Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters

Publication year range
1.
Cell ; 182(5): 1198-1213.e14, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888493

ABSTRACT

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10-9, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.


Subject(s)
Asian People/genetics , Mutation, Missense/genetics , Polymorphism, Single Nucleotide/genetics , White People/genetics , Genetics , Genome-Wide Association Study/methods , HEK293 Cells , Humans , Interleukin-7/genetics , Phenotype
2.
Cell ; 182(5): 1214-1231.e11, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888494

ABSTRACT

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Subject(s)
Genetic Predisposition to Disease/genetics , Multifactorial Inheritance/genetics , Female , Gene Regulatory Networks/genetics , Genome-Wide Association Study/methods , Hematopoiesis/genetics , Humans , Male , Phenotype , Polymorphism, Single Nucleotide/genetics
3.
Nature ; 622(7982): 329-338, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37794186

ABSTRACT

The Pharma Proteomics Project is a precompetitive biopharmaceutical consortium characterizing the plasma proteomic profiles of 54,219 UK Biobank participants. Here we provide a detailed summary of this initiative, including technical and biological validations, insights into proteomic disease signatures, and prediction modelling for various demographic and health indicators. We present comprehensive protein quantitative trait locus (pQTL) mapping of 2,923 proteins that identifies 14,287 primary genetic associations, of which 81% are previously undescribed, alongside ancestry-specific pQTL mapping in non-European individuals. The study provides an updated characterization of the genetic architecture of the plasma proteome, contextualized with projected pQTL discovery rates as sample sizes and proteomic assay coverages increase over time. We offer extensive insights into trans pQTLs across multiple biological domains, highlight genetic influences on ligand-receptor interactions and pathway perturbations across a diverse collection of cytokines and complement networks, and illustrate long-range epistatic effects of ABO blood group and FUT2 secretor status on proteins with gastrointestinal tissue-enriched expression. We demonstrate the utility of these data for drug discovery by extending the genetic proxied effects of protein targets, such as PCSK9, on additional endpoints, and disentangle specific genes and proteins perturbed at loci associated with COVID-19 susceptibility. This public-private partnership provides the scientific community with an open-access proteomics resource of considerable breadth and depth to help to elucidate the biological mechanisms underlying proteo-genomic discoveries and accelerate the development of biomarkers, predictive models and therapeutics1.


Subject(s)
Biological Specimen Banks , Blood Proteins , Databases, Factual , Genomics , Health , Proteome , Proteomics , Humans , ABO Blood-Group System/genetics , Blood Proteins/analysis , Blood Proteins/genetics , COVID-19/genetics , Drug Discovery , Epistasis, Genetic , Fucosyltransferases/metabolism , Genetic Predisposition to Disease , Plasma/chemistry , Proprotein Convertase 9/metabolism , Proteome/analysis , Proteome/genetics , Public-Private Sector Partnerships , Quantitative Trait Loci , United Kingdom , Galactoside 2-alpha-L-fucosyltransferase
4.
Kidney Int ; 102(3): 492-505, 2022 09.
Article in English | MEDLINE | ID: mdl-35690124

ABSTRACT

Hypertension is a major cardiovascular disease risk factor and contributor to premature death globally. Family-based investigations confirmed a significant heritable component of blood pressure (BP), whereas genome-wide association studies revealed >1000 common and rare genetic variants associated with BP and/or hypertension. The kidney is not only an organ of key relevance to BP regulation and the development of hypertension, but it also acts as the tissue mediator of genetic predisposition to hypertension. The identity of kidney genes, pathways, and related mechanisms underlying the genetic associations with BP has started to emerge through integration of genomics with kidney transcriptomics, epigenomics, and other omics as well as through applications of causal inference, such as Mendelian randomization. Single-cell methods further enabled mapping of BP-associated kidney genes to cell types, and in conjunction with other omics, started to illuminate the biological mechanisms underpinning associations of BP-associated genetic variants and kidney genes. Polygenic risk scores derived from genome-wide association studies and refined on kidney omics hold the promise of enhanced diagnostic prediction, whereas kidney omics-informed drug discovery is likely to contribute new therapeutic opportunities for hypertension and hypertension-mediated kidney damage.


Subject(s)
Genome-Wide Association Study , Hypertension , Blood Pressure/genetics , Genetic Predisposition to Disease , Humans , Hypertension/genetics , Kidney , Polymorphism, Single Nucleotide
5.
BMC Med ; 20(1): 245, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35948913

ABSTRACT

BACKGROUND: Interleukin 6 (IL-6) signaling is being investigated as a therapeutic target for atherosclerotic cardiovascular disease (CVD). While changes in circulating high-sensitivity C-reactive protein (hsCRP) are used as a marker of IL-6 signaling, it is not known whether there is effect heterogeneity in relation to baseline hsCRP levels or other cardiovascular risk factors. The aim of this study was to explore the association of genetically predicted IL-6 signaling with CVD risk across populations stratified by baseline hsCRP levels and cardiovascular risk factors. METHODS: Among 397,060 White British UK Biobank participants without known CVD at baseline, we calculated a genetic risk score for IL-6 receptor (IL-6R)-mediated signaling, composed of 26 variants at the IL6R gene locus. We then applied linear and non-linear Mendelian randomization analyses exploring associations with a combined endpoint of incident coronary artery disease, ischemic stroke, peripheral artery disease, aortic aneurysm, and cardiovascular death stratifying by baseline hsCRP levels and cardiovascular risk factors. RESULTS: The study participants (median age 59 years, 53.9% females) were followed-up for a median of 8.8 years, over which time a total of 46,033 incident cardiovascular events occurred. Genetically predicted IL-6R-mediated signaling activity was associated with higher CVD risk (hazard ratio per 1-mg/dL increment in absolute hsCRP levels: 1.11, 95% CI: 1.06-1.17). The increase in CVD risk was linearly related to baseline absolute hsCRP levels. There was no evidence of heterogeneity in the association of genetically predicted IL-6R-mediated signaling with CVD risk when stratifying the population by sex, age, body mass index, estimated glomerular filtration rate, or systolic blood pressure, but there was evidence of greater associations in individuals with low-density lipoprotein cholesterol ≥ 160 mg/dL. CONCLUSIONS: Any benefit of inhibiting IL-6 signaling for CVD risk reduction is likely to be proportional to absolute reductions in hsCRP levels. Therapeutic inhibition of IL-6 signaling for CVD risk reduction should therefore prioritize those individuals with the highest baseline levels of hsCRP.


Subject(s)
C-Reactive Protein , Cardiovascular Diseases , Biomarkers , C-Reactive Protein/metabolism , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cholesterol, LDL , Female , Humans , Interleukin-6/genetics , Male , Middle Aged , Risk Factors
6.
Diabetologia ; 64(12): 2773-2778, 2021 12.
Article in English | MEDLINE | ID: mdl-34505161

ABSTRACT

AIMS/HYPOTHESIS: The aim of this study was to leverage human genetic data to investigate the cardiometabolic effects of glucose-dependent insulinotropic polypeptide (GIP) signalling. METHODS: Data were obtained from summary statistics of large-scale genome-wide association studies. We examined whether genetic associations for type 2 diabetes liability in the GIP and GIPR genes co-localised with genetic associations for 11 cardiometabolic outcomes. For those outcomes that showed evidence of co-localisation (posterior probability >0.8), we performed Mendelian randomisation analyses to estimate the association of genetically proxied GIP signalling with risk of cardiometabolic outcomes, and to test whether this exceeded the estimate observed when considering type 2 diabetes liability variants from other regions of the genome. RESULTS: Evidence of co-localisation with genetic associations of type 2 diabetes liability at both the GIP and GIPR genes was observed for five outcomes. Mendelian randomisation analyses provided evidence for associations of lower genetically proxied type 2 diabetes liability at the GIP and GIPR genes with lower BMI (estimate in SD units -0.16, 95% CI -0.30, -0.02), C-reactive protein (-0.13, 95% CI -0.19, -0.08) and triacylglycerol levels (-0.17, 95% CI -0.22, -0.12), and higher HDL-cholesterol levels (0.19, 95% CI 0.14, 0.25). For all of these outcomes, the estimates were greater in magnitude than those observed when considering type 2 diabetes liability variants from other regions of the genome. CONCLUSIONS/INTERPRETATION: This study provides genetic evidence to support a beneficial role of sustained GIP signalling on cardiometabolic health greater than that expected from improved glycaemic control alone. Further clinical investigation is warranted. DATA AVAILABILITY: All data used in this study are publicly available. The scripts for the analysis are available at: https://github.com/vkarhune/GeneticallyProxiedGIP .


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Receptors, Gastrointestinal Hormone , Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Genome-Wide Association Study , Glucose/metabolism , Human Genetics , Humans , Receptors, Gastrointestinal Hormone/genetics , Receptors, Gastrointestinal Hormone/metabolism
7.
Stroke ; 49(10): 2508-2511, 2018 10.
Article in English | MEDLINE | ID: mdl-30355092

ABSTRACT

Background and Purpose- Observational studies have reported increased risk of ischemic stroke among individuals with low serum 25-hydroxyvitamin D (S-25OHD) concentrations but uncertainty remains about the causality of this association. We sought to determine whether S-25OHD concentrations are causally associated with ischemic stroke and its subtypes using Mendelian randomization. Methods- We used summary-level data for ischemic stroke (34 217 cases and 404 630 noncases) from the MEGASTROKE consortium. As instruments, we used 6 single nucleotide polymorphisms, explaining 7.5% of the variance in S-25OHD, previously identified to be associated with S-25OHD concentrations in the Study of Underlying Genetic Determinants of Vitamin D and Highly Related Traits consortium (n=79 366). The analyses were conducted using the inverse-variance-weighted method and complemented with the weighted median, heterogeneity-penalized, and Mendelian randomization-Egger approaches. Results- Genetically higher S-25OHD concentration was not associated with ischemic stroke. The odds ratios (95% CI) per genetically predicted 1-SD (≈18 nmol/L) increase in S-25OHD concentrations, based on all 6 single nucleotide polymorphisms, were 1.01 (0.94-1.08; P=0.84) for all ischemic stroke, 0.94 (0.80-1.11; P=0.49) for large artery stroke, 0.95 (0.82-1.11; P=0.55) for small vessel stroke, and 1.02 (0.90-1.16; P=0.74) for cardioembolic stroke. The results were similar in sensitivity analyses. Conclusions- These findings provide no support that higher S-25OHD concentrations are causally associated with any ischemic stroke subtype. Thus, vitamin D supplementation will unlikely reduce the risk of ischemic stroke in the general population.


Subject(s)
Brain Ischemia/blood , Stroke/blood , Vitamin D/analogs & derivatives , Vitamin D/blood , Humans , Phenotype , Polymorphism, Single Nucleotide/genetics , Risk Factors , Stroke/epidemiology
8.
Hum Mol Genet ; 24(6): 1774-90, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25424174

ABSTRACT

Copy number variants (CNVs) have been proposed as a possible source of 'missing heritability' in complex human diseases. Two studies of type 1 diabetes (T1D) found null associations with common copy number polymorphisms, but CNVs of low frequency and high penetrance could still play a role. We used the Log-R-ratio intensity data from a dense single nucleotide polymorphism (SNP) array, ImmunoChip, to detect rare CNV deletions (rDELs) and duplications (rDUPs) in 6808 T1D cases, 9954 controls and 2206 families with T1D-affected offspring. Initial analyses detected CNV associations. However, these were shown to be false-positive findings, failing replication with polymerase chain reaction. We developed a pipeline of quality control (QC) tests that were calibrated using systematic testing of sensitivity and specificity. The case-control odds ratios (OR) of CNV burden on T1D risk resulting from this QC pipeline converged on unity, suggesting no global frequency difference in rDELs or rDUPs. There was evidence that deletions could impact T1D risk for a small minority of cases, with enrichment for rDELs longer than 400 kb (OR = 1.57, P = 0.005). There were also 18 de novo rDELs detected in affected offspring but none for unaffected siblings (P = 0.03). No specific CNV regions showed robust evidence for association with T1D, although frequencies were lower than expected (most less than 0.1%), substantially reducing statistical power, which was examined in detail. We present an R-package, plumbCNV, which provides an automated approach for QC and detection of rare CNVs that can facilitate equivalent analyses of large-scale SNP array datasets.


Subject(s)
Artifacts , DNA Copy Number Variations , Diabetes Mellitus, Type 1/genetics , Genotyping Techniques/methods , Adolescent , Child , Child, Preschool , Data Interpretation, Statistical , Genetic Predisposition to Disease , Humans , Quality Control , Sensitivity and Specificity , Sequence Deletion , Software
9.
PLoS Genet ; 9(4): e1003444, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23593036

ABSTRACT

Inflammation, which is directly regulated by interleukin-6 (IL-6) signaling, is implicated in the etiology of several chronic diseases. Although a common, non-synonymous variant in the IL-6 receptor gene (IL6R Asp358Ala; rs2228145 A>C) is associated with the risk of several common diseases, with the 358Ala allele conferring protection from coronary heart disease (CHD), rheumatoid arthritis (RA), atrial fibrillation (AF), abdominal aortic aneurysm (AAA), and increased susceptibility to asthma, the variant's effect on IL-6 signaling is not known. Here we provide evidence for the association of this non-synonymous variant with the risk of type 1 diabetes (T1D) in two independent populations and confirm that rs2228145 is the major determinant of the concentration of circulating soluble IL-6R (sIL-6R) levels (34.6% increase in sIL-6R per copy of the minor allele 358Ala; rs2228145 [C]). To further investigate the molecular mechanism of this variant, we analyzed expression of IL-6R in peripheral blood mononuclear cells (PBMCs) in 128 volunteers from the Cambridge BioResource. We demonstrate that, although 358Ala increases transcription of the soluble IL6R isoform (P = 8.3×10⁻²²) and not the membrane-bound isoform, 358Ala reduces surface expression of IL-6R on CD4+ T cells and monocytes (up to 28% reduction per allele; P≤5.6×10⁻²²). Importantly, reduced expression of membrane-bound IL-6R resulted in impaired IL-6 responsiveness, as measured by decreased phosphorylation of the transcription factors STAT3 and STAT1 following stimulation with IL-6 (P≤5.2×10⁻7). Our findings elucidate the regulation of IL-6 signaling by IL-6R, which is causally relevant to several complex diseases, identify mechanisms for new approaches to target the IL-6/IL-6R axis, and anticipate differences in treatment response to IL-6 therapies based on this common IL6R variant.


Subject(s)
Genetic Association Studies , Inflammation , Protein Isoforms , Receptors, Interleukin-6 , Alleles , Amino Acid Substitution/genetics , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/genetics , Humans , Inflammation/blood , Inflammation/genetics , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Mutation , Phosphorylation , Protein Isoforms/blood , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptors, Interleukin-6/blood , Receptors, Interleukin-6/genetics , Receptors, Interleukin-6/metabolism , Risk Factors , Signal Transduction
10.
Nat Genet ; 39(7): 857-64, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17554260

ABSTRACT

The Wellcome Trust Case Control Consortium (WTCCC) primary genome-wide association (GWA) scan on seven diseases, including the multifactorial autoimmune disease type 1 diabetes (T1D), shows associations at P < 5 x 10(-7) between T1D and six chromosome regions: 12q24, 12q13, 16p13, 18p11, 12p13 and 4q27. Here, we attempted to validate these and six other top findings in 4,000 individuals with T1D, 5,000 controls and 2,997 family trios independent of the WTCCC study. We confirmed unequivocally the associations of 12q24, 12q13, 16p13 and 18p11 (P(follow-up)

Subject(s)
Chromosome Mapping , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , Genome, Human , Adolescent , Case-Control Studies , Humans , Polymorphism, Single Nucleotide
11.
Eur J Epidemiol ; 30(7): 577-87, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25930055

ABSTRACT

During recent decades, Bangladesh has experienced a rapid epidemiological transition from communicable to non-communicable diseases. Coronary heart disease (CHD), with myocardial infarction (MI) as its main manifestation, is a major cause of death in the country. However, there is limited reliable evidence about its determinants in this population. The Bangladesh Risk of Acute Vascular Events (BRAVE) study is an epidemiological bioresource established to examine environmental, genetic, lifestyle and biochemical determinants of CHD among the Bangladeshi population. By early 2015, the ongoing BRAVE study had recruited over 5000 confirmed first-ever MI cases, and over 5000 controls "frequency-matched" by age and sex. For each participant, information has been recorded on demographic factors, lifestyle, socioeconomic, clinical, and anthropometric characteristics. A 12-lead electrocardiogram has been recorded. Biological samples have been collected and stored, including extracted DNA, plasma, serum and whole blood. Additionally, for the 3000 cases and 3000 controls initially recruited, genotyping has been done using the CardioMetabochip+ and the Exome+ arrays. The mean age (standard deviation) of MI cases is 53 (10) years, with 88 % of cases being male and 46 % aged 50 years or younger. The median interval between reported onset of symptoms and hospital admission is 5 h. Initial analyses indicate that Bangladeshis are genetically distinct from major non-South Asian ethnicities, as well as distinct from other South Asian ethnicities. The BRAVE study is well-placed to serve as a powerful resource to investigate current and future hypotheses relating to environmental, biochemical and genetic causes of CHD in an important but under-studied South Asian population.


Subject(s)
Asian People/genetics , Coronary Disease/genetics , Adult , Aged , Bangladesh , Case-Control Studies , Coronary Artery Disease/ethnology , Coronary Artery Disease/genetics , Coronary Disease/ethnology , Female , Genotype , Humans , Male , Middle Aged , Myocardial Infarction/epidemiology , Risk , Risk Factors
12.
Diabetologia ; 57(2): 366-72, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24264051

ABSTRACT

AIMS/HYPOTHESIS: Type 1 diabetes is a common autoimmune disease that has genetic and environmental determinants. Variations within the IL2 and IL2RA (also known as CD25) gene regions are associated with disease risk, and variation in expression or function of these proteins is likely to be causal. We aimed to investigate if circulating concentrations of the soluble form of CD25, sCD25, an established marker of immune activation and inflammation, were increased in individuals with type 1 diabetes and if this was associated with the concentration of C-peptide, a measure of insulin production that reflects the degree of autoimmune destruction of the insulin-producing beta cells. METHODS: We used immunoassays to measure sCD25 and C-peptide in peripheral blood plasma from patient and control samples. RESULTS: We identified that sCD25 was increased in patients with type 1 diabetes compared with controls and replicated this result in an independent set of 86 adult patient and 80 age-matched control samples (p = 1.17 × 10(-3)). In 230 patients under 20 years of age, with median duration-of-disease of 6.1 years, concentrations of sCD25 were negatively associated with C-peptide concentrations (p = 4.8 × 10(-3)). CONCLUSIONS/INTERPRETATION: The 25% increase in sCD25 in patients, alongside the inverse association between sCD25 and C-peptide, probably reflect the adverse effects of an on-going, actively autoimmune and inflammatory immune system on beta cell function in patients.


Subject(s)
C-Peptide/metabolism , Diabetes Mellitus, Type 1/metabolism , Inflammation/metabolism , Insulin-Secreting Cells/metabolism , Interleukin-2 Receptor alpha Subunit/metabolism , Adolescent , Adult , Aged , Biomarkers/metabolism , Case-Control Studies , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/immunology , Disease Progression , Female , Humans , Immunoassay , Inflammation/immunology , Male , Middle Aged
13.
BMC Genomics ; 15: 274, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24720548

ABSTRACT

BACKGROUND: Killer Immunoglobulin-like Receptors (KIRs) are surface receptors of natural killer cells that bind to their corresponding Human Leukocyte Antigen (HLA) class I ligands, making them interesting candidate genes for HLA-associated autoimmune diseases, including type 1 diabetes (T1D). However, allelic and copy number variation in the KIR region effectively mask it from standard genome-wide association studies: single nucleotide polymorphism (SNP) probes targeting the region are often discarded by standard genotype callers since they exhibit variable cluster numbers. Quantitative Polymerase Chain Reaction (qPCR) assays address this issue. However, their cost is prohibitive at the sample sizes required for detecting effects typically observed in complex genetic diseases. RESULTS: We propose a more powerful and cost-effective alternative, which combines signals from SNPs with more than three clusters found in existing datasets, with qPCR on a subset of samples. First, we showed that noise and batch effects in multiplexed qPCR assays are addressed through normalisation and simultaneous copy number calling of multiple genes. Then, we used supervised classification to impute copy numbers of specific KIR genes from SNP signals. We applied this method to assess copy number variation in two KIR genes, KIR3DL1 and KIR3DS1, which are suitable candidates for T1D susceptibility since they encode the only KIR molecules known to bind with HLA-Bw4 epitopes. We find no association between KIR3DL1/3DS1 copy number and T1D in 6744 cases and 5362 controls; a sample size twenty-fold larger than in any previous KIR association study. Due to our sample size, we can exclude odds ratios larger than 1.1 for the common KIR3DL1/3DS1 copy number groups at the 5% significance level. CONCLUSION: We found no evidence of association of KIR3DL1/3DS1 copy number with T1D, either overall or dependent on HLA-Bw4 epitope. Five other KIR genes, KIR2DS4, KIR2DL3, KIR2DL5, KIR2DS5 and KIR2DS1, in high linkage disequilibrium with KIR3DL1 and KIR3DS1, are also unlikely to be significantly associated. Our approach could potentially be applied to other KIR genes to allow cost effective assaying of gene copy number in large samples.


Subject(s)
Gene Dosage , Polymorphism, Single Nucleotide , Receptors, KIR/genetics , Alleles , Case-Control Studies , Diabetes Mellitus, Type 1/genetics , Genetic Predisposition to Disease , HLA-A Antigens/genetics , HLA-B Antigens/genetics , Humans , Multiplex Polymerase Chain Reaction , Real-Time Polymerase Chain Reaction , Receptors, KIR3DL1/genetics , Receptors, KIR3DS1/genetics
14.
Hum Mol Genet ; 21(2): 322-33, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-21989056

ABSTRACT

The chromosome 16p13 region has been associated with several autoimmune diseases, including type 1 diabetes (T1D) and multiple sclerosis (MS). CLEC16A has been reported as the most likely candidate gene in the region, since it contains the most disease-associated single-nucleotide polymorphisms (SNPs), as well as an imunoreceptor tyrosine-based activation motif. However, here we report that intron 19 of CLEC16A, containing the most autoimmune disease-associated SNPs, appears to behave as a regulatory sequence, affecting the expression of a neighbouring gene, DEXI. The CLEC16A alleles that are protective from T1D and MS are associated with increased expression of DEXI, and no other genes in the region, in two independent monocyte gene expression data sets. Critically, using chromosome conformation capture (3C), we identified physical proximity between the DEXI promoter region and intron 19 of CLEC16A, separated by a loop of >150 kb. In reciprocal experiments, a 20 kb fragment of intron 19 of CLEC16A, containing SNPs associated with T1D and MS, as well as with DEXI expression, interacted with the promotor region of DEXI but not with candidate DNA fragments containing other potential causal genes in the region, including CLEC16A. Intron 19 of CLEC16A is highly enriched for transcription-factor-binding events and markers associated with enhancer activity. Taken together, these data indicate that although the causal variants in the 16p13 region lie within CLEC16A, DEXI is an unappreciated autoimmune disease candidate gene, and illustrate the power of the 3C approach in progressing from genome-wide association studies results to candidate causal genes.


Subject(s)
Autoimmune Diseases/genetics , DNA-Binding Proteins/genetics , DNA/genetics , Membrane Proteins/genetics , Chromosomes, Human, Pair 16 , Humans , Monocytes/metabolism , Polymerase Chain Reaction , Polymorphism, Single Nucleotide , Quantitative Trait Loci
15.
PLoS Genet ; 7(8): e1002216, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21829393

ABSTRACT

The genetic basis of autoantibody production is largely unknown outside of associations located in the major histocompatibility complex (MHC) human leukocyte antigen (HLA) region. The aim of this study is the discovery of new genetic associations with autoantibody positivity using genome-wide association scan single nucleotide polymorphism (SNP) data in type 1 diabetes (T1D) patients with autoantibody measurements. We measured two anti-islet autoantibodies, glutamate decarboxylase (GADA, n = 2,506), insulinoma-associated antigen 2 (IA-2A, n = 2,498), antibodies to the autoimmune thyroid (Graves') disease (AITD) autoantigen thyroid peroxidase (TPOA, n = 8,300), and antibodies against gastric parietal cells (PCA, n = 4,328) that are associated with autoimmune gastritis. Two loci passed a stringent genome-wide significance level (p<10(-10)): 1q23/FCRL3 with IA-2A and 9q34/ABO with PCA. Eleven of 52 non-MHC T1D loci showed evidence of association with at least one autoantibody at a false discovery rate of 16%: 16p11/IL27-IA-2A, 2q24/IFIH1-IA-2A and PCA, 2q32/STAT4-TPOA, 10p15/IL2RA-GADA, 6q15/BACH2-TPOA, 21q22/UBASH3A-TPOA, 1p13/PTPN22-TPOA, 2q33/CTLA4-TPOA, 4q27/IL2/TPOA, 15q14/RASGRP1/TPOA, and 12q24/SH2B3-GADA and TPOA. Analysis of the TPOA-associated loci in 2,477 cases with Graves' disease identified two new AITD loci (BACH2 and UBASH3A).


Subject(s)
Autoantibodies/genetics , Autoantibodies/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Genome-Wide Association Study , ABO Blood-Group System/genetics , Adolescent , Child , Child, Preschool , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 9/genetics , Graves Disease/genetics , Graves Disease/immunology , Humans , Membrane Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Receptors, Immunologic/genetics
16.
Nat Genet ; 37(11): 1243-6, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16228001

ABSTRACT

The main problems in drawing causal inferences from epidemiological case-control studies are confounding by unmeasured extraneous factors, selection bias and differential misclassification of exposure. In genetics the first of these, in the form of population structure, has dominated recent debate. Population structure explained part of the significant +11.2% inflation of test statistics we observed in an analysis of 6,322 nonsynonymous SNPs in 816 cases of type 1 diabetes and 877 population-based controls from Great Britain. The remainder of the inflation resulted from differential bias in genotype scoring between case and control DNA samples, which originated from two laboratories, causing false-positive associations. To avoid excluding SNPs and losing valuable information, we extended the genomic control method by applying a variable downweighting to each SNP.


Subject(s)
Diabetes Mellitus, Type 1/epidemiology , Diabetes Mellitus, Type 1/genetics , Genetics, Population , Models, Genetic , Polymorphism, Single Nucleotide/genetics , Adolescent , Bias , Case-Control Studies , DNA/blood , False Positive Reactions , Genotype , Humans , Lymphocytes/metabolism , United Kingdom/epidemiology
17.
Nature ; 450(7171): 887-92, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-18004301

ABSTRACT

The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1-3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods-recursive partitioning and regression-to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; P(combined) = 2.01 x 10(-19) and 2.35 x 10(-13), respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1/genetics , Genes, MHC Class I/genetics , Genetic Predisposition to Disease/genetics , HLA-A Antigens/genetics , HLA-B Antigens/genetics , Alleles , Case-Control Studies , Databases, Genetic , Gene Frequency , Genes, MHC Class II/genetics , Genotype , HLA-DQ Antigens/genetics , HLA-DQ beta-Chains , HLA-DR Antigens/genetics , HLA-DRB1 Chains , Humans , Polymorphism, Single Nucleotide/genetics , Sample Size , White People/genetics
18.
medRxiv ; 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38076879

ABSTRACT

BACKGROUND & AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) affects over 25% of the population and currently has no effective treatments. Plasma proteins with causal evidence may represent promising drug targets. We aimed to identify plasma proteins in the causal pathway of MASLD and explore their interaction with obesity. METHODS: We analysed 2,941 plasma proteins in 43,978 European participants from UK Biobank. We performed genome-wide association study (GWAS) for all MASLD-associated proteins and created the largest MASLD GWAS (109,885 cases/1,014,923 controls). We performed Mendelian Randomization (MR) and integrated proteins and their encoding genes in MASLD ranges to identify candidate causal proteins. We then validated them through independent replication, exome sequencing, liver imaging, bulk and single-cell gene expression, liver biopsies, pathway, and phenome-wide data. We explored the role of obesity by MR and multivariable MR across proteins, body mass index, and MASLD. RESULTS: We found 929 proteins associated with MASLD, reported five novel genetic loci associated with MASLD, and identified 17 candidate MASLD protein targets. We identified four novel targets for MASLD (CD33, GRHPR, HMOX2, and SCG3), provided protein evidence supporting roles of AHCY, FCGR2B, ORM1, and RBKS in MASLD, and validated nine previously known targets. We found that CD33, FCGR2B, ORM1, RBKS, and SCG3 mediated the association of obesity and MASLD, and HMOX2, ORM1, and RBKS had effect on MASLD independent of obesity. CONCLUSIONS: This study identified new protein targets in the causal pathway of MASLD, providing new insights into the multi-omics architecture and pathophysiology of MASLD. These findings advise further therapeutic interventions for MASLD.

19.
J Am Coll Cardiol ; 82(20): 1906-1920, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37940228

ABSTRACT

BACKGROUND: Integrated analyses of plasma proteomic and genetic markers in prospective studies can clarify the causal relevance of proteins and discover novel targets for ischemic heart disease (IHD) and other diseases. OBJECTIVES: The purpose of this study was to examine associations of proteomics and genetics data with IHD in population studies to discover novel preventive treatments. METHODS: We conducted a nested case-cohort study in the China Kadoorie Biobank (CKB) involving 1,971 incident IHD cases and 2,001 subcohort participants who were genotyped and free of prior cardiovascular disease. We measured 1,463 proteins in the stored baseline samples using the OLINK EXPLORE panel. Cox regression yielded adjusted HRs for IHD associated with individual proteins after accounting for multiple testing. Moreover, cis-protein quantitative loci (pQTLs) identified for proteins in genome-wide association studies of CKB and of UK Biobank were used as instrumental variables in separate 2-sample Mendelian randomization (MR) studies involving global CARDIOGRAM+C4D consortium (210,842 IHD cases and 1,378,170 controls). RESULTS: Overall 361 proteins were significantly associated at false discovery rate <0.05 with risk of IHD (349 positively, 12 inversely) in CKB, including N-terminal prohormone of brain natriuretic peptide and proprotein convertase subtilisin/kexin type 9. Of these 361 proteins, 212 had cis-pQTLs in CKB, and MR analyses of 198 variants in CARDIOGRAM+C4D identified 13 proteins that showed potentially causal associations with IHD. Independent MR analyses of 307 cis-pQTLs identified in Europeans replicated associations for 4 proteins (FURIN, proteinase-activated receptor-1, Asialoglycoprotein receptor-1, and matrix metalloproteinase-3). Further downstream analyses showed that FURIN, which is highly expressed in endothelial cells, is a potential novel target and matrix metalloproteinase-3 a potential repurposing target for IHD. CONCLUSIONS: Integrated analyses of proteomic and genetic data in Chinese and European adults provided causal support for FURIN and multiple other proteins as potential novel drug targets for treatment of IHD.


Subject(s)
Furin , Myocardial Ischemia , Adult , Humans , Cohort Studies , Endothelial Cells , Genome-Wide Association Study , Matrix Metalloproteinases , Myocardial Ischemia/drug therapy , Myocardial Ischemia/genetics , Myocardial Ischemia/epidemiology , Prospective Studies , Proteomics , Risk Factors , Case-Control Studies
20.
JHEP Rep ; 5(5): 100693, 2023 May.
Article in English | MEDLINE | ID: mdl-37122688

ABSTRACT

Background & Aims: Non-alcoholic fatty liver disease (NAFLD) has a prevalence of ∼25% worldwide, with significant public health consequences yet few effective treatments. Human genetics can help elucidate novel biology and identify targets for new therapeutics. Genetic variants in mitochondrial amidoxime-reducing component 1 (MTARC1) have been associated with NAFLD and liver-related mortality; however, its pathophysiological role and the cell type(s) mediating these effects remain unclear. We aimed to investigate how MTARC1 exerts its effects on NAFLD by integrating human genetics with in vitro and in vivo studies of mARC1 knockdown. Methods: Analyses including multi-trait colocalisation and Mendelian randomisation were used to assess the genetic associations of MTARC1. In addition, we established an in vitro long-term primary human hepatocyte model with metabolic readouts and used the Gubra Amylin NASH (GAN)-diet non-alcoholic steatohepatitis mouse model treated with hepatocyte-specific N-acetylgalactosamine (GalNAc)-siRNA to understand the in vivo impacts of MTARC1. Results: We showed that genetic variants within the MTARC1 locus are associated with liver enzymes, liver fat, plasma lipids, and body composition, and these associations are attributable to the same causal variant (p.A165T, rs2642438 G>A), suggesting a shared mechanism. We demonstrated that increased MTARC1 mRNA had an adverse effect on these traits using Mendelian randomisation, implying therapeutic inhibition of mARC1 could be beneficial. In vitro mARC1 knockdown decreased lipid accumulation and increased triglyceride secretion, and in vivo GalNAc-siRNA-mediated knockdown of mARC1 lowered hepatic but increased plasma triglycerides. We found alterations in pathways regulating lipid metabolism and decreased secretion of 3-hydroxybutyrate upon mARC1 knockdown in vitro and in vivo. Conclusions: Collectively, our findings from human genetics, and in vitro and in vivo hepatocyte-specific mARC1 knockdown support the potential efficacy of hepatocyte-specific targeting of mARC1 for treatment of NAFLD. Impact and implications: We report that genetically predicted increases in MTARC1 mRNA associate with poor liver health. Furthermore, knockdown of mARC1 reduces hepatic steatosis in primary human hepatocytes and a murine NASH model. Together, these findings further underscore the therapeutic potential of targeting hepatocyte MTARC1 for NAFLD.

SELECTION OF CITATIONS
SEARCH DETAIL