Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 110(5): 790-808, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37071997

ABSTRACT

SRSF1 (also known as ASF/SF2) is a non-small nuclear ribonucleoprotein (non-snRNP) that belongs to the arginine/serine (R/S) domain family. It recognizes and binds to mRNA, regulating both constitutive and alternative splicing. The complete loss of this proto-oncogene in mice is embryonically lethal. Through international data sharing, we identified 17 individuals (10 females and 7 males) with a neurodevelopmental disorder (NDD) with heterozygous germline SRSF1 variants, mostly de novo, including three frameshift variants, three nonsense variants, seven missense variants, and two microdeletions within region 17q22 encompassing SRSF1. Only in one family, the de novo origin could not be established. All individuals featured a recurrent phenotype including developmental delay and intellectual disability (DD/ID), hypotonia, neurobehavioral problems, with variable skeletal (66.7%) and cardiac (46%) anomalies. To investigate the functional consequences of SRSF1 variants, we performed in silico structural modeling, developed an in vivo splicing assay in Drosophila, and carried out episignature analysis in blood-derived DNA from affected individuals. We found that all loss-of-function and 5 out of 7 missense variants were pathogenic, leading to a loss of SRSF1 splicing activity in Drosophila, correlating with a detectable and specific DNA methylation episignature. In addition, our orthogonal in silico, in vivo, and epigenetics analyses enabled the separation of clearly pathogenic missense variants from those with uncertain significance. Overall, these results indicated that haploinsufficiency of SRSF1 is responsible for a syndromic NDD with ID due to a partial loss of SRSF1-mediated splicing activity.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Child , Female , Male , Developmental Disabilities/genetics , Developmental Disabilities/complications , Haploinsufficiency/genetics , Intellectual Disability/pathology , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Phenotype , Humans
2.
Genet Med ; 26(1): 101007, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37860968

ABSTRACT

PURPOSE: BCL11B-related disorder (BCL11B-RD) arises from rare genetic variants within the BCL11B gene, resulting in a distinctive clinical spectrum encompassing syndromic neurodevelopmental disorder, with or without intellectual disability, associated with facial features and impaired immune function. This study presents an in-depth clinico-biological analysis of 20 newly reported individuals with BCL11B-RD, coupled with a characterization of genome-wide DNA methylation patterns of this genetic condition. METHODS: Through an international collaboration, clinical and molecular data from 20 individuals were systematically gathered, and a comparative analysis was conducted between this series and existing literature. We further scrutinized peripheral blood DNA methylation profile of individuals with BCL11B-RD, contrasting them with healthy controls and other neurodevelopmental disorders marked by established episignature. RESULTS: Our findings unveil rarely documented clinical manifestations, notably including Rubinstein-Taybi-like facial features, craniosynostosis, and autoimmune disorders, all manifesting within the realm of BCL11B-RD. We refine the intricacies of T cell compartment alterations of BCL11B-RD, revealing decreased levels naive CD4+ T cells and recent thymic emigrants while concurrently observing an elevated proportion of effector-memory expressing CD45RA CD8+ T cells (TEMRA). Finally, a distinct DNA methylation episignature exclusive to BCL11B-RD is unveiled. CONCLUSION: This study serves to enrich our comprehension of the clinico-biological landscape of BCL11B-RD, potentially furnishing a more precise framework for diagnosis and follow-up of individuals carrying pathogenic BCL11B variant. Moreover, the identification of a unique DNA methylation episignature offers a valuable diagnosis tool for BCL11B-RD, thereby facilitating routine clinical practice by empowering physicians to reevaluate variants of uncertain significance within the BCL11B gene.


Subject(s)
Intellectual Disability , Neurodevelopmental Disorders , Humans , CD8-Positive T-Lymphocytes/metabolism , Transcription Factors/genetics , Neurodevelopmental Disorders/genetics , Intellectual Disability/genetics , DNA Methylation/genetics , Tumor Suppressor Proteins/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism
3.
Am J Med Genet A ; 191(2): 445-458, 2023 02.
Article in English | MEDLINE | ID: mdl-36369750

ABSTRACT

Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.


Subject(s)
DiGeorge Syndrome , Down Syndrome , Epilepsy , Intellectual Disability , Microcephaly , Humans , Chromosomes, Human, Pair 1 , Muscle Hypotonia , Chromosome Deletion , Phenotype
4.
J Med Genet ; 59(12): 1234-1240, 2022 12.
Article in English | MEDLINE | ID: mdl-36137615

ABSTRACT

BACKGROUND: Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. METHODS: This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. RESULTS: On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. CONCLUSION: Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.


Subject(s)
DNA Copy Number Variations , Exome , Humans , DNA Copy Number Variations/genetics , Exome/genetics , Retrospective Studies , High-Throughput Nucleotide Sequencing/methods , Prospective Studies
5.
Nucleic Acids Res ; 49(W1): W21-W28, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34023905

ABSTRACT

With the dramatic increase of pangenomic analysis, Human geneticists have generated large amount of genomic data including millions of small variants (SNV/indel) but also thousands of structural variations (SV) mainly from next-generation sequencing and array-based techniques. While the identification of the complete SV repertoire of a patient is getting possible, the interpretation of each SV remains challenging. To help identifying human pathogenic SV, we have developed a web server dedicated to their annotation and ranking (AnnotSV) as well as their visualization and interpretation (knotAnnotSV) freely available at the following address: https://www.lbgi.fr/AnnotSV/. A large amount of annotations from >20 sources is integrated in our web server including among others genes, haploinsufficiency, triplosensitivity, regulatory elements, known pathogenic or benign genomic regions, phenotypic data. An ACMG/ClinGen compliant prioritization module allows the scoring and the ranking of SV into 5 SV classes from pathogenic to benign. Finally, the visualization interface displays the annotated SV in an interactive way including popups, search fields, filtering options, advanced colouring to highlight pathogenic SV and hyperlinks to the UCSC genome browser or other public databases. This web server is designed for diagnostic and research analysis by providing important resources to the user.


Subject(s)
Genomic Structural Variation , Software , Genome, Human , Genomics , Humans , Internet , Molecular Sequence Annotation , Phenotype , Polymorphism, Single Nucleotide
6.
Am J Hum Genet ; 103(5): 752-768, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30388402

ABSTRACT

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations creating a premature termination codon, and three subjects harbored single-nucleotide variations resulting in an inactive protein as determined using an in vitro reporter assay. All individuals presented with additional variable neurodevelopmental phenotypes, including muscular hypotonia, motor and speech delay, attention deficit disorder, autism spectrum disorder, and behavioral abnormalities. While structural brain anomalies, including dysgenesis of corpus callosum, were variable, individuals most frequently presented with macrocephaly. To determine whether macrocephaly could be a functional consequence of NFIB disruption, we analyzed a cortex-specific Nfib conditional knockout mouse model, which is postnatally viable. Utilizing magnetic resonance imaging and histology, we demonstrate that Nfib conditional knockout mice have enlargement of the cerebral cortex but preservation of overall brain structure and interhemispheric connectivity. Based on our findings, we propose that haploinsufficiency of NFIB causes ID with macrocephaly.


Subject(s)
Haploinsufficiency/genetics , Intellectual Disability/genetics , Megalencephaly/genetics , NFI Transcription Factors/genetics , Adolescent , Adult , Animals , Cerebral Cortex/pathology , Child , Child, Preschool , Codon, Nonsense/genetics , Cohort Studies , Corpus Callosum/pathology , Female , Humans , Male , Mice , Mice, Knockout , Polymorphism, Single Nucleotide/genetics , Young Adult
7.
Genet Med ; 23(6): 1137-1142, 2021 06.
Article in English | MEDLINE | ID: mdl-33564150

ABSTRACT

PURPOSE: Noninvasive prenatal screening (NIPS) using cell-free DNA has transformed prenatal care. Belgium was the first country to implement and fully reimburse NIPS as a first-tier screening test offered to all pregnant women. A consortium consisting of all Belgian genetic centers report the outcome of two years genome-wide NIPS implementation. METHODS: The performance for the common trisomies and for secondary findings was evaluated based on 153,575 genome-wide NIP tests. Furthermore, the evolution of the number of invasive tests and the incidence of Down syndrome live births was registered. RESULTS: Trisomies 21, 18, and 13 were detected in respectively 0.32%, 0.07%, and 0.06% of cases, with overall positive predictive values (PPVs) of 92.4%, 84.6%, and 43.9%. Rare autosomal trisomies and fetal segmental imbalances were detected in respectively 0.23% and 0.07% of cases with PPVs of 4.1% and 47%. The number of invasive obstetric procedures decreased by 52%. The number of trisomy 21 live births dropped to 0.04%. CONCLUSION: Expanding the scope of NIPS beyond trisomy 21 fetal screening allows the implementation of personalized genomic medicine for the obstetric population. This genome-wide NIPS approach has been embedded successfully in prenatal genetic care in Belgium and might serve as a framework for other countries offering NIPS.


Subject(s)
Chromosome Disorders , Down Syndrome , Noninvasive Prenatal Testing , Aneuploidy , Chromosome Disorders/diagnosis , Chromosome Disorders/epidemiology , Chromosome Disorders/genetics , Down Syndrome/diagnosis , Down Syndrome/epidemiology , Down Syndrome/genetics , Female , Humans , Pregnancy , Prenatal Diagnosis , Trisomy
8.
Chromosoma ; 128(1): 1-6, 2019 03.
Article in English | MEDLINE | ID: mdl-30088093

ABSTRACT

The recent discovery of a new class of massive chromosomal rearrangements, occurring during one unique cellular event and baptized "chromothripsis," deeply modifies our perception on the genesis of complex genomic rearrangements, but also, it raises the question of the potential driving role of chromothripsis in species evolution. Analyses of the etiology of chromothripsis have led to the identification of various cellular processes capable of generating chromothripsis, such as premature chromosome condensation, telomere dysfunction, abortive apoptosis, and micronucleus formation. All these causative mechanisms may occur in germlines or during early embryonic development, suggesting that chromothripsis could be an unexpected mechanism for profound genome modification. The occurrence of chromothripsis appears to be in good agreement with macroevolution models proposed as a complement to phyletic gradualism. Various cases of chromosomal speciation and short-term adaptation could be correlated to chromothripsis-mediated mechanism. The emergency of this unanticipated chaotic phenomenon may contribute to demonstrate the contribution of chromosome rearrangements to speciation process. New sequencing and bioinformatics methods can be expected to shed new light on the role of chromothripsis in evolutionary process.


Subject(s)
Biological Evolution , Chromothripsis , Genome , Selection, Genetic , Animals , Apoptosis/genetics , Computational Biology/instrumentation , Computational Biology/methods , Embryo, Mammalian , Germ-Line Mutation , High-Throughput Nucleotide Sequencing/methods , Humans , Micronuclei, Chromosome-Defective , Telomere/metabolism , Telomere/pathology
9.
Genet Med ; 22(3): 547-556, 2020 03.
Article in English | MEDLINE | ID: mdl-31649276

ABSTRACT

PURPOSE: Treacher Collins syndrome (TCS) is a rare autosomal dominant mandibulofacial dysostosis, with a prevalence of 0.2-1/10,000. Features include bilateral and symmetrical malar and mandibular hypoplasia and facial abnormalities due to abnormal neural crest cell (NCC) migration and differentiation. To date, three genes have been identified: TCOF1, POLR1C, and POLR1D. Despite a large number of patients with a molecular diagnosis, some remain without a known genetic anomaly. METHODS: We performed exome sequencing for four individuals with TCS but who were negative for pathogenic variants in the known causative genes. The effect of the pathogenic variants was investigated in zebrafish. RESULTS: We identified three novel pathogenic variants in POLR1B. Knockdown of polr1b in zebrafish induced an abnormal craniofacial phenotype mimicking TCS that was associated with altered ribosomal gene expression, massive p53-associated cellular apoptosis in the neuroepithelium, and reduced number of NCC derivatives. CONCLUSION: Pathogenic variants in the RNA polymerase I subunit POLR1B might induce massive p53-dependent apoptosis in a restricted neuroepithelium area, altering NCC migration and causing cranioskeletal malformations. We identify POLR1B as a new causative gene responsible for a novel TCS syndrome (TCS4) and establish a novel experimental model in zebrafish to study POLR1B-related TCS.


Subject(s)
Craniofacial Abnormalities/genetics , DNA-Directed RNA Polymerases/genetics , Mandibulofacial Dysostosis/genetics , Nuclear Proteins/genetics , Phosphoproteins/genetics , Animals , Apoptosis/genetics , Cell Differentiation/genetics , Cell Movement/genetics , Craniofacial Abnormalities/pathology , Genetic Predisposition to Disease , Humans , Mandibulofacial Dysostosis/pathology , Mutation , Neural Crest/abnormalities , Neural Crest/pathology , Tumor Suppressor Protein p53/genetics , Exome Sequencing , Zebrafish/genetics
10.
Genet Med ; 22(1): 181-188, 2020 01.
Article in English | MEDLINE | ID: mdl-31363182

ABSTRACT

PURPOSE: Kabuki syndrome (KS) (OMIM 147920 and 300867) is a rare genetic disorder characterized by specific facial features, intellectual disability, and various malformations. Immunopathological manifestations seem prevalent and increase the morbimortality. To assess the frequency and severity of the manifestations, we measured the prevalence of immunopathological manifestations as well as genotype-phenotype correlations in KS individuals from a registry. METHODS: Data were for 177 KS individuals with KDM6A or KMT2D pathogenic variants. Questionnaires to clinicians were used to assess the presence of immunodeficiency and autoimmune diseases both on a clinical and biological basis. RESULTS: Overall, 44.1% (78/177) and 58.2% (46/79) of KS individuals exhibited infection susceptibility and hypogammaglobulinemia, respectively; 13.6% (24/177) had autoimmune disease (AID; 25.6% [11/43] in adults), 5.6% (10/177) with ≥2 AID manifestations. The most frequent AID manifestations were immune thrombocytopenic purpura (7.3% [13/177]) and autoimmune hemolytic anemia (4.0% [7/177]). Among nonhematological manifestations, vitiligo was frequent. Immune thrombocytopenic purpura was frequent with missense versus other types of variants (p = 0.027). CONCLUSION: The high prevalence of immunopathological manifestations in KS demonstrates the importance of systematic screening and efficient preventive management of these treatable and sometimes life-threatening conditions.


Subject(s)
Autoimmune Diseases/epidemiology , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/complications , Histone Demethylases/genetics , Neoplasm Proteins/genetics , Primary Immunodeficiency Diseases/epidemiology , Vestibular Diseases/complications , Abnormalities, Multiple/genetics , Abnormalities, Multiple/immunology , Adolescent , Adult , Aged , Child , Child, Preschool , Female , Genetic Association Studies , Hematologic Diseases/genetics , Hematologic Diseases/immunology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Mutation , Prevalence , Registries , Severity of Illness Index , Vestibular Diseases/genetics , Vestibular Diseases/immunology , Young Adult
11.
Genet Med ; 22(3): 538-546, 2020 03.
Article in English | MEDLINE | ID: mdl-31723249

ABSTRACT

PURPOSE: Intellectual disability (ID) and autism spectrum disorder (ASD) are genetically heterogeneous neurodevelopmental disorders. We sought to delineate the clinical, molecular, and neuroimaging spectrum of a novel neurodevelopmental disorder caused by variants in the zinc finger protein 292 gene (ZNF292). METHODS: We ascertained a cohort of 28 families with ID due to putatively pathogenic ZNF292 variants that were identified via targeted and exome sequencing. Available data were analyzed to characterize the canonical phenotype and examine genotype-phenotype relationships. RESULTS: Probands presented with ID as well as a spectrum of neurodevelopmental features including ASD, among others. All ZNF292 variants were de novo, except in one family with dominant inheritance. ZNF292 encodes a highly conserved zinc finger protein that acts as a transcription factor and is highly expressed in the developing human brain supporting its critical role in neurodevelopment. CONCLUSION: De novo and dominantly inherited variants in ZNF292 are associated with a range of neurodevelopmental features including ID and ASD. The clinical spectrum is broad, and most individuals present with mild to moderate ID with or without other syndromic features. Our results suggest that variants in ZNF292 are likely a recurrent cause of a neurodevelopmental disorder manifesting as ID with or without ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Carrier Proteins/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/pathology , Child , Child, Preschool , Female , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/pathology , Neuroimaging/methods , Exome Sequencing/methods
12.
Acta Obstet Gynecol Scand ; 99(6): 722-730, 2020 06.
Article in English | MEDLINE | ID: mdl-32176318

ABSTRACT

INTRODUCTION: Noninvasive prenatal testing (NIPT) using cell-free fetal DNA has increasingly been adopted as a screening tool for fetal aneuploidies. Several studies have discussed benefits and limitations of NIPT compared with both ultrasound and invasive procedures, but in spite of some shortcomings NIPT has become extensively used within the last 5 years. This study aims to describe the current use of NIPT in Europe, Australia and the USA. MATERIAL AND METHODS: We conducted a survey to describe the current use of NIPT. Colleagues filled in a simple email-based questionnaire on NIPT in their own country, providing information on (a) access to NIPT, (b) NIPT's chromosomal coverage, (c) financial coverage of NIPT for the patient and (d) the proportion of women using NIPT in pregnancy. Some data are best clinical estimates, due to a lack of national data. RESULTS: In Europe, 14 countries have adopted NIPT into a national policy/program. Two countries (Belgium and the Netherlands) offer NIPT for all pregnant women, whereas most other European countries have implemented NIPT as an offer for higher risk women after first trimester screening. In Australia, either combined first trimester screening (cFTS) or NIPT is used as a primary prenatal screening test. In the USA, there are no national consensus policies on the use of NIPT; however, NIPT is widely implemented. In most European countries offering NIPT, the proportion of women using NIPT is well below 25%. In the Netherlands, Austria, Italy, Spain and most Australian and American States, 25%-50% of women have NIPT performed and in Belgium testing is above 75%. In most countries, NIPT reports on trisomy 13, 18 and 21, and often also on sex chromosome aneuploidies. Only in Belgium, the Netherlands, Lithuania, Greece, Cyprus and Italy is NIPT offered predominantly as a genome-wide test (including some microdeletions or a whole genome coverage). CONCLUSIONS: Noninvasive prenatal testing has been widely adopted throughout Europe, Australia and the USA, but only a few countries/states have a national policy on the use of NIPT. The variation in NIPT utilization is considerable.


Subject(s)
Noninvasive Prenatal Testing/statistics & numerical data , Aneuploidy , Australia , Europe , Female , Health Policy , Humans , Pregnancy , Prenatal Diagnosis , Sex Chromosomes , Surveys and Questionnaires , Trisomy , United States
13.
Hum Reprod ; 33(8): 1381-1387, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30325427

ABSTRACT

Chromoanasynthesis has been described as a novel cause of massive constitutional chromosomal rearrangements. Based on DNA replication machinery defects, chromoanasynthesis is characterized by the presence of chromosomal duplications and triplications locally clustered on one single chromosome, or a few chromosomes, associated with various other types of structural rearrangements. Two distinct mechanisms have been described for the formation of these chaotic genomic disorders, i.e. the fork stalling and template switching and the microhomology-mediated break-induced replication. Micronucleus-based processes have been evidenced as a causative mechanism, thus, highlighting the close connection between segregation errors and structural rearrangements. Accumulating data indicate that chromoanasynthesis is operating in human germline cells and during early embryonic development. The development of new tools for quantifying chromoanasynthesis events should provide further insight into the impact of this catastrophic cellular phenomenon in human reproduction.


Subject(s)
Chromosomal Instability/physiology , Chromosome Duplication/physiology , Chromothripsis , Genome, Human/genetics , Germ Cells/physiology , Female , Gene Rearrangement , Humans , Male , Pregnancy , Reproductive Techniques, Assisted
14.
Hum Mutat ; 37(1): 7-15, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26443184

ABSTRACT

Mutations in the COL2A1 gene cause a spectrum of rare autosomal-dominant conditions characterized by skeletal dysplasia, short stature, and sensorial defects. An early diagnosis is critical to providing relevant patient care and follow-up, and genetic counseling to affected families. There are no recent exhaustive descriptions of the causal mutations in the literature. Here, we provide a review of COL2A1 mutations extracted from the Leiden Open Variation Database (LOVD) that we updated with data from PubMed and our own patients. Over 700 patients were recorded, harboring 415 different mutations. One-third of the mutations are dominant-negative mutations that affect the glycine residue in the G-X-Y repeats of the alpha 1 chain. These mutations disrupt the collagen triple helix and are common in achondrogenesis type II and hypochondrogenesis. The mutations resulting in a premature stop codon are found in less severe phenotypes such as Stickler syndrome. The p.(Arg275Cys) substitution is found in all patients with COL2A1-associated Czech dysplasia. LOVD-COL2A1 provides support and potential collaborative material for scientific and clinical projects aimed at elucidating phenotype-genotype correlation and differential diagnosis in patients with type II collagenopathies.


Subject(s)
Collagen Type II/genetics , Genetic Association Studies , Mutation , Osteochondrodysplasias/genetics , Databases, Genetic , Genes, Dominant , Genotype , Humans , Osteochondrodysplasias/diagnosis , Phenotype
15.
Hum Mutat ; 37(9): 847-64, 2016 09.
Article in English | MEDLINE | ID: mdl-27302555

ABSTRACT

Kabuki syndrome (KS) is a rare but recognizable condition that consists of a characteristic face, short stature, various organ malformations, and a variable degree of intellectual disability. Mutations in KMT2D have been identified as the main cause for KS, whereas mutations in KDM6A are a much less frequent cause. Here, we report a mutation screening in a case series of 347 unpublished patients, in which we identified 12 novel KDM6A mutations (KS type 2) and 208 mutations in KMT2D (KS type 1), 132 of them novel. Two of the KDM6A mutations were maternally inherited and nine were shown to be de novo. We give an up-to-date overview of all published mutations for the two KS genes and point out possible mutation hot spots and strategies for molecular genetic testing. We also report the clinical details for 11 patients with KS type 2, summarize the published clinical information, specifically with a focus on the less well-defined X-linked KS type 2, and comment on phenotype-genotype correlations as well as sex-specific phenotypic differences. Finally, we also discuss a possible role of KDM6A in Kabuki-like Turner syndrome and report a mutation screening of KDM6C (UTY) in male KS patients.


Subject(s)
Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Hematologic Diseases/genetics , Histone Demethylases/genetics , Mutation , Neoplasm Proteins/genetics , Nuclear Proteins/genetics , Vestibular Diseases/genetics , Abnormalities, Multiple/pathology , Face/pathology , Female , Genes, X-Linked , Genetic Predisposition to Disease , Hematologic Diseases/pathology , Humans , Male , Maternal Inheritance , Noonan Syndrome/genetics , Sequence Analysis, DNA , Vestibular Diseases/pathology
16.
Am J Med Genet A ; 170(11): 2847-2859, 2016 11.
Article in English | MEDLINE | ID: mdl-27605097

ABSTRACT

KBG syndrome, due to ANKRD11 alteration is characterized by developmental delay, short stature, dysmorphic facial features, and skeletal anomalies. We report a clinical and molecular study of 39 patients affected by KBG syndrome. Among them, 19 were diagnosed after the detection of a 16q24.3 deletion encompassing the ANKRD11 gene by array CGH. In the 20 remaining patients, the clinical suspicion was confirmed by the identification of an ANKRD11 mutation by direct sequencing. We present arguments to modulate the previously reported diagnostic criteria. Macrodontia should no longer be considered a mandatory feature. KBG syndrome is compatible with autonomous life in adulthood. Autism is less frequent than previously reported. We also describe new clinical findings with a potential impact on the follow-up of patients, such as precocious puberty and a case of malignancy. Most deletions remove the 5'end or the entire coding region but never extend toward 16q telomere suggesting that distal 16q deletion could be lethal. Although ANKRD11 appears to be a major gene associated with intellectual disability, KBG syndrome remains under-diagnosed. NGS-based approaches for sequencing will improve the detection of point mutations in this gene. Broad knowledge of the clinical phenotype is essential for a correct interpretation of the molecular results. © 2016 Wiley Periodicals, Inc.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/diagnosis , Bone Diseases, Developmental/genetics , Genetic Association Studies , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mutation , Repressor Proteins/genetics , Tooth Abnormalities/diagnosis , Tooth Abnormalities/genetics , Adolescent , Adult , Aged , Alleles , Amino Acid Substitution , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 16 , Comparative Genomic Hybridization , Facies , Female , Humans , Infant , Male , Middle Aged , Phenotype , Retrospective Studies , Young Adult
17.
Am J Med Genet A ; 167A(12): 3031-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26333717

ABSTRACT

Intellectual disability (ID) is a frequent feature but is highly clinically and genetically heterogeneous. The establishment of the precise diagnosis in patients with ID is challenging due to this heterogeneity but crucial for genetic counseling and appropriate care for the patients. Among the etiologies of patients with ID, apparently balanced de novo rearrangements represent 0.6%. Several mechanisms explain the ID in patients with apparently balanced de novo rearrangement. Among them, disruption of a disease gene at the breakpoint, is frequently evoked. In this context, technologies recently developed are used to characterize precisely such chromosomal rearrangements. Here, we report the case of a boy with ID, facial features and autistic behavior who is carrying a de novo balanced reciprocal translocation t(3;7)(q11.2;q11.22)dn. Using microarray analysis, array painting (AP) technology combined with molecular study, we have identified the interruption of the autism susceptibility candidate 2 gene (AUTS2) and EPH receptor A6 gene (EPHA6). We consider that the disruption of AUTS2 explains the phenotype of the patient; the exact role of EPHA6 in human pathology is not well defined. Based on the observation of recurrent germinal and somatic translocations involving AUTS2 and the molecular environment content, we put forward the hypothesis that the likely chromosomal mechanism responsible for the translocation could be due either to replicative stress or to recombination-based mechanisms.


Subject(s)
Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Proteins/genetics , Receptor, EphA6/genetics , Translocation, Genetic , Base Sequence , Child , Chromosome Painting/methods , Chromosomes, Human, Pair 3 , Chromosomes, Human, Pair 7 , Cytoskeletal Proteins , Female , Humans , Male , Molecular Sequence Data , Pregnancy , Transcription Factors
18.
Med Sci (Paris) ; 30(3): 266-73, 2014 Mar.
Article in French | MEDLINE | ID: mdl-24685217

ABSTRACT

The recent discovery of a new kind of massive chromosomal rearrangement in different cancers, named "chromothripsis" (chromo for chromosome, thripsis for shattering) has questioned the established models for a progressive development of tumors. Indeed, this phenomenon, which is characterized by the shattering of one (or a few) chromosome segments followed by a random reassembly of the fragments generated, occurs during one unique cellular event. The same phenomenon was identified in constitutional genetics in patients with various developmental pathologies, indicating that chromothripsis also occurs at the germ cell level. Diverse situations can cause chromothripsis (radiations, telomere erosion, abortive apoptosis, etc.), and two express "repair routes" are used by the cell to chaotically reorganise the chromosomal regions concerned: non-homologous end-joining and repair by replicative stress. The in-depth analysis of the DNA sequences involved in the regions of chromothripsis leads to a better understanding of the molecular basis of chromothripsis and also helps to better apprehend its unexpected role in the development of constitutional pathologies and the progression of cancers.


Subject(s)
Chromosome Aberrations , DNA Fragmentation , Apoptosis/genetics , Cytogenetic Analysis , DNA End-Joining Repair/physiology , Humans , Neoplasms/genetics
19.
Med Sci (Paris) ; 30(1): 55-63, 2014 Jan.
Article in French | MEDLINE | ID: mdl-24472460

ABSTRACT

Complex chromosomal rearrangements (CCR) include diverse structural anomalies leading to complex karyotypes which are difficult to interpret. Although karyotype analysis has been able to identify a large number of these rearrangements and to distinguish de novo and familial events, it is the advent of molecular cytogenetic and sequence analysis techniques which have led to an understanding of the molecular mechanisms underlying the formation of CCR. The diversity and high level of complexity inherent to CCR raises questions about their origin, their ties to chromosome instability and their impact in pathology. Today it is possible to precisely characterize CCR and to offer carriers sophisticated diagnostic techniques, such as preimplantation diagnosis. However, the meiotic segregation of these rearrangements remains very complex.


Subject(s)
Chromosomal Instability/physiology , Chromosome Aberrations , Translocation, Genetic/physiology , Animals , Chromosome Aberrations/classification , Chromosome Aberrations/statistics & numerical data , Cytogenetic Analysis/methods , Cytogenetic Analysis/trends , Fertility/genetics , Humans
20.
Cells ; 12(16)2023 08 21.
Article in English | MEDLINE | ID: mdl-37626925

ABSTRACT

The factors influencing mother-to-child cell trafficking and persistence over children's lives have yet to be established. The quantification of maternal microchimerism was previously reported through HLA-based approaches, which introduced bias regarding the tolerogenic environment. We aimed to identify cells of maternal origin irrespective of the HLA repertoire and to ascertain the determinants of microchimeric cells. This case-control study enrolled 40 male infants attending pediatric surgery from January 2022 to October 2022. Female cells were quantified in infants' tonsil tissue by using cytogenetic fluorescent in situ hybridization (FISH) coupled with optimized automated microscopy. Out of the 40 infants, half (47.4%) had been breastfed for more than one month, a quarter for less a month, and 10 children (26.3%) were never breastfed. XX cells were observed in male tonsils in two-thirds of participants at a median density of 5 cells per 100,000 cells. In univariate analyses, child age was negatively associated with a high female cell density. In exploratory multivariate analyses, previous breastfeeding is a likely determinant of the persistence of these cells in the host, as well as the rank among siblings. Part of the benefit of breastmilk for child health may therefore be driven by breastfeeding-related microchimerism.


Subject(s)
Infectious Disease Transmission, Vertical , Palatine Tonsil , Female , Male , Humans , Case-Control Studies , In Situ Hybridization, Fluorescence , Milk, Human
SELECTION OF CITATIONS
SEARCH DETAIL