Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 182(5): 1198-1213.e14, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888493

ABSTRACT

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.


Subject(s)
Asian People/genetics , Mutation, Missense/genetics , Polymorphism, Single Nucleotide/genetics , White People/genetics , Genetics , Genome-Wide Association Study/methods , HEK293 Cells , Humans , Interleukin-7/genetics , Phenotype
2.
Cell ; 182(5): 1214-1231.e11, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888494

ABSTRACT

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Subject(s)
Genetic Predisposition to Disease/genetics , Multifactorial Inheritance/genetics , Female , Gene Regulatory Networks/genetics , Genome-Wide Association Study/methods , Hematopoiesis/genetics , Humans , Male , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
Mol Psychiatry ; 25(10): 2392-2409, 2020 10.
Article in English | MEDLINE | ID: mdl-30617275

ABSTRACT

Smoking is a major heritable and modifiable risk factor for many diseases, including cancer, common respiratory disorders and cardiovascular diseases. Fourteen genetic loci have previously been associated with smoking behaviour-related traits. We tested up to 235,116 single nucleotide variants (SNVs) on the exome-array for association with smoking initiation, cigarettes per day, pack-years, and smoking cessation in a fixed effects meta-analysis of up to 61 studies (up to 346,813 participants). In a subset of 112,811 participants, a further one million SNVs were also genotyped and tested for association with the four smoking behaviour traits. SNV-trait associations with P < 5 × 10-8 in either analysis were taken forward for replication in up to 275,596 independent participants from UK Biobank. Lastly, a meta-analysis of the discovery and replication studies was performed. Sixteen SNVs were associated with at least one of the smoking behaviour traits (P < 5 × 10-8) in the discovery samples. Ten novel SNVs, including rs12616219 near TMEM182, were followed-up and five of them (rs462779 in REV3L, rs12780116 in CNNM2, rs1190736 in GPR101, rs11539157 in PJA1, and rs12616219 near TMEM182) replicated at a Bonferroni significance threshold (P < 4.5 × 10-3) with consistent direction of effect. A further 35 SNVs were associated with smoking behaviour traits in the discovery plus replication meta-analysis (up to 622,409 participants) including a rare SNV, rs150493199, in CCDC141 and two low-frequency SNVs in CEP350 and HDGFRP2. Functional follow-up implied that decreased expression of REV3L may lower the probability of smoking initiation. The novel loci will facilitate understanding the genetic aetiology of smoking behaviour and may lead to the identification of potential drug targets for smoking prevention and/or cessation.


Subject(s)
Genetic Loci , Smoking/genetics , Biological Specimen Banks , Databases, Factual , Europe/ethnology , Exome , Female , Humans , Male , Polymorphism, Single Nucleotide/genetics , United Kingdom
4.
Stroke ; 51(8): 2454-2463, 2020 08.
Article in English | MEDLINE | ID: mdl-32693751

ABSTRACT

BACKGROUND AND PURPOSE: Stroke is a complex disease with multiple genetic and environmental risk factors. Blacks endure a nearly 2-fold greater risk of stroke and are 2× to 3× more likely to die from stroke than European Americans. METHODS: The COMPASS (Consortium of Minority Population Genome-Wide Association Studies of Stroke) has conducted a genome-wide association meta-analysis of stroke in >22 000 individuals of African ancestry (3734 cases, 18 317 controls) from 13 cohorts. RESULTS: In meta-analyses, we identified one single nucleotide polymorphism (rs55931441) near the HNF1A gene that reached genome-wide significance (P=4.62×10-8) and an additional 29 variants with suggestive evidence of association (P<1×10-6), representing 24 unique loci. For validation, a look-up analysis for a 100 kb region flanking the COMPASS single nucleotide polymorphism was performed in SiGN (Stroke Genetics Network) Europeans, SiGN Hispanics, and METASTROKE (Europeans). Using a stringent Bonferroni correction P value of 2.08×10-3 (0.05/24 unique loci), we were able to validate associations at the HNF1A locus in both SiGN (P=8.18×10-4) and METASTROKE (P=1.72×10-3) European populations. Overall, 16 of 24 loci showed evidence for validation across multiple populations. Previous studies have reported associations between variants in the HNF1A gene and lipids, C-reactive protein, and risk of coronary artery disease and stroke. Suggestive associations with variants in the SFXN4 and TMEM108 genes represent potential novel ischemic stroke loci. CONCLUSIONS: These findings represent the most thorough investigation of genetic determinants of stroke in individuals of African descent, to date.


Subject(s)
Black or African American/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Stroke/genetics , Black or African American/ethnology , Cohort Studies , Genetic Predisposition to Disease/ethnology , Humans , Stroke/ethnology
5.
Am J Hum Genet ; 93(4): 661-71, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24094743

ABSTRACT

Genome-wide association studies (GWASs) primarily performed in European-ancestry (EA) populations have identified numerous loci associated with body mass index (BMI). However, it is still unclear whether these GWAS loci can be generalized to other ethnic groups, such as African Americans (AAs). Furthermore, the putative functional variant or variants in these loci mostly remain under investigation. The overall lower linkage disequilibrium in AA compared to EA populations provides the opportunity to narrow in or fine-map these BMI-related loci. Therefore, we used the Metabochip to densely genotype and evaluate 21 BMI GWAS loci identified in EA studies in 29,151 AAs from the Population Architecture using Genomics and Epidemiology (PAGE) study. Eight of the 21 loci (SEC16B, TMEM18, ETV5, GNPDA2, TFAP2B, BDNF, FTO, and MC4R) were found to be associated with BMI in AAs at 5.8 × 10(-5). Within seven out of these eight loci, we found that, on average, a substantially smaller number of variants was correlated (r(2) > 0.5) with the most significant SNP in AA than in EA populations (16 versus 55). Conditional analyses revealed GNPDA2 harboring a potential additional independent signal. Moreover, Metabochip-wide discovery analyses revealed two BMI-related loci, BRE (rs116612809, p = 3.6 × 10(-8)) and DHX34 (rs4802349, p = 1.2 × 10(-7)), which were significant when adjustment was made for the total number of SNPs tested across the chip. These results demonstrate that fine mapping in AAs is a powerful approach for both narrowing in on the underlying causal variants in known loci and discovering BMI-related loci.


Subject(s)
Black or African American/genetics , Body Mass Index , Genome, Human , Genome-Wide Association Study/methods , Obesity/genetics , Adult , Aged , Aged, 80 and over , Female , Genetic Loci , Genetic Predisposition to Disease , Genotype , Humans , Linkage Disequilibrium , Male , Middle Aged , Obesity/ethnology , Polymorphism, Single Nucleotide , Young Adult
6.
PLoS Genet ; 9(1): e1003171, 2013.
Article in English | MEDLINE | ID: mdl-23341774

ABSTRACT

Genetic variants in intron 1 of the fat mass- and obesity-associated (FTO) gene have been consistently associated with body mass index (BMI) in Europeans. However, follow-up studies in African Americans (AA) have shown no support for some of the most consistently BMI-associated FTO index single nucleotide polymorphisms (SNPs). This is most likely explained by different race-specific linkage disequilibrium (LD) patterns and lower correlation overall in AA, which provides the opportunity to fine-map this region and narrow in on the functional variant. To comprehensively explore the 16q12.2/FTO locus and to search for second independent signals in the broader region, we fine-mapped a 646-kb region, encompassing the large FTO gene and the flanking gene RPGRIP1L by investigating a total of 3,756 variants (1,529 genotyped and 2,227 imputed variants) in 20,488 AAs across five studies. We observed associations between BMI and variants in the known FTO intron 1 locus: the SNP with the most significant p-value, rs56137030 (8.3 × 10(-6)) had not been highlighted in previous studies. While rs56137030was correlated at r(2)>0.5 with 103 SNPs in Europeans (including the GWAS index SNPs), this number was reduced to 28 SNPs in AA. Among rs56137030 and the 28 correlated SNPs, six were located within candidate intronic regulatory elements, including rs1421085, for which we predicted allele-specific binding affinity for the transcription factor CUX1, which has recently been implicated in the regulation of FTO. We did not find strong evidence for a second independent signal in the broader region. In summary, this large fine-mapping study in AA has substantially reduced the number of common alleles that are likely to be functional candidates of the known FTO locus. Importantly our study demonstrated that comprehensive fine-mapping in AA provides a powerful approach to narrow in on the functional candidate(s) underlying the initial GWAS findings in European populations.


Subject(s)
Black or African American/genetics , Body Mass Index , Obesity/genetics , Proteins/genetics , Adaptor Proteins, Signal Transducing/genetics , Adult , Aged , Aged, 80 and over , Alleles , Alpha-Ketoglutarate-Dependent Dioxygenase FTO , Chromosome Mapping , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Male , Metagenomics , Middle Aged , Racial Groups/genetics , White People/genetics
7.
PLoS Genet ; 7(6): e1002138, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21738485

ABSTRACT

For the past five years, genome-wide association studies (GWAS) have identified hundreds of common variants associated with human diseases and traits, including high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels. Approximately 95 loci associated with lipid levels have been identified primarily among populations of European ancestry. The Population Architecture using Genomics and Epidemiology (PAGE) study was established in 2008 to characterize GWAS-identified variants in diverse population-based studies. We genotyped 49 GWAS-identified SNPs associated with one or more lipid traits in at least two PAGE studies and across six racial/ethnic groups. We performed a meta-analysis testing for SNP associations with fasting HDL-C, LDL-C, and ln(TG) levels in self-identified European American (~20,000), African American (~9,000), American Indian (~6,000), Mexican American/Hispanic (~2,500), Japanese/East Asian (~690), and Pacific Islander/Native Hawaiian (~175) adults, regardless of lipid-lowering medication use. We replicated 55 of 60 (92%) SNP associations tested in European Americans at p<0.05. Despite sufficient power, we were unable to replicate ABCA1 rs4149268 and rs1883025, CETP rs1864163, and TTC39B rs471364 previously associated with HDL-C and MAFB rs6102059 previously associated with LDL-C. Based on significance (p<0.05) and consistent direction of effect, a majority of replicated genotype-phentoype associations for HDL-C, LDL-C, and ln(TG) in European Americans generalized to African Americans (48%, 61%, and 57%), American Indians (45%, 64%, and 77%), and Mexican Americans/Hispanics (57%, 56%, and 86%). Overall, 16 associations generalized across all three populations. For the associations that did not generalize, differences in effect sizes, allele frequencies, and linkage disequilibrium offer clues to the next generation of association studies for these traits.


Subject(s)
Genetics, Population , Genome-Wide Association Study , Lipid Metabolism/genetics , Quantitative Trait Loci/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Gene Frequency/genetics , Humans , Linkage Disequilibrium/genetics , Lipoproteins, HDL/genetics , Lipoproteins, LDL/genetics , Male , Middle Aged , Molecular Epidemiology , Polymorphism, Single Nucleotide/genetics , Racial Groups/genetics , Risk Factors , Triglycerides/genetics , Young Adult
8.
Epigenetics ; 19(1): 2333668, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38571307

ABSTRACT

Systemic low-grade inflammation is a feature of chronic disease. C-reactive protein (CRP) is a common biomarker of inflammation and used as an indicator of disease risk; however, the role of inflammation in disease is not completely understood. Methylation is an epigenetic modification in the DNA which plays a pivotal role in gene expression. In this study we evaluated differential DNA methylation patterns associated with blood CRP level to elucidate biological pathways and genetic regulatory mechanisms to improve the understanding of chronic inflammation. The racially and ethnically diverse participants in this study were included as 50% White, 41% Black or African American, 7% Hispanic or Latino/a, and 2% Native Hawaiian, Asian American, American Indian, or Alaska Native (total n = 13,433) individuals. We replicated 113 CpG sites from 87 unique loci, of which five were novel (CADM3, NALCN, NLRC5, ZNF792, and cg03282312), across a discovery set of 1,150 CpG sites associated with CRP level (p < 1.2E-7). The downstream pathways affected by DNA methylation included the identification of IFI16 and IRF7 CpG-gene transcript pairs which contributed to the innate immune response gene enrichment pathway along with NLRC5, NOD2, and AIM2. Gene enrichment analysis also identified the nuclear factor-kappaB transcription pathway. Using two-sample Mendelian randomization (MR) we inferred methylation at three CpG sites as causal for CRP levels using both White and Black or African American MR instrument variables. Overall, we identified novel CpG sites and gene transcripts that could be valuable in understanding the specific cellular processes and pathogenic mechanisms involved in inflammation.


Subject(s)
C-Reactive Protein , DNA Methylation , Humans , C-Reactive Protein/genetics , Epigenesis, Genetic , DNA , Inflammation/genetics , Genome-Wide Association Study , CpG Islands , Intracellular Signaling Peptides and Proteins/genetics
9.
Genet Epidemiol ; 36(2): 107-17, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22851474

ABSTRACT

Genetic imputation has become standard practice in modern genetic studies. However, several important issues have not been adequately addressed including the utility of study-specific reference, performance in admixed populations, and quality for less common (minor allele frequency [MAF] 0.005-0.05) and rare (MAF < 0.005) variants. These issues only recently became addressable with genome-wide association studies (GWAS) follow-up studies using dense genotyping or sequencing in large samples of non-European individuals. In this work, we constructed a study-specific reference panel of 3,924 haplotypes using African Americans in the Women's Health Initiative (WHI) genotyped on both the Metabochip and the Affymetrix 6.0 GWAS platform. We used this reference panel to impute into 6,459 WHI SNP Health Association Resource (SHARe) study subjects with only GWAS genotypes. Our analysis confirmed the imputation quality metric Rsq (estimated r(2) , specific to each SNP) as an effective post-imputation filter. We recommend different Rsq thresholds for different MAF categories such that the average (across SNPs) Rsq is above the desired dosage r(2) (squared Pearson correlation between imputed and experimental genotypes). With a desired dosage r(2) of 80%, 99.9% (97.5%, 83.6%, 52.0%, 20.5%) of SNPs with MAF > 0.05 (0.03-0.05, 0.01-0.03, 0.005-0.01, and 0.001-0.005) passed the post-imputation filter. The average dosage r(2) for these SNPs is 94.7%, 92.1%, 89.0%, 83.1%, and 79.7%, respectively. These results suggest that for African Americans imputation of Metabochip SNPs from GWAS data, including low frequency SNPs with MAF 0.005-0.05, is feasible and worthwhile for power increase in downstream association analysis provided a sizable reference panel is available.


Subject(s)
Oligonucleotide Array Sequence Analysis/methods , Polymorphism, Single Nucleotide , Black or African American , Alleles , Female , Gene Frequency , Genome, Human , Genome-Wide Association Study , Genotype , Haplotypes , Humans , Models, Genetic , Phenotype , Reproducibility of Results , Software , United States , Women's Health
10.
Ann Hum Genet ; 77(5): 416-25, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23808484

ABSTRACT

Numerous common genetic variants that influence plasma high-density lipoprotein cholesterol, low-density lipoprotein cholesterol (LDL-C), and triglyceride distributions have been identified via genome-wide association studies (GWAS). However, whether or not these associations are age-dependent has largely been overlooked. We conducted an association study and meta-analysis in more than 22,000 European Americans between 49 previously identified GWAS variants and the three lipid traits, stratified by age (males: <50 or ≥50 years of age; females: pre- or postmenopausal). For each variant, a test of heterogeneity was performed between the two age strata and significant Phet values were used as evidence of age-specific genetic effects. We identified seven associations in females and eight in males that displayed suggestive heterogeneity by age (Phet < 0.05). The association between rs174547 (FADS1) and LDL-C in males displayed the most evidence for heterogeneity between age groups (Phet = 1.74E-03, I(2) = 89.8), with a significant association in older males (P = 1.39E-06) but not younger males (P = 0.99). However, none of the suggestive modifying effects survived adjustment for multiple testing, highlighting the challenges of identifying modifiers of modest SNP-trait associations despite large sample sizes.


Subject(s)
Genome-Wide Association Study , Lipids/blood , Quantitative Trait Loci , Quantitative Trait, Heritable , Adult , Aged , Delta-5 Fatty Acid Desaturase , Female , Genetic Association Studies , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors , White People/genetics
11.
Hum Genet ; 132(12): 1427-31, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24100633

ABSTRACT

Genome-wide association studies (GWAS) have identified many variants that influence high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and/or triglycerides. However, environmental modifiers, such as smoking, of these known genotype-phenotype associations are just recently emerging in the literature. We have tested for interactions between smoking and 49 GWAS-identified variants in over 41,000 racially/ethnically diverse samples with lipid levels from the Population Architecture Using Genomics and Epidemiology (PAGE) study. Despite their biological plausibility, we were unable to detect significant SNP × smoking interactions.


Subject(s)
Ethnicity/genetics , Gene-Environment Interaction , Genome-Wide Association Study/statistics & numerical data , Lipid Metabolism/genetics , Polymorphism, Single Nucleotide , Smoking/genetics , Cholesterol, HDL/metabolism , Cholesterol, LDL/metabolism , Cohort Studies , Female , Gene Frequency , Genetics, Population , Humans , Male , Prevalence , Smoking/epidemiology , Smoking/ethnology , Smoking/metabolism , Triglycerides/metabolism , Young Adult
12.
BMC Genet ; 14: 33, 2013 May 01.
Article in English | MEDLINE | ID: mdl-23634756

ABSTRACT

BACKGROUND: High-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) levels are influenced by both genes and the environment. Genome-wide association studies (GWAS) have identified ~100 common genetic variants associated with HDL-C, LDL-C, and/or TG levels, mostly in populations of European descent, but little is known about the modifiers of these associations. Here, we investigated whether GWAS-identified SNPs for lipid traits exhibited heterogeneity by sex in the Population Architecture using Genomics and Epidemiology (PAGE) study. RESULTS: A sex-stratified meta-analysis was performed for 49 GWAS-identified SNPs for fasting HDL-C, LDL-C, and ln(TG) levels among adults self-identified as European American (25,013). Heterogeneity by sex was established when phet < 0.001. There was evidence for heterogeneity by sex for two SNPs for ln(TG) in the APOA1/C3/A4/A5/BUD13 gene cluster: rs28927680 (p(het) = 7.4 x 10(-7)) and rs3135506 (p(het) = 4.3 x 10(-4)one SNP in PLTP for HDL levels (rs7679; p(het) = 9.9 x 10(-4)), and one in HMGCR for LDL levels (rs12654264; p(het) = 3.1 x 10(-5)). We replicated heterogeneity by sex in five of seventeen loci previously reported by genome-wide studies (binomial p = 0.0009). We also present results for other racial/ethnic groups in the supplementary materials, to provide a resource for future meta-analyses. CONCLUSIONS: We provide further evidence for sex-specific effects of SNPs in the APOA1/C3/A4/A5/BUD13 gene cluster, PLTP, and HMGCR on fasting triglyceride levels in European Americans from the PAGE study. Our findings emphasize the need for considering context-specific effects when interpreting genetic associations emerging from GWAS, and also highlight the difficulties in replicating interaction effects across studies and across racial/ethnic groups.


Subject(s)
Genome, Human , Lipids/genetics , Female , Genetic Heterogeneity , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide , Population Groups/genetics
13.
Blood ; 114(10): 2068-76, 2009 Sep 03.
Article in English | MEDLINE | ID: mdl-19443657

ABSTRACT

F18-fluorodeoxyglucose positron emission tomography (FDG-PET) is a powerful tool to investigate the role of tumor metabolic activity and its suppression by therapy for cancer survival. As part of Total Therapy 3 for newly diagnosed multiple myeloma, metastatic bone survey, magnetic resonance imaging, and FDG-PET scanning were evaluated in 239 untreated patients. All 3 imaging techniques showed correlations with prognostically relevant baseline parameters: the number of focal lesions (FLs), especially when FDG-avid by PET-computed tomography, was positively linked to high levels of beta-2-microglobulin, C-reactive protein, and lactate dehydrogenase; among gene expression profiling parameters, high-risk and proliferation-related parameters were positively and low-bone-disease molecular subtype inversely correlated with FL. The presence of more than 3 FDG-avid FLs, related to fundamental features of myeloma biology and genomics, was the leading independent parameter associated with inferior overall and event-free survival. Complete FDG suppression in FL before first transplantation conferred significantly better outcomes and was only opposed by gene expression profiling-defined high-risk status, which together accounted for approximately 50% of survival variability (R(2) test). Our results provide a rationale for testing the hypothesis that myeloma survival can be improved by altering treatment in patients in whom FDG suppression cannot be achieved after induction therapy.


Subject(s)
Bone Neoplasms/diagnostic imaging , Fluorodeoxyglucose F18/administration & dosage , Multiple Myeloma/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals/administration & dosage , Aged , Aged, 80 and over , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone Neoplasms/therapy , C-Reactive Protein/analysis , Cell Proliferation , Disease-Free Survival , Female , Humans , L-Lactate Dehydrogenase/blood , Male , Multiple Myeloma/blood , Multiple Myeloma/mortality , Multiple Myeloma/therapy , Neoplasm Metastasis , Radiography , Risk Factors , Survival Rate , beta 2-Microglobulin/blood
14.
Blood ; 112(10): 4235-46, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18337559

ABSTRACT

TP53 is a tumor suppressor gene that functions as transcriptional regulator influencing cellular responses to DNA damage. Here we explored the clinical and transcriptional effects of TP53 expression in multiple myeloma (MM). We found that low expression of TP53, seen in approximately 10% of newly diagnosed patients, is highly correlated with TP53 deletion, an inferior clinical outcome, and represents an independent risk factor. Analysis of the expression of 122 known TP53 target genes in TP53-high vs -low MM cells from 351 newly diagnosed cases, revealed that only a few were highly correlated with TP53 expression. To elucidate TP53 regulatory networks in MM, we overexpressed TP53 in 4 MM cell lines. Gene expression profiling of these cell lines detected 85 significantly differentially expressed genes, with 50 up-regulated and 35 down-regulated. Unsupervised hierarchical clustering of myeloma samples from 351 newly diagnosed and 90 relapsed patients using the 85 putative TP53 target genes revealed 2 major subgroups showing a strong correlation with TP53 expression and survival. These data suggest that loss of TP53 expression in MM confers high risk and probably results in the deregulation of a novel set of MM-specific TP53-target genes. TP53 target gene specificity may be unique to different cell lineages.


Subject(s)
Gene Expression Regulation, Neoplastic , Genes, Neoplasm , Multiple Myeloma/metabolism , Tumor Suppressor Protein p53/metabolism , Aged , Cell Line, Tumor , DNA Damage/genetics , Female , Gene Deletion , Humans , Male , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/mortality , Risk Factors , Tumor Suppressor Protein p53/genetics
15.
Blood ; 112(8): 3115-21, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18492953

ABSTRACT

Total Therapy 2 examined the clinical benefit of adding thalidomide up-front to a tandem transplant regimen for newly diagnosed patients with multiple myeloma. When initially reported with a median follow-up of 42 months, complete response rate and event-free survival were superior among the 323 patients randomized to thalidomide, whereas overall survival was indistinguishable from that of the 345 patients treated on the control arm. With further follow-up currently at a median of 72 months, survival plots segregated 5 years after initiation of therapy in favor of thalidomide (P = .09), reaching statistical significance for the one third of patients exhibiting cytogenetic abnormalities (CAs; P = .02), a well-recognized adverse prognostic feature. The duration of complete remission was also superior in the cohort presenting with CAs such that, at 7 years from onset of complete remission, 45% remained relapse-free as opposed to 20% on the control arm (P = .05). These observations were confirmed when examined by multivariate analysis demonstrating that thalidomide reduced the hazard of death by 41% among patients with CA-positive disease (P = .008). Because two thirds of patients without CAs have remained alive at 7 years, the presently emerging separation in favor of thalidomide may eventually reach statistical significance as well.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Chromosome Aberrations , Cytogenetics , Metaphase , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Thalidomide/therapeutic use , Disease-Free Survival , Follow-Up Studies , Humans , Multivariate Analysis , Prognosis , Remission Induction , Time Factors , Treatment Outcome
16.
Blood ; 112(13): 4924-34, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18805967

ABSTRACT

A venous thromboembolism (VTE) with the subsequent risk of pulmonary embolism is a major concern in the treatment of patients with multiple myeloma with thalidomide. The susceptibility to developing a VTE in response to thalidomide therapy is likely to be influenced by both genetic and environmental factors. To test genetic variation associated with treatment related VTE in patient peripheral blood DNA, we used a custom-built molecular inversion probe (MIP)-based single nucleotide polymorphism (SNP) chip containing 3404 SNPs. SNPs on the chip were selected in "functional regions" within 964 genes spanning 67 molecular pathways thought to be involved in the pathogenesis, treatment response, and side effects associated with myeloma therapy. Patients and controls were taken from 3 large clinical trials: Medical Research Council (MRC) Myeloma IX, Hovon-50, and Eastern Cooperative Oncology Group (ECOG) EA100, which compared conventional treatments with thalidomide in patients with myeloma. Our analysis showed that the set of SNPs associated with thalidomide-related VTE were enriched in genes and pathways important in drug transport/metabolism, DNA repair, and cytokine balance. The effects of the SNPs associated with thalidomide-related VTE may be functional at the level of the tumor cell, the tumor-related microenvironment, and the endothelium. The clinical trials described in this paper have been registered as follows: MRC Myeloma IX: ISRCTN68454111; Hovon-50: NCT00028886; and ECOG EA100: NCT00033332.


Subject(s)
Gene Expression Profiling , Multiple Myeloma/complications , Polymorphism, Single Nucleotide , Thalidomide/adverse effects , Venous Thrombosis/chemically induced , Venous Thrombosis/genetics , Case-Control Studies , Clinical Trials as Topic , Cytokines , DNA Repair/genetics , Data Collection , Hemostasis/genetics , Humans , Multiple Myeloma/drug therapy , Pharmaceutical Preparations/metabolism , Pharmacogenetics , Retrospective Studies
17.
Br J Haematol ; 147(3): 347-51, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19702643

ABSTRACT

Contrary to Total Therapy (TT) 2 for multiple myeloma patients, FGFR3- translocation bore no adverse effects on outcome in TT3 with added bortezomib. Del TP53, another poor-risk feature in TT2 and present in 10% of 441 patients treated, was examined for its prognostic consequences in TT3. Not affecting rate or duration of complete response, TP53 haplo-insufficiency also did not compromise, in the 83% with genomically defined low-risk myeloma, survival or event-free survival. FGFR3+ and FGFR3- molecular subgroups fared worse in the presence of del TP53 when applying TT2 but not TT3. Thus, the prognostic implications of del TP53 were protocol-, genome-defined risk- and molecular subgroup-dependent.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Gene Deletion , Multiple Myeloma/genetics , Tumor Suppressor Protein p53/genetics , Boronic Acids/administration & dosage , Bortezomib , Follow-Up Studies , Humans , Multiple Myeloma/drug therapy , Prognosis , Pyrazines/administration & dosage , Survival Analysis , Treatment Outcome
18.
Br J Haematol ; 145(5): 637-41, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19344415

ABSTRACT

The clinical significance of cytogenetic abnormalities (CA) present in randomly sampled (RS) or focal lesion (FL) bone marrow sites was examined in 419 untreated myeloma patients. Among 290 patients with gene expression profiling (GEP) data generated from RS sites, GEP-defined high-risk was present in 52% of the RS+/FL+ group but in only 9% of the remainder (P < 0.001). The RS+/FL+ constellation (18%) was an independent predictor of poor survival, also after adjusting for GEP-derived risk and TP53 status (Hazard ratio = 2.42, P = 0.004). The prevalence of high-risk myeloma in the RS+/FL+ group may reflect a dissemination-prone condition not shared by the other three groups.


Subject(s)
Gene Expression Profiling , Multiple Myeloma/genetics , Oligonucleotide Array Sequence Analysis , Aged , Bone Marrow/pathology , Bone Marrow Examination , Chromosome Aberrations , Disease-Free Survival , Humans , Middle Aged , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Multivariate Analysis , Prognosis , Proportional Hazards Models , Risk Factors , Survival Rate
19.
Biol Psychiatry ; 85(11): 946-955, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30679032

ABSTRACT

BACKGROUND: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. METHODS: We analyzed ∼250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. RESULTS: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. CONCLUSIONS: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.


Subject(s)
Alcohol Drinking/physiopathology , Exome , Genetic Variation/physiology , Smoking/physiopathology , Alcohol Drinking/genetics , Databases, Genetic , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/statistics & numerical data , Genotype , Humans , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Phenotype , Polymorphism, Single Nucleotide/genetics , Smoking/genetics
20.
Br J Haematol ; 141(4): 433-44, 2008 May.
Article in English | MEDLINE | ID: mdl-18371114

ABSTRACT

In comparison to total therapy 1 (TT1), the phase 3 trial total therapy 2 (TT2) evaluated the benefit of up-front administration of thalidomide (THAL); TT2 also introduced post-transplant consolidation chemotherapy. With median follow-up times of 5 and 12 years, respectively, outcome comparisons were made of 668 patient's enrolled on TT2 and 231 patients treated on TT1. Complete response (CR) rates were similar at 40% for TT1 and TT2 without THAL versus 60% on the THAL arm of TT2. CR durations were similar with either TT2 arm and both were superior to results of TT1. Event-free and overall survivals were extended from 2.6 to 5.7 years, respectively, with TT1 to 4.8 and 8.0 years with TT2. TT2's major advance vis-à-vis TT1 pertained to the subgroup without cytogenetic abnormalities (CA), supporting the role of post-transplant consolidation therapy, whereas the improved survival of the CA subgroup on the experimental versus control arm of TT2 attests to the role of THAL in this setting. Adjusting for prognostic variables in multivariate and pair-mate analyses, TT2 was superior to TT1 in terms of CR duration, event-free and overall survival. These results provide a basis for the prospective evaluation of the consolidation strategy in a randomized clinical trial design.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Multiple Myeloma/drug therapy , Peripheral Blood Stem Cell Transplantation , Thalidomide/administration & dosage , Aged , Chromosome Aberrations , Combined Modality Therapy , Disease Progression , Epidemiologic Methods , Female , Humans , Male , Middle Aged , Multiple Myeloma/genetics , Multiple Myeloma/therapy , Prognosis , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL