Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 258
Filter
Add more filters

Publication year range
1.
Cell ; 187(15): 4043-4060.e30, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38878778

ABSTRACT

Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.


Subject(s)
Inflammation , Membrane Proteins , Multiple Sclerosis , Neurons , Animals , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Membrane Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Mice , Humans , Inflammation/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Signal Transduction , Autophagy , Mice, Inbred C57BL , Glutamic Acid/metabolism , Ferroptosis , Disease Models, Animal , Female , Male
2.
Immunity ; 54(7): 1594-1610.e11, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34174183

ABSTRACT

COVID-19 can cause severe neurological symptoms, but the underlying pathophysiological mechanisms are unclear. Here, we interrogated the brain stems and olfactory bulbs in postmortem patients who had COVID-19 using imaging mass cytometry to understand the local immune response at a spatially resolved, high-dimensional, single-cell level and compared their immune map to non-COVID respiratory failure, multiple sclerosis, and control patients. We observed substantial immune activation in the central nervous system with pronounced neuropathology (astrocytosis, axonal damage, and blood-brain-barrier leakage) and detected viral antigen in ACE2-receptor-positive cells enriched in the vascular compartment. Microglial nodules and the perivascular compartment represented COVID-19-specific, microanatomic-immune niches with context-specific cellular interactions enriched for activated CD8+ T cells. Altered brain T-cell-microglial interactions were linked to clinical measures of systemic inflammation and disturbed hemostasis. This study identifies profound neuroinflammation with activation of innate and adaptive immune cells as correlates of COVID-19 neuropathology, with implications for potential therapeutic strategies.


Subject(s)
Brain/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Microglia/immunology , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/metabolism , Brain/pathology , CD8-Positive T-Lymphocytes/metabolism , COVID-19/pathology , Cell Communication , Central Nervous System/immunology , Central Nervous System/metabolism , Central Nervous System/pathology , Humans , Immune Checkpoint Proteins/metabolism , Inflammation , Lymphocyte Activation , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Olfactory Bulb/immunology , Olfactory Bulb/metabolism , Olfactory Bulb/pathology , Respiratory Insufficiency/immunology , Respiratory Insufficiency/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
3.
Cell ; 157(3): 636-50, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24766809

ABSTRACT

CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.


Subject(s)
Central Nervous System Diseases/genetics , Mutation, Missense , Nuclear Proteins/metabolism , Peripheral Nervous System Diseases/genetics , Phosphotransferases/metabolism , RNA, Transfer/metabolism , Transcription Factors/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Animals , Central Nervous System Diseases/pathology , Cerebrum/pathology , Child, Preschool , Endoribonucleases/metabolism , Female , Fibroblasts/metabolism , Humans , Infant , Male , Mice , Mice, Inbred CBA , Microcephaly/genetics , Peripheral Nervous System Diseases/pathology , RNA, Transfer/genetics , RNA-Binding Proteins
4.
N Engl J Med ; 390(23): 2156-2164, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38899694

ABSTRACT

BACKGROUND: Variants in APOE and PSEN1 (encoding apolipoprotein E and presenilin 1, respectively) alter the risk of Alzheimer's disease. We previously reported a delay of cognitive impairment in a person with autosomal dominant Alzheimer's disease caused by the PSEN1 E280A variant who also had two copies of the apolipoprotein E3 Christchurch variant (APOE3 Ch). Heterozygosity for the APOE3 Ch variant may influence the age at which the onset of cognitive impairment occurs. We assessed this hypothesis in a population in which the PSEN1 E280A variant is prevalent. METHODS: We analyzed data from 27 participants with one copy of the APOE3 Ch variant among 1077 carriers of the PSEN1 E280A variant in a kindred from Antioquia, Colombia, to estimate the age at the onset of cognitive impairment and dementia in this group as compared with persons without the APOE3 Ch variant. Two participants underwent brain imaging, and autopsy was performed in four participants. RESULTS: Among carriers of PSEN1 E280A who were heterozygous for the APOE3 Ch variant, the median age at the onset of cognitive impairment was 52 years (95% confidence interval [CI], 51 to 58), in contrast to a matched group of PSEN1 E280A carriers without the APOE3 Ch variant, among whom the median age at the onset was 47 years (95% CI, 47 to 49). In two participants with the APOE3 Ch and PSEN1 E280A variants who underwent brain imaging, 18F-fluorodeoxyglucose positron-emission tomographic (PET) imaging showed relatively preserved metabolic activity in areas typically involved in Alzheimer's disease. In one of these participants, who underwent 18F-flortaucipir PET imaging, tau findings were limited as compared with persons with PSEN1 E280A in whom cognitive impairment occurred at the typical age in this kindred. Four studies of autopsy material obtained from persons with the APOE3 Ch and PSEN1 E280A variants showed fewer vascular amyloid pathologic features than were seen in material obtained from persons who had the PSEN1 E280A variant but not the APOE3 Ch variant. CONCLUSIONS: Clinical data supported a delayed onset of cognitive impairment in persons who were heterozygous for the APOE3 Ch variant in a kindred with a high prevalence of autosomal dominant Alzheimer's disease. (Funded by Good Ventures and others.).


Subject(s)
Alzheimer Disease , Apolipoprotein E3 , Presenilin-1 , Adult , Aged , Female , Humans , Male , Middle Aged , Age of Onset , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E3/genetics , Brain/pathology , Brain/diagnostic imaging , Colombia , Family , Genes, Dominant , Heterozygote , Positron-Emission Tomography , Presenilin-1/genetics , Retrospective Studies
5.
Immunity ; 47(3): 566-581.e9, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28930663

ABSTRACT

Microglia play a pivotal role in the maintenance of brain homeostasis but lose homeostatic function during neurodegenerative disorders. We identified a specific apolipoprotein E (APOE)-dependent molecular signature in microglia from models of amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), and Alzheimer's disease (AD) and in microglia surrounding neuritic ß-amyloid (Aß)-plaques in the brains of people with AD. The APOE pathway mediated a switch from a homeostatic to a neurodegenerative microglia phenotype after phagocytosis of apoptotic neurons. TREM2 (triggering receptor expressed on myeloid cells 2) induced APOE signaling, and targeting the TREM2-APOE pathway restored the homeostatic signature of microglia in ALS and AD mouse models and prevented neuronal loss in an acute model of neurodegeneration. APOE-mediated neurodegenerative microglia had lost their tolerogenic function. Our work identifies the TREM2-APOE pathway as a major regulator of microglial functional phenotype in neurodegenerative diseases and serves as a novel target that could aid in the restoration of homeostatic microglia.


Subject(s)
Apolipoproteins E/metabolism , Membrane Glycoproteins/metabolism , Microglia/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Receptors, Immunologic/metabolism , Signal Transduction , Transcriptome , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Apoptosis/genetics , Apoptosis/immunology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Cluster Analysis , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental , Female , Gene Expression Profiling , Gene Expression Regulation , Gene Targeting , Humans , Immune Tolerance , Mice , Mice, Knockout , Mice, Transgenic , Microglia/immunology , Monocytes/immunology , Monocytes/metabolism , Neurodegenerative Diseases/immunology , Neurons/metabolism , Phagocytosis/genetics , Phagocytosis/immunology , Phenotype , Plaque, Amyloid/metabolism , Plaque, Amyloid/pathology , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Transforming Growth Factor beta/metabolism
6.
Proc Natl Acad Sci U S A ; 120(22): e2217232120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37220275

ABSTRACT

As severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infections have been shown to affect the central nervous system, the investigation of associated alterations of brain structure and neuropsychological sequelae is crucial to help address future health care needs. Therefore, we performed a comprehensive neuroimaging and neuropsychological assessment of 223 nonvaccinated individuals recovered from a mild to moderate SARS-CoV-2 infection (100 female/123 male, age [years], mean ± SD, 55.54 ± 7.07; median 9.7 mo after infection) in comparison with 223 matched controls (93 female/130 male, 55.74 ± 6.60) within the framework of the Hamburg City Health Study. Primary study outcomes were advanced diffusion MRI measures of white matter microstructure, cortical thickness, white matter hyperintensity load, and neuropsychological test scores. Among all 11 MRI markers tested, significant differences were found in global measures of mean diffusivity (MD) and extracellular free water which were elevated in the white matter of post-SARS-CoV-2 individuals compared to matched controls (free water: 0.148 ± 0.018 vs. 0.142 ± 0.017, P < 0.001; MD [10-3 mm2/s]: 0.747 ± 0.021 vs. 0.740 ± 0.020, P < 0.001). Group classification accuracy based on diffusion imaging markers was up to 80%. Neuropsychological test scores did not significantly differ between groups. Collectively, our findings suggest that subtle changes in white matter extracellular water content last beyond the acute infection with SARS-CoV-2. However, in our sample, a mild to moderate SARS-CoV-2 infection was not associated with neuropsychological deficits, significant changes in cortical structure, or vascular lesions several months after recovery. External validation of our findings and longitudinal follow-up investigations are needed.


Subject(s)
COVID-19 , White Matter , Female , Male , Humans , SARS-CoV-2 , Brain , Neuroimaging , Neuropsychological Tests , Water
7.
J Neurosci ; 44(13)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38050126

ABSTRACT

Dynamic microtubules critically regulate synaptic functions, but the role of microtubule severing in these processes is barely understood. Katanin is a neuronally expressed microtubule-severing complex regulating microtubule number and length in cell division or neurogenesis; however, its potential role in synaptic functions has remained unknown. Studying mice from both sexes, we found that katanin is abundant in neuronal dendrites and can be detected at individual excitatory spine synapses. Overexpression of a dominant-negative ATPase-deficient katanin subunit to functionally inhibit severing alters the growth of microtubules in dendrites, specifically at premature but not mature neuronal stages without affecting spine density. Notably, interference with katanin function prevented structural spine remodeling following single synapse glutamate uncaging and significantly affected the potentiation of AMPA-receptor-mediated excitatory currents after chemical induction of long-term potentiation. Furthermore, katanin inhibition reduced the invasion of microtubules into fully developed spines. Our data demonstrate that katanin-mediated microtubule severing regulates structural and functional plasticity at synaptic sites.


Subject(s)
Microtubules , Neurons , Animals , Mice , Katanin/genetics , Katanin/metabolism , Microtubules/metabolism , Neurons/physiology , Neurogenesis , Neuronal Plasticity
8.
Brain ; 147(1): 240-254, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37669322

ABSTRACT

A common pathological denominator of various neurodegenerative diseases is the accumulation of protein aggregates. Neurotoxic effects are caused by a loss of the physiological activity of the aggregating protein and/or a gain of toxic function of the misfolded protein conformers. In transmissible spongiform encephalopathies or prion diseases, neurodegeneration is caused by aberrantly folded isoforms of the prion protein (PrP). However, it is poorly understood how pathogenic PrP conformers interfere with neuronal viability. Employing in vitro approaches, cell culture, animal models and patients' brain samples, we show that misfolded PrP can induce aggregation and inactivation of TAR DNA-binding protein-43 (TDP-43). Purified PrP aggregates interact with TDP-43 in vitro and in cells and induce the conversion of soluble TDP-43 into non-dynamic protein assemblies. Similarly, mislocalized PrP conformers in the cytosol bind to and sequester TDP-43 in cytosolic aggregates. As a consequence, TDP-43-dependent splicing activity in the nucleus is significantly decreased, leading to altered protein expression in cells with cytosolic PrP aggregates. Finally, we present evidence for cytosolic TDP-43 aggregates in neurons of transgenic flies expressing mammalian PrP and Creutzfeldt-Jakob disease patients. Our study identified a novel mechanism of how aberrant PrP conformers impair physiological pathways by cross-seeding.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Animals , Humans , DNA-Binding Proteins , Mammals/metabolism , Prion Diseases/metabolism , Prion Proteins , Prions/metabolism
9.
Cell Mol Life Sci ; 81(1): 139, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480559

ABSTRACT

Neurotoxic amyloid-ß (Aß) peptides cause neurodegeneration in Alzheimer's disease (AD) patients' brains. They are released upon proteolytic processing of the amyloid precursor protein (APP) extracellularly at the ß-secretase site and intramembranously at the γ-secretase site. Several AD mouse models were developed to conduct respective research in vivo. Most of these classical models overexpress human APP with mutations driving AD-associated pathogenic APP processing. However, the resulting pattern of Aß species in the mouse brains differs from those observed in AD patients' brains. Particularly mutations proximal to the ß-secretase cleavage site (e.g., the so-called Swedish APP (APPswe) fostering Aß1-x formation) lead to artificial Aß production, as N-terminally truncated Aß peptides are hardly present in these mouse brains. Meprin ß is an alternative ß-secretase upregulated in brains of AD patients and capable of generating N-terminally truncated Aß2-x peptides. Therefore, we aimed to generate a mouse model for the production of so far underestimated Aß2-x peptides by conditionally overexpressing meprin ß in astrocytes. We chose astrocytes as meprin ß was detected in this cell type in close proximity to Aß plaques in AD patients' brains. The meprin ß-overexpressing mice showed elevated amyloidogenic APP processing detected with a newly generated neo-epitope-specific antibody. Furthermore, we observed elevated Aß production from endogenous APP as well as AD-related behavior changes (hyperlocomotion and deficits in spatial memory). The novel mouse model as well as the established tools and methods will be helpful to further characterize APP cleavage and the impact of different Aß species in future studies.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Mice , Animals , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Astrocytes/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Proteolysis , Brain/metabolism
10.
J Med Virol ; 96(7): e29811, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011825

ABSTRACT

The recent outbreak of monkeypox virus (MPXV) was unprecedented in its size and distribution. Those living with uncontrolled HIV and low CD4 T cell counts might develop a fulminant clinical mpox course with increased mortality, secondary infections, and necrotizing lesions. Fatal cases display a high and widespread MPXV tissue burden. The underlying pathomechanisms are not fully understood. We report here the pathological findings of an MPXV-driven abscess in gastrocnemius muscle requiring surgery in an immunocompromised patient with severe mpox. Presence of virus particles and infectivity were confirmed by electron microscopy, expansion microscopy, and virus culture, respectively. MPXV tissue distribution by immunohistochemistry (IHC) showed a necrotic core with infection of different cell types. In contrast, at the lesion rim fibroblasts were mainly infected. Immune cells were almost absent in the necrotic core, but were abundant at the infection rim and predominantly macrophages. Further, we detected high amounts of alternatively activated GPNMB+-macrophages at the lesion border. Of note, macrophages only rarely colocalized with virus-infected cells. Insufficient clearance of infected cells and infection of lesion-associated fibroblasts sustained by the abundance of profibrotic macrophages might lead to the coalescing of lesions and the severe and persistent clinical mpox course observed in immunocompromised patients.


Subject(s)
Immunocompromised Host , Monkeypox virus , Mpox (monkeypox) , Muscle, Skeletal , Humans , Muscle, Skeletal/virology , Muscle, Skeletal/pathology , Muscle, Skeletal/immunology , Mpox (monkeypox)/virology , Mpox (monkeypox)/immunology , Monkeypox virus/immunology , Male , Macrophages/immunology , Macrophages/virology , Fibroblasts/virology , Fibroblasts/immunology , Immunohistochemistry , Abscess/immunology , Abscess/virology , Abscess/pathology , Middle Aged
11.
Acta Neuropathol ; 147(1): 16, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228887

ABSTRACT

Pituitary neuroendocrine tumors (PitNETs) are classified according to cell lineage, which requires immunohistochemistry for adenohypophyseal hormones and the transcription factors (TFs) PIT1, SF1, and TPIT. According to the current WHO 2022 classification, PitNETs with co-expression of multiple TFs are termed "plurihormonal". Previously, PIT1/SF1 co-expression was prevailingly reported in PitNETs, which otherwise correspond to the somatotroph lineage. However, little is known about such tumors and the WHO classification has not recognized their significance. We compiled an in-house case series of 100 tumors, previously diagnosed as somatotroph PitNETs. Following TF staining, histopathological features associated with PIT1/SF1 co-expression were assessed. Integration of in-house and publicly available sample data allowed for a meta-analysis of SF1-associated clinicopathological and molecular features across a total of 270 somatotroph PitNETs. The majority (74%, 52/70) of our densely granulated somatotroph PitNETs (DGST) unequivocally co-expressed PIT1 and SF1 (DGST-PIT1/SF1). None (0%, 0/30) of our sparsely granulated somatotroph PitNETs (SGST) stained positive for SF1 (SGST-PIT1). Among DGST, PIT1/SF1 co-expression was significantly associated with scarce FSH/LH expression and fewer fibrous bodies compared to DGST-PIT1. Integrated molecular analyses including publicly available samples confirmed that DGST-PIT1/SF1, DGST-PIT1 and SGST-PIT1 represent distinct tumor subtypes. Clinicopathological meta-analyses indicated that DGST-PIT1 respond more favorably towards treatment with somatostatin analogs compared to DGST-PIT1/SF1, while both these subtypes show an overall less aggressive clinical course than SGST-PIT1. In this study, we spotlight that DGST with co-expression of PIT1 and SF1 represent a common, yet underrecognized, distinct PitNET subtype. Our study questions the rationale of generally classifying such tumors as "plurihormonal", and calls for a refinement of the WHO classification. We propose the term "somatogonadotroph PitNET".


Subject(s)
Adenoma , Neuroendocrine Tumors , Pituitary Neoplasms , Humans , Cell Lineage , Neuroendocrine Tumors/genetics , Pituitary Neoplasms/genetics , Transcription Factors , Steroidogenic Factor 1/genetics , Steroidogenic Factor 1/metabolism
12.
Acta Neuropathol ; 148(1): 40, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256213

ABSTRACT

H3 K27M-altered diffuse midline gliomas (DMGs) are highly malignant tumours that arise in the midline structures of the CNS. Most DMGs carry an H3 K27M-mutation in one of the genes encoding for histone H3. Recent studies suggested that epigenetic subgroups of DMGs can be distinguished based on alterations in the MAPK-signalling pathway, tumour localisation, mutant H3-gene, or overall survival (OS). However, as these parameters were studied individually, it is unclear how they collectively influence survival. Hence, we analysed dependencies between different parameters, to define novel epigenetic, clinically meaningful subgroups of DMGs. We collected a multifaceted cohort of 149 H3 K27M-mutant DMGs, also incorporating data of published cases. DMGs were included in the study if they could be clearly allocated to the spinal cord (n = 31; one patient with an additional sellar tumour), medulla (n = 20), pons (n = 64) or thalamus (n = 33), irrespective of further known characteristics. We then performed global genome-wide DNA methylation profiling and, for a subset, DNA sequencing and survival analyses. Unsupervised hierarchical clustering of DNA methylation data indicated two clusters of DMGs, i.e. subtypes DMG-A and DMG-B. These subtypes differed in mutational spectrum, tumour localisation, age at diagnosis and overall survival. DMG-A was enriched for DMGs with MAPK-mutations, medullary localisation and adult age. 13% of DMG-A had a methylated MGMT promoter. Contrarily, DMG-B was enriched for cases with TP53-mutations, PDGFRA-amplifications, pontine localisation and paediatric patients. In univariate analyses, the features enriched in DMG-B were associated with a poorer survival. However, all significant parameters tested were dependent on the cluster attribution, which had the largest effect on survival: DMG-A had a significantly better survival compared to DMG-B (p < 0.001). Hence, the subtype attribution based on two methylation clusters can be used to predict survival as it integrates different molecular and clinical parameters.


Subject(s)
Brain Neoplasms , DNA Methylation , Glioma , Histones , Mutation , Humans , Glioma/genetics , Glioma/pathology , Male , Female , Prognosis , Mutation/genetics , Adult , Histones/genetics , Adolescent , Child , Young Adult , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Child, Preschool , Middle Aged , Infant , DNA Modification Methylases/genetics , Tumor Suppressor Proteins/genetics , Cohort Studies , Aged , DNA Repair Enzymes
13.
Acta Neuropathol ; 148(1): 11, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39060438

ABSTRACT

The underlying pathogenesis of neurological sequelae in post-COVID-19 patients remains unclear. Here, we used multidimensional spatial immune phenotyping and machine learning methods on brains from initial COVID-19 survivors to identify the biological correlate associated with previous SARS-CoV-2 challenge. Compared to healthy controls, individuals with post-COVID-19 revealed a high percentage of TMEM119+P2RY12+CD68+Iba1+HLA-DR+CD11c+SCAMP2+ microglia assembled in prototypical cellular nodules. In contrast to acute SARS-CoV-2 cases, the frequency of CD8+ parenchymal T cells was reduced, suggesting an immune shift toward innate immune activation that may contribute to neurological alterations in post-COVID-19 patients.


Subject(s)
Brain , COVID-19 , Immunity, Innate , Humans , COVID-19/immunology , Immunity, Innate/immunology , Brain/immunology , Brain/pathology , Male , Female , Middle Aged , Aged , Microglia/immunology , Microglia/pathology , Adult , CD8-Positive T-Lymphocytes/immunology , SARS-CoV-2/immunology , Cicatrix/immunology , Cicatrix/pathology , Machine Learning
14.
Acta Neuropathol ; 148(1): 2, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980441

ABSTRACT

Proteolytic cell surface release ('shedding') of the prion protein (PrP), a broadly expressed GPI-anchored glycoprotein, by the metalloprotease ADAM10 impacts on neurodegenerative and other diseases in animal and in vitro models. Recent studies employing the latter also suggest shed PrP (sPrP) to be a ligand in intercellular communication and critically involved in PrP-associated physiological tasks. Although expectedly an evolutionary conserved event, and while soluble forms of PrP are present in human tissues and body fluids, for the human body neither proteolytic PrP shedding and its cleavage site nor involvement of ADAM10 or the biological relevance of this process have been demonstrated thus far. In this study, cleavage site prediction and generation (plus detailed characterization) of sPrP-specific antibodies enabled us to identify PrP cleaved at tyrosin 226 as the physiological and apparently strictly ADAM10-dependent shed form in humans. Using cell lines, neural stem cells and brain organoids, we show that shedding of human PrP can be stimulated by PrP-binding ligands without targeting the protease, which may open novel therapeutic perspectives. Site-specific antibodies directed against human sPrP also detect the shed form in brains of cattle, sheep and deer, hence in all most relevant species naturally affected by fatal and transmissible prion diseases. In human and animal prion diseases, but also in patients with Alzheimer`s disease, sPrP relocalizes from a physiological diffuse tissue pattern to intimately associate with extracellular aggregated deposits of misfolded proteins characteristic for the respective pathological condition. Findings and research tools presented here will accelerate novel insight into the roles of PrP shedding (as a process) and sPrP (as a released factor) in neurodegeneration and beyond.


Subject(s)
ADAM10 Protein , Amyloid Precursor Protein Secretases , Neurodegenerative Diseases , Humans , ADAM10 Protein/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Amyloid Precursor Protein Secretases/metabolism , Animals , Prion Proteins/metabolism , Membrane Proteins/metabolism , Brain/metabolism , Brain/pathology , Antibodies
15.
Cell Tissue Res ; 392(1): 215-234, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35084572

ABSTRACT

The prion protein (PrP) is a broadly expressed glycoprotein linked with a multitude of (suggested) biological and pathological implications. Some of these roles seem to be due to constitutively generated proteolytic fragments of the protein. Among them is a soluble PrP form, which is released from the surface of neurons and other cell types by action of the metalloprotease ADAM10 in a process termed 'shedding'. The latter aspect is the focus of this review, which aims to provide a comprehensive overview on (i) the relevance of proteolytic processing in regulating cellular PrP functions, (ii) currently described involvement of shed PrP in neurodegenerative diseases (including prion diseases and Alzheimer's disease), (iii) shed PrP's expected roles in intercellular communication in many more (patho)physiological conditions (such as stroke, cancer or immune responses), (iv) and the need for improved research tools in respective (future) studies. Deeper mechanistic insight into roles played by PrP shedding and its resulting fragment may pave the way for improved diagnostics and future therapeutic approaches in diseases of the brain and beyond.


Subject(s)
Prion Diseases , Prions , Humans , Prion Proteins/metabolism , ADAM10 Protein/metabolism , Prions/metabolism , Prion Diseases/metabolism , Prion Diseases/pathology , Brain/metabolism , Membrane Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism
16.
Acta Neuropathol ; 146(3): 387-394, 2023 09.
Article in English | MEDLINE | ID: mdl-37452829

ABSTRACT

Dysautonomia has substantially impacted acute COVID-19 severity as well as symptom burden after recovery from COVID-19 (long COVID), yet the underlying causes remain unknown. Here, we hypothesized that vagus nerves are affected in COVID-19 which might contribute to autonomic dysfunction. We performed a histopathological characterization of postmortem vagus nerves from COVID-19 patients and controls, and detected SARS-CoV-2 RNA together with inflammatory cell infiltration composed primarily of monocytes. Furthermore, we performed RNA sequencing which revealed a strong inflammatory response of neurons, endothelial cells, and Schwann cells which correlated with SARS-CoV-2 RNA load. Lastly, we screened a clinical cohort of 323 patients to detect a clinical phenotype of vagus nerve affection and found a decreased respiratory rate in non-survivors of critical COVID-19. Our data suggest that SARS-CoV-2 induces vagus nerve inflammation followed by autonomic dysfunction which contributes to critical disease courses and might contribute to dysautonomia observed in long COVID.


Subject(s)
COVID-19 , Primary Dysautonomias , Humans , COVID-19/complications , SARS-CoV-2 , Post-Acute COVID-19 Syndrome , RNA, Viral , Endothelial Cells , Inflammation , Primary Dysautonomias/etiology , Vagus Nerve
17.
Cell Mol Life Sci ; 79(3): 168, 2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35235058

ABSTRACT

ß-Site amyloid precursor protein (APP) cleaving enzyme-1 (BACE1) is the major described ß-secretase to generate Aß peptides in Alzheimer's disease (AD). However, all therapeutic attempts to block BACE1 activity and to improve AD symptoms have so far failed. A potential candidate for alternative Aß peptides generation is the metalloproteinase meprin ß, which cleaves APP predominantly at alanine in p2 and in this study we can detect an increased meprin ß expression in AD brain. Here, we report the generation of the transgenic APP/lon mouse model of AD lacking the functional Mep1b gene (APP/lon × Mep1b-/-). We examined levels of canonical and truncated Aß species using urea-SDS-PAGE, ELISA and immunohistochemistry in brains of APP/lon mouse × Mep1b-/-. Additionally, we investigated the cognitive abilities of these mice during the Morris water maze task. Aß1-40 and 1-42 levels are reduced in APP/lon mice when meprin ß is absent. Immunohistochemical staining of mouse brain sections revealed that N-terminally truncated Aß2-x peptide deposition is decreased in APP/lon × Mep1b-/- mice. Importantly, loss of meprin ß improved cognitive abilities and rescued learning behavior impairments in APP/lon mice. These observations indicate an important role of meprin ß within the amyloidogenic pathway and Aß production in vivo.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Learning , Memory Disorders/pathology , Metalloendopeptidases/deficiency , Aged , Amyloid Precursor Protein Secretases/metabolism , Animals , Astrocytes/metabolism , Brain/pathology , Crosses, Genetic , Disease Models, Animal , Female , Glial Fibrillary Acidic Protein/metabolism , Humans , Male , Metalloendopeptidases/metabolism , Mice, Knockout , Peptides/metabolism , Protein Processing, Post-Translational
18.
Am J Pathol ; 191(7): 1193-1208, 2021 07.
Article in English | MEDLINE | ID: mdl-33894177

ABSTRACT

Pulmonary fibrosis (PF) can arise from unknown causes, as in idiopathic PF, or as a consequence of infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current treatments for PF slow, but do not stop, disease progression. We report that treatment with a runt-related transcription factor 1 (RUNX1) inhibitor (Ro24-7429), previously found to be safe, although ineffective, as a Tat inhibitor in patients with HIV, robustly ameliorates lung fibrosis and inflammation in the bleomycin-induced PF mouse model. RUNX1 inhibition blunted fundamental mechanisms downstream pathologic mediators of fibrosis and inflammation, including transforming growth factor-ß1 and tumor necrosis factor-α, in cultured lung epithelial cells, fibroblasts, and vascular endothelial cells, indicating pleiotropic effects. RUNX1 inhibition also reduced the expression of angiotensin-converting enzyme 2 and FES Upstream Region (FURIN), host proteins critical for SARS-CoV-2 infection, in mice and in vitro. A subset of human lungs with SARS-CoV-2 infection overexpress RUNX1. These data suggest that RUNX1 inhibition via repurposing of Ro24-7429 may be beneficial for PF and to battle SARS-CoV-2, by reducing expression of viral mediators and by preventing respiratory complications.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Furin/metabolism , Lung/drug effects , Pulmonary Fibrosis/drug therapy , Animals , Bleomycin , Cells, Cultured , Disease Models, Animal , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Female , Lung/metabolism , Lung/pathology , Male , Mice , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Treatment Outcome
19.
Acta Neuropathol ; 144(3): 589-601, 2022 09.
Article in English | MEDLINE | ID: mdl-35838824

ABSTRACT

We describe in vivo follow-up PET imaging and postmortem findings from an autosomal dominant Alzheimer's disease (ADAD) PSEN1 E280A carrier who was also homozygous for the APOE3 Christchurch (APOE3ch) variant and was protected against Alzheimer's symptoms for almost three decades beyond the expected age of onset. We identified a distinct anatomical pattern of tau pathology with atypical accumulation in vivo and unusual postmortem regional distribution characterized by sparing in the frontal cortex and severe pathology in the occipital cortex. The frontal cortex and the hippocampus, less affected than the occipital cortex by tau pathology, contained Related Orphan Receptor B (RORB) positive neurons, homeostatic astrocytes and higher APOE expression. The occipital cortex, the only cortical region showing cerebral amyloid angiopathy (CAA), exhibited a distinctive chronic inflammatory microglial profile and lower APOE expression. Thus, the Christchurch variant may impact the distribution of tau pathology, modulate age at onset, severity, progression, and clinical presentation of ADAD, suggesting possible therapeutic strategies.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Apolipoprotein E3/genetics , Apolipoprotein E3/metabolism , Brain/pathology , Homozygote , Humans , Positron-Emission Tomography , tau Proteins/genetics , tau Proteins/metabolism
20.
Int J Legal Med ; 136(1): 193-202, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34089348

ABSTRACT

The current pandemic with Severe acute respiratory syndrome-coronavirus-2 has been taking on new dynamics since the emergence of new variants last fall, some of them spreading more rapidly. Many countries currently find themselves in a race to ramp up vaccination strategies that have been initiated and a possible third wave of the pandemic from new variants, such as the Variant of Concern-202012/01 from the B.1.1.7 lineage. Until today, many investigations in death cases of Coronavirus-disease-19 have been conducted, revealing pulmonary damage to be the predominant feature of the disease. Thereby, different degrees of macroscopic and microscopic lung damage have been reported, most of them resembling an Acute Respiratory Distress Syndrome. Far more, systemic complications of the disease such as pulmonary embolisms have been described. However, neither morphologic nor virologic findings of patients dying of the new variants have yet been reported. Here, we report on a comprehensive analysis of radiologic, morphologic, and virologic findings in a fatal case of this variant.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/virology , Fatal Outcome , Humans , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL