the case, as phosphorylation of the GBA motif of GIV promotes its binding to Gαs and inhibits nucleotide exchange. The G-protein specificity of DAPLE and how it might affect nucleotide exchange on G proteins besides Gαi remain to be investigated. Here, we show that DAPLE's GBA motif, in addition to Gαi, binds efficiently to members of the Gs and Gq/11 families (Gαs and Gαq, respectively), but not of the G12/13 family (Gα12) in the absence of post-translational phosphorylation. We pinpointed Met-1669 as the residue in the GBA motif of DAPLE that diverges from that in GIV and enables better binding to Gαs and Gαq Unlike the nucleotide-exchange acceleration observed for Gαi, DAPLE inhibited nucleotide exchange on Gαs and Gαq These findings indicate that GBA motifs have versatility in their G-protein-modulating effect, i.e. they can bind to Gα subunits of different classes and either stimulate or inhibit nucleotide exchange depending on the G-protein subtype.


Subject(s)
GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Microfilament Proteins/chemistry , Microfilament Proteins/metabolism , Amino Acid Sequence , Animals , Cattle , HEK293 Cells , Humans , Models, Biological , Mutant Proteins/metabolism , Peptides/metabolism , Protein Binding
11.
Nat Chem Biol ; 19(6): 665-666, 2023 06.
Article in English | MEDLINE | ID: mdl-36646957
12.
Proc Natl Acad Sci U S A ; 114(48): E10319-E10328, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29133411

ABSTRACT

Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gßγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.


Subject(s)
GTPase-Activating Proteins/genetics , Guanine Nucleotide Dissociation Inhibitors/genetics , Guanine Nucleotide Exchange Factors/genetics , Nuclear Proteins/genetics , Protein Engineering/methods , Receptors, G-Protein-Coupled/genetics , Vesicular Transport Proteins/genetics , Amino Acid Motifs , Animals , Cloning, Molecular , Embryo, Nonmammalian , Escherichia coli/genetics , Escherichia coli/metabolism , GTPase-Activating Proteins/metabolism , Gene Expression Regulation, Developmental , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Guanine Nucleotide Dissociation Inhibitors/metabolism , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Humans , MCF-7 Cells , Nuclear Proteins/metabolism , Rats , Receptors, G-Protein-Coupled/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Vesicular Transport Proteins/metabolism , Xenopus laevis/genetics , Xenopus laevis/growth & development , Xenopus laevis/metabolism
13.
J Biol Chem ; 293(19): 7474-7475, 2018 05 11.
Article in English | MEDLINE | ID: mdl-29752421

ABSTRACT

G protein-coupled receptors (GPCRs) relay information from extracellular stimuli to intracellular responses in a wide range of physiological and pathological processes, but understanding their complex effects in live cells is a daunting task. In this issue of JBC, Wan et al repurpose "mini G proteins"-previously used as affinity tools for structural studies-to develop a suite of probes to visualize GPCR activation in live cells. The approach is expected to revolutionize our understanding of the spatiotemporal control and mechanisms of GPCR signaling.


Subject(s)
GTP-Binding Proteins/metabolism , Miniaturization , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Signal Transduction
14.
J Biol Chem ; 293(51): 19586-19599, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30352874

ABSTRACT

The causative role of G protein-coupled receptor (GPCR) pathway mutations in uveal melanoma (UM) has been well-established. Nearly all UMs bear an activating mutation in a GPCR pathway mediated by G proteins of the Gq/11 family, driving tumor initiation and possibly metastatic progression. Thus, targeting this pathway holds therapeutic promise for managing UM. However, direct targeting of oncogenic Gαq/11 mutants, present in ∼90% of UMs, is complicated by the belief that these mutants structurally resemble active Gαq/11 WT. This notion is solidly founded on previous studies characterizing Gα mutants in which a conserved catalytic glutamine (Gln-209 in Gαq) is replaced by leucine, which leads to GTPase function deficiency and constitutive activation. Whereas Q209L accounts for approximately half of GNAQ mutations in UM, Q209P is as frequent as Q209L and also promotes oncogenesis, but has not been characterized at the molecular level. Here, we characterized the biochemical and signaling properties of Gαq Q209P and found that it is also GTPase-deficient and activates downstream signaling as efficiently as Gαq Q209L. However, Gαq Q209P had distinct molecular and functional features, including in the switch II region of Gαq Q209P, which adopted a conformation different from that of Gαq Q209L or active WT Gαq, resulting in altered binding to effectors, Gßγ, and regulators of G-protein signaling (RGS) proteins. Our findings reveal that the molecular properties of Gαq Q209P are fundamentally different from those in other active Gαq proteins and could be leveraged as a specific vulnerability for the ∼20% of UMs bearing this mutation.


Subject(s)
Carcinogenesis/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/genetics , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Mutation , GTP-Binding Protein alpha Subunits, Gq-G11/chemistry , Humans , Models, Molecular , Protein Conformation, alpha-Helical , Signal Transduction/genetics
15.
J Biol Chem ; 293(44): 16964-16983, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30194280

ABSTRACT

Recent evidence has revealed that heterotrimeric G-proteins can be activated by cytoplasmic proteins that share an evolutionarily conserved sequence called the Gα-binding-and-activating (GBA) motif. This mechanism provides an alternative to canonical activation by G-protein-coupled receptors (GPCRs) and plays important roles in cell function, and its dysregulation is linked to diseases such as cancer. Here, we describe a discovery pipeline that uses biochemical and genetic approaches to validate GBA candidates identified by sequence similarity. First, putative GBA motifs discovered in bioinformatics searches were synthesized on peptide arrays and probed in batch for Gαi3 binding. Then, cDNAs encoding proteins with Gαi3-binding sequences were expressed in a genetically-modified yeast strain that reports mammalian G-protein activity in the absence of GPCRs. The resulting GBA motif candidates were characterized by comparison of their biochemical, structural, and signaling properties with those of all previously described GBA motifs in mammals (GIV/Girdin, DAPLE, Calnuc, and NUCB2). We found that the phospholipase Cδ4 (PLCδ4) GBA motif binds G-proteins with high affinity, has guanine nucleotide exchange factor activity in vitro, and activates G-protein signaling in cells, as indicated by bioluminescence resonance energy transfer (BRET)-based biosensors of G-protein activity. Interestingly, the PLCδ4 isoform b (PLCδ4b), which lacks the domains required for PLC activity, bound and activated G-proteins more efficiently than the full-length isoform a, suggesting that PLCδ4b functions as a G-protein regulator rather than as a PLC. In summary, we have identified PLCδ4 as a nonreceptor activator of G-proteins and established an experimental pipeline to discover and characterize GBA motif-containing proteins.


Subject(s)
Heterotrimeric GTP-Binding Proteins/metabolism , Phospholipase C delta/chemistry , Phospholipase C delta/genetics , Amino Acid Motifs , Crystallography, X-Ray , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/genetics , Humans , Phospholipase C delta/metabolism , Protein Binding , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Repressor Proteins/chemistry , Repressor Proteins/genetics , Repressor Proteins/metabolism , Signal Transduction
16.
Proc Natl Acad Sci U S A ; 113(39): E5721-30, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27621449

ABSTRACT

We previously showed that guanine nucleotide-binding (G) protein α subunit (Gα)-interacting vesicle-associated protein (GIV), a guanine-nucleotide exchange factor (GEF), transactivates Gα activity-inhibiting polypeptide 1 (Gαi) proteins in response to growth factors, such as EGF, using a short C-terminal motif. Subsequent work demonstrated that GIV also binds Gαs and that inactive Gαs promotes maturation of endosomes and shuts down mitogenic MAPK-ERK1/2 signals from endosomes. However, the mechanism and consequences of dual coupling of GIV to two G proteins, Gαi and Gαs, remained unknown. Here we report that GIV is a bifunctional modulator of G proteins; it serves as a guanine nucleotide dissociation inhibitor (GDI) for Gαs using the same motif that allows it to serve as a GEF for Gαi. Upon EGF stimulation, GIV modulates Gαi and Gαs sequentially: first, a key phosphomodification favors the assembly of GIV-Gαi complexes and activates GIV's GEF function; then a second phosphomodification terminates GIV's GEF function, triggers the assembly of GIV-Gαs complexes, and activates GIV's GDI function. By comparing WT and GIV mutants, we demonstrate that GIV inhibits Gαs activity in cells responding to EGF. Consequently, the cAMP→PKA→cAMP response element-binding protein signaling axis is inhibited, the transit time of EGF receptor through early endosomes are accelerated, mitogenic MAPK-ERK1/2 signals are rapidly terminated, and proliferation is suppressed. These insights define a paradigm in G-protein signaling in which a pleiotropically acting modulator uses the same motif both to activate and to inhibit G proteins. Our findings also illuminate how such modulation of two opposing Gα proteins integrates downstream signals and cellular responses.


Subject(s)
GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Microfilament Proteins/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Motifs , Amino Acid Sequence , Cell Proliferation/drug effects , Chemotaxis/drug effects , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin-Dependent Kinase 5/metabolism , Down-Regulation/drug effects , Endosomes/drug effects , Endosomes/metabolism , Epidermal Growth Factor/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Fluorescence Resonance Energy Transfer , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Guanosine Triphosphate/metabolism , HeLa Cells , Humans , Microfilament Proteins/chemistry , Mutant Proteins/metabolism , Phosphorylation/drug effects , Protein Binding , Protein Kinase C-theta/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Vesicular Transport Proteins/chemistry
17.
Biochemistry ; 57(3): 255-257, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29035513

ABSTRACT

Heterotrimeric G proteins are signal-transducing switches conserved across eukaryotes. In humans, they work as critical mediators of intercellular communication in the context of virtually any physiological process. While G protein regulation by G protein-coupled receptors (GPCRs) is well-established and has received much attention, it has become recently evident that heterotrimeric G proteins can also be activated by cytoplasmic proteins. However, this alternative mechanism of G protein regulation remains far less studied than GPCR-mediated signaling. This Viewpoint focuses on recent advances in the characterization of a group of nonreceptor proteins that contain a sequence dubbed the "Gα-binding and -activating (GBA) motif". So far, four proteins present in mammals [GIV (also known as Girdin), DAPLE, CALNUC, and NUCB2] and one protein in Caenorhabditis elegans (GBAS-1) have been described as possessing a functional GBA motif. The GBA motif confers guanine nucleotide exchange factor activity on Gαi subunits in vitro and activates G protein signaling in cells. The importance of this mechanism of signal transduction is highlighted by the fact that its dysregulation underlies human diseases, such as cancer, which has made the proteins attractive new candidates for therapeutic intervention. Here we discuss recent discoveries on the structural basis of GBA-mediated activation of G proteins and its evolutionary conservation and compare them with the better-studied mechanism mediated by GPCRs.


Subject(s)
Consensus Sequence , Evolution, Molecular , Heterotrimeric GTP-Binding Proteins/chemistry , Receptors, G-Protein-Coupled/chemistry , Amino Acid Motifs , Animals , Caenorhabditis elegans , Humans , Models, Molecular , Protein Conformation , Signal Transduction
18.
Proc Natl Acad Sci U S A ; 112(35): E4874-83, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26286990

ABSTRACT

Signals propagated by receptor tyrosine kinases (RTKs) can drive cell migration and proliferation, two cellular processes that do not occur simultaneously--a phenomenon called "migration-proliferation dichotomy." We previously showed that epidermal growth factor (EGF) signaling is skewed to favor migration over proliferation via noncanonical transactivation of Gαi proteins by the guanine exchange factor (GEF) GIV. However, what turns on GIV-GEF downstream of growth factor RTKs remained unknown. Here we reveal the molecular mechanism by which phosphorylation of GIV by cyclin-dependent kinase 5 (CDK5) triggers GIV's ability to bind and activate Gαi in response to growth factors and modulate downstream signals to establish a dichotomy between migration and proliferation. We show that CDK5 binds and phosphorylates GIV at Ser1674 near its GEF motif. When Ser1674 is phosphorylated, GIV activates Gαi and enhances promigratory Akt signals. Phosphorylated GIV also binds Gαs and enhances endosomal maturation, which shortens the transit time of EGFR through early endosomes, thereby limiting mitogenic MAPK signals. Consequently, this phosphoevent triggers cells to preferentially migrate during wound healing and transmigration of cancer cells. When Ser1674 cannot be phosphorylated, GIV cannot bind either Gαi or Gαs, Akt signaling is suppressed, mitogenic signals are enhanced due to delayed transit time of EGFR through early endosomes, and cells preferentially proliferate. These results illuminate how GIV-GEF is turned on upon receptor activation, adds GIV to the repertoire of CDK5 substrates, and defines a mechanism by which this unusual CDK orchestrates migration-proliferation dichotomy during cancer invasion, wound healing, and development.


Subject(s)
Cell Movement , Cell Proliferation , Cyclin-Dependent Kinase 5/metabolism , Microfilament Proteins/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Sequence , Animals , ErbB Receptors/metabolism , Humans , Microfilament Proteins/chemistry , Molecular Sequence Data , Morphogenesis , Phosphorylation , Protein Transport , Sequence Homology, Amino Acid , Signal Transduction , Vesicular Transport Proteins/chemistry , Wound Healing
19.
J Biol Chem ; 291(15): 8269-82, 2016 Apr 08.
Article in English | MEDLINE | ID: mdl-26887938

ABSTRACT

Activation of the tyrosine kinase focal adhesion kinase (FAK) upon cell stimulation by the extracellular matrix initiates integrin outside-in signaling. FAK is directly recruited to active integrins, which enhances its kinase activity and triggers downstream signaling like activation of PI3K. We recently described that Gα-interacting, vesicle-associated protein (GIV), a protein up-regulated in metastatic cancers, is also required for outside-in integrin signaling. More specifically, we found that GIV is a non-receptor guanine nucleotide exchange factor that activates trimeric G proteins in response to integrin stimulation to enhance PI3K signaling and tumor cell migration. In contrast, previous reports have established that GIV is involved in phosphotyrosine (Tyr(P))-based signaling in response to growth factor stimulation;i.e.GIV phosphorylation at Tyr-1764 and Tyr-1798 recruits and activates PI3K. Here we show that phosphorylation of GIV at Tyr-1764/Tyr-1798 is also required to enhance PI3K-Akt signaling and tumor cell migration in response to integrin stimulation, indicating that GIV functions in Tyr(P)-dependent integrin signaling. Unexpectedly, we found that activation of FAK, an upstream component of the integrin Tyr(P) signaling cascade, was diminished in GIV-depleted cells, suggesting that GIV is required to establish a positive feedback loop that enhances integrin-FAK signaling. Mechanistically, we demonstrate that this feedback activation of FAK depends on both guanine nucleotide exchange factor and Tyr(P) GIV signaling as well as on their convergence point, PI3K. Taken together, our results provide novel mechanistic insights into how GIV promotes proinvasive cancer cell behavior by working as a signal-amplifying platform at the crossroads of trimeric G protein and Tyr(P) signaling.


Subject(s)
Integrins/metabolism , Microfilament Proteins/metabolism , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Vesicular Transport Proteins/metabolism , Cell Line, Tumor , Cell Movement , Collagen/metabolism , Enzyme Activation , Focal Adhesion Kinase 1/metabolism , GTP-Binding Proteins/metabolism , Humans , Neoplasms/pathology , Phosphorylation
20.
J Biol Chem ; 291(53): 27098-27111, 2016 12 30.
Article in English | MEDLINE | ID: mdl-27864364

ABSTRACT

GIV (aka Girdin) is a guanine nucleotide exchange factor that activates heterotrimeric G protein signaling downstream of RTKs and integrins, thereby serving as a platform for signaling cascade cross-talk. GIV is recruited to the cytoplasmic tail of receptors upon stimulation, but the mechanism of activation of its G protein regulatory function is not well understood. Here we used assays in humanized yeast models and G protein activity biosensors in mammalian cells to investigate the role of GIV subcellular compartmentalization in regulating its ability to promote G protein signaling. We found that in unstimulated cells GIV does not co-fractionate with its substrate G protein Gαi3 on cell membranes and that constitutive membrane anchoring of GIV in yeast cells or rapid membrane translocation in mammalian cells via chemically induced dimerization leads to robust G protein activation. We show that membrane recruitment of the GIV "Gα binding and activating" motif alone is sufficient for G protein activation and that it does not require phosphomodification. Furthermore, we engineered a synthetic protein to show that recruitment of the GIV "Gα binding and activating" motif to membranes via association with active RTKs, instead of via chemically induced dimerization, is also sufficient for G protein activation. These results reveal that recruitment of GIV to membranes in close proximity to its substrate G protein is a major mechanism responsible for the activation of its G protein regulatory function.


Subject(s)
Cell Membrane/metabolism , Heterotrimeric GTP-Binding Proteins/metabolism , Membrane Microdomains/metabolism , Microfilament Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Vesicular Transport Proteins/metabolism , HeLa Cells , Heterotrimeric GTP-Binding Proteins/genetics , Humans , Immunoblotting , Microfilament Proteins/genetics , Saccharomyces cerevisiae/genetics , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL